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Sharp Corner Functions for
Mindlin Plates
Transverse displacement and rotation eigenfunctions for the bending of moderately
plates are derived for the Mindlin plate theory so as to satisfy exactly the differe
equations of equilibrium and the boundary conditions along two intersecting stra
edges. These eigenfunctions are in some ways similar to those derived by Max W
for thin plates a half century ago. The eigenfunctions are called ‘‘corner functions,’’
they represent the state of stress currently in sharp corners, demonstrating the sing
ties that arise there for larger angles. The corner functions, together with others, ma
used with energy approaches to obtain accurate results for global behavior of moder
thick plates, such as static deflections, free vibration frequencies, buckling loads
mode shapes. Comparisons of Mindlin corner functions with those of thin-plate theor
made in this work, and remarkable differences are found.@DOI: 10.1115/1.1795221#
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Introduction
The existence of stress singularities in sharp corners of loa

plates has been well known for more than a century. The natur
these singularities was carefully studied by Williams@1,2# for thin
plates in bending, and for the plane stress and plane strain p
lems of two-dimensional elasticity, all of them relating to the b
harmonic differential equation. Williams investigated all combin
tions of boundary conditions along the intersecting edges;
plate bending, these were for clamped, simply supported, and
edges. He derived the eigenfunctions that satisfied the biharm
equation and the boundary conditions along the edges and, thu
the sharp corner of intersection.

These eigenfunctions, which may be called ‘‘corner function
have been found to be very useful in solving problems involv
the overall behavior of plates. For example, free vibrations
circular sectorial plates having reentrant corners or V-notc
@3–5#, of cantilevered skew plates@6,7#, and of rhombic plates
@8,9# have been studied using these functions. Transverse de
tions of statically loaded plates, or bifurcation buckling of the
could equally well be analyzed with the functions; but to the a
thors’ knowledge they have not yet been. Mathematically co
plete sets of other functions~trigonometric and algebraic! are
added to the corner functions to effect accurate solutions
means of an energy approach—the Ritz method, in the case o
free vibration problems.

It is well known that at least shear deformation and rotary
ertia effects need to be considered if the plate is moderately t
or if the higher free vibration frequencies of thin plates are nee
~cf. Leissa,@10#!. Thus, it is desirable to have corner functions th
consider the shear deformation, as well as the bending defo
tion, inherently. These may be used when sharp corners conta
bending and/or transverse shear stress singularities are pres
solve not only free vibration problems, but also static deflect
and buckling problems for moderately thick plates. Haggblad
Bathe@11# examined the stress singularities near a corner for
case of two intersecting simply supported edges, as a part
more general study of boundary layer behavior of a Reiss
Mindlin plate theory in choosing proper mesh sizes near ed
when using finite elements. The purpose of the present work

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 20
final revision, January 8, 2004. Associate Editor: O. O’Reilly. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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derive the corner functions for all types of intersecting edge c
ditions that may be encountered or closely approached in phys
situations and to compare them with those that have been use
the thin plate theory.

Governing Equations of the Mindlin Theory
The well-known Mindlin theory assumes displacement com

nents in the form@12–14#

ur~r ,u,z!5zf r~r ,u!

uu~r ,u,z!5zfu~r ,u! (1)

w~r ,u,z!5w~r ,u!

in polar coordinates whereur anduu are radial and circumferen
tial components in the midplane, respectively, andw is transverse.
Thus,f r andfu are rotations of normals to the midplane due
bending. The transverse shear strains are implicitly present a
differences between the total slopes@]w/]r ,(1/r )]w/]u# of the
deformed middle surface and the bending rotations.

The governing equations of equilibrium for a plate in pol
coordinates are expressed in terms of moment resultantsMr , M u ,
andMru and shear force resultantsQr andQu as

]Mr

]r
1

1

r

]Mru

]u
1

Mr2M u

r
2Qr50

]Mru

]r
1

1

r

]M u

]u
1

2

r
Mru2Qu50 (2)

]Qr

]r
1

1

r

]Qu

]u
1

1

r
Qr50

The resultants are related to the bending rotations and transv
displacement by

Mr5DF]f r

]r
1

n

r S f r1
]fu

]u D G
M u5DF1

r S f r1
]fu

]u D1n
]f r

]r G
Mru5

~12n!D

2 F1

r S ]f r

]u
2fuD1

]fu

]r G (3)

Qr5k2GhS f r1
]w

]r D

2;
the
l of

ing,
l be
E
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Qu5k2GhS fu1
1

r

]w

]u D
In Eq. ~3! D5Eh3/12(12n2) is the flexural rigidity, whereE is
r
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Young’s modulus,h is the plate thickness, andn is the Poisson
ratio. In addition,G5E/2(11n) is the shear modulus andk2

5p2/12 @12# is the shear correction factor. Substituting Eq.~3!
into Eq. ~2! yields
D

2 F ~12n!S ]2f r

]r 2
1

1

r

]f r

]r
2

f r

r 2
2

2

r 2

]fu

]u
1

1

r 2

]2f r

]u2 D 1~11n!S ]2f r

]r 2
1

1

r

]f r

]r
2

f r

r 2
2

1

r 2

]fu

]u
1

1

r

]2fu

]r ]u D G2k2GhS f r1
]w

]r D50

D

2 F ~12n!S ]2fu

]r 2
1

1

r

]fu

]r
2

fu

r 2
1

1

r 2

]2fu

]u2
1

2

r 2

]f r

]u D 1~11n!S 1

r 2

]2fu

]u2
1

1

r

]2f r

]r ]u
1

1

r 2

]f r

]u D G2k2GhS fu1
1

r

]w

]u D50 (4)

k2GhS ]f r

]r
1

f r

r
1

1

r

]fu

]u
2

]2w

]r 2
2

1

r

]w

]r
2

1

r 2

]2w

]u2 D 50
,

in
General Solutions and Boundary Conditions
To obtain solutions of Eq.~4!, the bending rotations and trans

verse displacement of the Mindlin plate are assumed as

f r~r ,u!5r lC r~u!

fu~r ,u!5r lCu~u! (5)

w~r ,u!5r l̄11Fz~u!
-

where the eigenvaluesl and l̄ are generally complex numbers
andC r , Cu , andFz are functions ofu only.

Consider now the explicit forms ofC r , Cu , andFz . Equation
~5! is inserted into the equilibrium equations~4!. This yields a
system of three simultaneous ordinary differential equations
terms of three unknown functionsC r , Cu , andFz as follows:
D$~12n!@C r91~l221!C r22Cu8#1~11n!@~l221!C r1~l21!Cu8#22k2Gh@r 2C r1~l11!r l̄2l12Fz#%50

D$~12n!@Cu91~l221!Cu12C r8#1~11n!@~Cu91~l11!C r8#22k2Gh~r 2Cu1r l̄2l12Fz8!%50 (6)

Fz91~ l̄11!2Fz2r l2l̄@~l11!C r1Cu8#50
d

where the primes indicate derivatives with respect tou. It should
be pointed out that the variabler is still present since the shea
terms involvingr 2, r l̄2l12, andr l2l̄ appear in Eq.~6!. However,
in the immediate neighborhood of the vertex~i.e., asr→0), these
terms vanish when compared to other terms in Eq.~6!, provided
that l22,l̄,l and the displacements and slopes are bound
This is a key point in this derivation. No attempt is being ma
here to obtain solutions of Eq.~6! that are valid for all values ofr.
Instead, corner functions are being derived that satisfy Eq.~6! and
boundary conditions exactly only at the corner (r 50). As de-
scribed earlier in the Introduction, the value of such functions
that they account for the stress singularities exactly in the co
when used with additional smooth functions to solve problems
an energy method, thereby accelerating considerably the con
gence of the solutions~e.g., free vibration frequencies! toward the
exact values as more terms are added. Thus, Eq.~6! reduces to

~12n!@C r91~l221!C r22Cu8#1~11n!@~l221!C r

1~l21!Cu8#50 (7a)

~12n!@Cu91~l221!Cu12C r8#1~11n!@Cu91~l11!C r8#50
(7b)

Fz91~ l̄11!2Fz50 (7c)

Differentiating Eq.~7a! with respect tou and rearranging the
result, the following equation is obtained:

~12n!C r-12~l221!C r81@l~11n!231n#Cu950 (8)
r

ed.
de

is
ner
by
ver-

From Eq.~7b!,

C r852
1

l~11n!132n
@2Cu91~12n!~l221!Cu# (9)

and substituting this into Eq.~8! yields

Cu
IV1@~l11!21~l21!2#Cu91~l11!2~l21!2Cu50

(10)

The general solution of the above equation is found to be

Cu~u!5A cos~l11!u1B sin~l11!u1C cos~l21!u

1D sin~l21!u (11)

whereA, B, C, andD are arbitrary constants. It should be note
that the above solution is not valid forl50 or l561 because for
such eigenvalues, the general solution of Eq.~10! is not in the
form given by Eq.~11!.

The functionC r is determined by back substitution of Eq.~11!
into ~9! and integration of the resulting equation. That is,

C r~u!5A sin~l11!u2B cos~l11!u1gC sin~l21!u

2gD cos~l21!u (12)

where

g5
l~11n!231n

l~11n!132n
(13)

The solutionFz of Eq. ~7c! is
Transactions of the ASME
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Fz~u!5G sin~ l̄11!u1H cos~ l̄11!u (14)

whereG andH are also arbitrary constants.
Consequently, by introducing Eqs.~11!, ~12!, and~14! into Eq.

~5!, the following solutions for bending rotations and transve
displacement are obtained:

f r~r ,u!5r l@A sin~l11!u2B cos~l11!u1gC sin~l21!u

2gD cos~l21!u# (15a)

fu~r ,u!5r l@A cos~l11!u1B sin~l11!u1C cos~l21!u

1D sin~l21!u# (15b)

w~r ,u!5r l̄11@G sin~ l̄11!u1H cos~ l̄11!u# (15c)

where the characteristic valuesl and l̄ are determined from the
boundary conditions along the radial edges.

Since the circumferential edge condition away from the ver
of the sharp corner does not influence stress behavior with
sufficiently small neighborhood of the vertex, only support con
tions along the radial edge are considered. Boundary condit
along the radial edgeu5u0 ~a constant! are characterized as on
of following four cases.

1. Free radial edge. In Mindlin plate theory, the bending momen
twisting moment, and shear force must all vanish so that

M u~r ,u0!5Mru~r ,u0!5Qu~r ,u0!50 (16)

2. Simply supported radial edge. There are two possible ways o
enforcing simply supported conditions in Mindlin plate theor

a. Condition S. For the first simply supported condition,

M u~r ,u0!5f r~r ,u0!5W~r ,u0!50 (17a)

b. Conditions S* . For the second simply supported bounda
condition,

M u~r ,u0!5Mru~r ,u0!5W~r ,u0!50 (17b)

3. Clamped radial edge. For this type of support condition,

f r~r ,u0!5fu~r ,u0!5w~r ,u0!50 (18)

Characteristic Equations and Corner Functions
In this section the procedure of deriving characteristic equati

for l andl̄ and the associated corner functions is demonstrate
the case where both radial edges are simply supported. H
Mindlin simply supported conditions along the radial edg
u56a/2 are defined such that the circumferential moment, t
gential rotation, and transverse displacement all vanish~i.e., con-
dition S!. Because of the symmetry of the edge conditions w
respect tou50 the displacement componentsf r , fu , andw may
be divided into symmetric and antisymmetric parts.

For the symmetric case, when the even functions ofu in Eqs.
~15a! and ~15c! and the odd functions ofu in Eq. ~15b!, that is
A5C5G50, are inserted into the boundary conditions~Eqs.
~17a!! a set of algebraic equations forB, D, andH are obtained,

l~12n!B cos
~l11!a

2
2ĝD cos

~l21!a

2
50 (19a)

2B cos
~l11!a

2
2gD cos

~l21!a

2
50 (19b)

H cos
~ l̄11!a

2
50 (19c)

where ĝ5g(nl11)2(l21). For a nontrivial solution, the de
terminant of the coefficients of Eqs.~19a!–~19c! must vanish.
That is,
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Ul~12n!cos
~l11!a

2
2ĝ cos

~l21!a

2
0

2cos
~l11!a

2
2g cos

~l21!a

2
0

0 0 cos
~ l̄11!a

2

U50

(20)

After expanding and simplifying Eq.~20! the resulting character
istic equations forl and l̄ are, respectively,

cosa52cosla,
(21)

cos
~ l̄11!a

2
50

From Eq.~19b!, the relationship betweenB andD is

B

D
52

g cos
~l21!a

2

cos
~l11!a

2

(22)

Similarly, for the antisymmetric case, when coefficientsB, D, and
H are set to zero in Eqs.~15a!–~15c!, the characteristic equation
for l and l̄ are

cosa5cosla,
(23)

sin
~ l̄11!a

2
50

and theA are related toC by

A

C
52

g sin
~l21!a

2

sin
~l11!a

2

(24)

As a result, upon combining Eqs.~21! and~23!, the characteristic
equations for Mindlin plates, which are simply supported~condi-
tion S! along both intersecting, radial edges are

cosa57cosla (25a)

sin~ l̄11!a50 (25b)

in which Eq.~25a! is exactly the same as the characteristic eq
tions for thin sectorial plates with simply supported radial edg
@1#, and Eq.~25b! is additional for the transverse shear stre
resultant. There are an infinite number of real roots,~i.e., eigen-
values,l and l̄) of Eqs. ~25!. Corresponding to eachl and l̄,
eigenfunctionsf r , fu , and w are the desired corner functions
obtained by substituting Eqs.~22! and ~24! back into Eqs.~15a!
and ~15b!.

Using the sets of boundary conditions given by Eqs.~16!–~18!
and following the same procedure, characteristic equations fol

and l̄ and corner functions can be derived for Mindlin pla
theory for arbitrary boundary conditions along the two interse
ing edges. Table 1 summarizes the characteristic equations fo
ten possible combinations of boundary conditions. It is found t
the first of the two equations shown in Table 1 for both edg
simply supported~S! is identical to that arising from thin plate
theory, but all other cases yield equations that are significa
different. As described above, the second characteristic equa
for transverse shear stress resultants in each case, which i
counting for the transverse shear stress, does not arise in thin
theory. In the Appendix, the Mindlin corner functions for the d
ferent combinations of free, simply supported~S and S* !, and
clamped radial edge conditions are summarized.
JANUARY 2005, Vol. 72 Õ 3
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Table 1 Characteristic equations of lk and l̄k for different boundary conditions based on
Mindlin plate theory

Boundary Condition

Characteristic equationu50 u5a

Clamped Clamped
sinlka56S11n

32nDlk sina, sin~l̄k11!a50

Clamped Simply supported~S!
sin 2lka52S11n

32nDlk sin 2a, sin~l̄k11!a50

Clamped Simply supported~S* !
sin2 lka5

42~11n!2lk
2 sin2 a

~32n!~11n!
, sin~l̄k11!a50

Clamped Free
sin2 lka5

42~11n!2lk
2 sin2 a

~32n!~11n!
, cos~l̄k11!a50

Simply supported~S! Simply supported~S! coslka57cosa, sin(l̄k11)a50
Simply supported~S! Simply supported~S* ! sin 2lka5lk sin 2a, sin(l̄k11)a50
Simply supported~S! Free sin 2lka5lk sin 2a, cos(l̄k11)a50
Simply supported~S* ! Simply supported~S* ! sinlka57lk sina, sin(l̄k11)a50
Simply supported~S* ! Free sinlka57lk sina, cos(l̄k11)a50
Free Free sinlka57lk sina, sin(l̄k11)a50
e
d

t

i

ble
.

are

nding

ge
nt
t

Discussion of Stress Singularities at Reentrant Corners
of Mindlin Plates

When the displacement functions given in Eq.~5! are substi-
tuted into Eq.~3!, the bending and twisting moment resultants a
written as

Mr5Dr l21F ~l1n!C r1n
]Cu

]u G
M u5Dr l21F ~nl11!C r1

]Cu

]u G (26)

Mru5
~12n!D

2
r l21F ~l21!Cu1

]C r

]u G
and the transverse shear stress resultants become

Qr5k2Ghrl̄@C r1~ l̄11!Fz# (27)

Qu5k2Ghrl̄S Cu1
]Fz

]u D
where the functionsC r , Cu , andFz are presented in Eqs.~11!,
~12!, and~14!. It can be recognized from Eq.~26! that the bending
momentsMr , M u , andMru at the vertex (r 50) of intersecting
straight edges, according to the Mindlin theory, vary identically
those found for classical thin plate theory, namely, anr l21-type
singularity for 0,l,1. The transverse shear forcesQr and Qu

~Eqs. ~27!! near r 50 of Mindlin theory vary asr l̄ when 21
,l̄,0. Forl.1 andl̄.0, no singular moments and shear forc
exist at the vertex of intersecting edges according to the Min
theory. Characteristic values ofl,0 for the rotationsf r andfu

and l̄,21 for transverse displacementw also exist, but are no
used. For such values the displacement components@see Eqs.
~15!# become infinite atr 50, which is not acceptable in the phys
cal sense.
NUARY 2005
re

to

s
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-

Figure 1 shows a plot of the minimum real parts ofl as func-
tion of a arising from the characteristic equations shown in Ta
1. In constructing Fig. 1 the Poisson ration has been set to 0.3
The cusps arise in the curves because only the minimum roots
shown. A study of Fig. 1 reveals that for vertex angles~a! be-
tween 180 and 360 deg, all the cases considered have the be
and twisting moment singularities; that is, Eq.~26! shows that this
occurs whenl,1. On the other hand, regardless of the radial ed
conditions of the Mindlin sectorial plates, there is no mome
singularity if the vertex anglea is less than 63 deg. The momen
singularities are present ata.90 deg for simply supported~S!

Fig. 1 Variation of minimum values of Re „l… with vertex angle
a based on Mindlin plate theory „yÄ0.3…
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~Case 1! and clamped-simply supported~S! ~Case 4! radial edges,
whereas the singular moments exist ata.180 deg for free-free
~Case 5! and clamped-clamped~Case 6! radial edges. For the
clamped-free~Case 2! and simply supported~S!-free ~Case 3!
radial edges, the moment singularities exist ata.63 deg and
a.128 deg, respectively. In all the cases except Case 1,
strength of the moment singularity at the vertex of the Mind
sectorial plates increases with increasinga. When a5360 deg
~i.e., radial line crack!, the orders of the moment singularities
the tip of the crack arer 21/2 for Cases 5 and 6,r 23/4 for Cases
2–4, andr 21 for Case 1.

The minimum values ofl̄ given in Table 1 are presented in Fig
2 as a function of vertex anglea. Here, the values ofl̄ are inde-
pendent of the Poisson ration. According to Eq.~27!, transverse
shear force singularities occur whenl̄,0. Figure 2 shows clearly
that the strength of this singularity at the vertex of the Mind
sectorial plates increases monotonically with increasinga. The

Fig. 2 Variation of minimum values of l̄ with vertex angle a
based on Mindlin plate theory „all n…
Journal of Applied Mechanics
the
in

t

.

in

singular shear forces exist ata.180 deg for Case 1~which in-
cludes simply supported~S!, clamped-simply supported~S!, free-
free, and clamped-clamped radial edges!. For Case 2~which in-
cludes clamped-free and simply supported~S!-free radial edges!
the singular shear forces arise ata.90 deg. Whena5360 deg,
the orders of the shear force singularities at the tip of the crack
r 21/2 for Case 1, andr 23/4 for Case 2. It appears, from Figs. 1 an
2, that for the vertex angles greater than 180 deg, all the ca
regardless of radial edge conditions, have singular moments
transverse shear forces. For clamped-free radial edges, both
ment and transverse shear force singularities arise whena.90
deg, whereas those singularities on the simply supported~S!-free
radial edges are introduced whena.128 deg.

In order to demonstrate the types of moment and transv
shear force singularities obtained from the foregoing analysis,
culations are made for characteristic values in the case where
radial edges are both simply supported~S!. Here, the characteris
tic equations forl and l̄ @see Eqs.~25!# have closed form, exac
solutions. These are, for moments,

Fig. 3 Variation of minimum values of Re „lk… with vertex angle
a based on classical plate theory „yÄ0.3…
H lp5
pp

a
21, ~p51,2,3, . . . ! for 0 deg<a<180 deg

lq5
qp

a
11, ~q521,1,2, . . . ! for 180 deg<a<360 deg

(28)
d

ar
and for the transverse shear forces,

l̄s5
sp

a
21, ~s51,2,3, . . . ! for all a (29)
It is clear from Eqs.~28! and~29! that the orders of bending an

twisting moments arer p/a22 for 0 deg<a<180 deg andr 2p/a

for 180 deg<a<360 deg, while the order of transverse she

forces isr p/a21 for all a.
JANUARY 2005, Vol. 72 Õ 5
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Comparisons of Classical and Mindlin Plate Singulari-
ties

One would think that the results from a moderately thick pl
theory, such as that of Mindlin, would be similar to those of t
classical~thin! plate theory and would approach them as the thi
ness ratio becomes small. But such is not the case with the
ment singularities considered above. Not only do the Mind
characteristic equations~Table 1! not contain a thickness ratio
but, except for the plate having the intersecting edges both sim
supported~S!, the characteristic equations are significantly diffe
ent. These equations for the thin plate theory are available in
paper by Leissa et al.@3#.

To permit direct comparison with the eigenvalues~l! shown in
Fig. 1, the corresponding eigenvalues of thin plate theory
shown in Fig. 3, which are the roots of their characteristic eq
tions. One sees, for example, that Case 1~S-S! is the same curve
in both figures, as it should be, arising from the same charac
istic equation. But one sees also that Case 5~F-F,S*-S* ,S*-F! of
Mindlin plate theory has the same curve as Case 6~C-C! of clas-
sical plate theory. Remarkably, the characteristic equations~Table
1! for all three edge combinations are identical and do not con
n. Interestingly, the C-C plate for the Mindlin theory~Case 6! has
a curve in Fig. 1 similar to, but slightly different from the F-
classical plate~Case 5!. The Poisson ratio appears in the chara
teristic equations for both theories, but forn50 they would be
identical.

Of particular interest is the relative strengths of the mom
singularities between the theories. Comparing them for the C
edges at, for examplea5240 deg, one seesl50.68 for Mindlin
theory ~Fig. 1! and l50.74 for classical plate theory~Fig. 3!,
indicating a slightly stronger singularity for the former. The high
roots ofl contribute less, if any, singularity. But if one compar
Cases 2, 3, and 4~C-F,S-F,C-S! of classical theory in Fig. 3 with
those of Fig. 1, one sees large differences inl. It is also interest-
ing to observe in Fig. 1 that, according to the Mindlin theory, t
C-F and C-S* combinations~Case 2! of intersecting edges gene
ate moment singularities for external corners having acute an
greater than 63 deg; whereas in classical theory, they arise
for obtuse~a.90 deg! and reflex~a.180 deg! angles.

Concluding Remarks
In the above work the corner functions are derived for each

the ten possible combinations of radial edge conditions that m
exist at a sharp corner, according to the Mindlin plate theo
accounting for transverse shear deformation as well as ben
deformation. These functions are different from those of class
~thin! plate theory for bending, not only in the functional form
but also in the eigenvalues~l and l̄), which appear as argumen
in the functions. The Mindlin plate corner functions may be us
to obtain accurate results for the global behavior~static deflec-
tions, vibration frequencies, buckling loads, mode shapes! of
moderately thick, isotropic, homogeneous plates, in the sa
manner that has been carried out for thin plates when sharp
ners causing moment singularities are present.

It was also shown that the moment singularities arising in
Mindlin theory are, in some cases, significantly different fro
those arising in the thin plate theory. Why this should be the c
is a topic worthy of further study.

Appendix: Mindlin Plate Corner Functions for Various
Radial Edge Conditions

In this appendix the Mindlin plate corner functions are summ
rized for the possible combinations of clamped, simply suppor
~conditions S and S* !, and free radial edge conditions that a
examined in the present study. The corresponding characte
equations forlk and l̄k are given in Table 1.
6 Õ Vol. 72, JANUARY 2005
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Clamped-Clamped Radial Edges

For Symmetric Modes.

f r~r ,u!5(
k51

`

Dkr
lkF gk cos

~lk21!a

2

cos
~lk11!a

2

cos~lk11!u

2gk cos~lk21!uG (A1a)

fu~r ,u!5(
k51

`

Dkr
lkF 2

sin
~lk21!a

2

sin
~lk11!a

2

sin~lk11!u

1sin~lk21!uG (A1b)

w~r ,u!5(
k51

`

Hkr
l̄k11 cos~ l̄k11!u (A1c)

whereg is given by Eq.~13!.

For Antisymmetric Modes.

f r~r ,u!5(
k51

`

Ckr
lkF 2

gk sin
~lk21!a

2

sin
~lk11!a

2

sin~lk11!u

1gk sin~lk21!uG (A1d)

fu~r ,u!5(
k51

`

Ckr
lkF 2

cos
~lk21!a

2

cos
~lk11!a

2

cos~lk11!u

1cos~lk21!uG (A1e)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A1f)

Clamped-Simply Supported„S… Radial Edges

f r~r ,u!5(
k51

`

Ckr
lk@2sin~lk11!u1gkf 1k cos~lk11!u

1gk sin~lk21!u2gkf 1k cos~lk21!u# (A2a)
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fu~r ,u!5(
k51

`

Ckr
lk@2cos~lk11!u2gkf 1k sin~lk11!u

1cos~lk21!u2 f 1k sin~lk21!u# (A2b)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A2c)

where

f 1k5
sin~lk11!a2gk sin~lk21!a

gk@cos~lk11!a2cos~lk21!a#
(A2d)

Clamped-Simply Supported„S* … Radial Edges

f r~r ,u!5(
k51

`

Ckr
lk@2sin~lk11!u2gkf 2k cos~lk11!u

1gk sin~lk21!u1gkf 2k cos~lk21!u# (A3a)

fu~r ,u!5(
k51

`

Ckr
lk@2cos~lk11!u1gkf 2k sin~lk11!u

1cos~lk21!u2 f 2k sin~lk21!u# (A3b)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A3c)

where

f 2k5
2lk cos~lk11!a2~gk11!~lk21!cos~lk21!a

2gklk sin~lk11!a2~gk11!~lk21!sin~lk21!a
(A3d)

Clamped-Free Radial Edges

f r~r ,u!5(
k51

`

Ckr
lk@2sin~lk11!u1gkf 3k cos~lk11!u

1gk sin~lk21!u2gkf 3k cos~lk21!u# (A4a)

fu~r ,u!5(
k51

`

Ckr
lk@2cos~lk11!u2gkf 3k sin~lk11!u

1cos~lk21!u1 f 3k sin~lk21!u# (A4b)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A4c)

where

f 3k5
lk~12n!sin~lk11!a1ĝk sin~lk21!a

gklk~12n!cos~lk11!a1ĝk cos~lk21!a
(A4d)

and ĝk5gk(nlk11)2(lk21).

Simply Supported „S…-Simply Supported „S… Radial Edges

For Symmetric Modes.
Journal of Applied Mechanics
f r~r ,u!5(
k51

`

r lkDkF gk cos
~lk21!a

2

cos
~lk11!a

2

cos~lk11!u

2gk cos~lk21!uG (A5a)

fu~r ,u!5(
k51

`

r lkDkF 2

gk cos
~lk21!a

2

cos~lk11!
a

2

sin~lk11!u

1sin~lk21!uG (A5b)

w~r ,u!5(
k51

`

Hkr
l̄k11 cos~ l̄k11!u (A5c)

For Antisymmetric Modes.

f r~r ,u!5(
k51

`

r lkCkF 2

gk sin~lk21!
a

2

sin~lk11!
a

2

sin~lk11!u

1gk sin~lk21!uG (A5d)

fu~r ,u!5(
k51

`

r lkCkF 2

gk sin~lk21!
a

2

sin~lk11!
a

2

cos~lk11!u

1cos~lk21!uG (A5e)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A5f)

Simply Supported „S…-Simply Supported „S* … Radial Edges

f r~r ,u!5(
k51

`

Ckr
lk@2g̃k sin~lk11!u1ĝkf 4k cos~lk11!u

1gk sin~lk21!u1gklk~12n! f 4k cos~lk21!u#

(A6a)

fu~r ,u!5(
k51

`

Ckr
lk@2g̃k cos~lk11!u2ĝkf 4k sin~lk11!u

1cos~lk21!u2lk~12n! f 4k sin~lk21!u# (A6b)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A6c)
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where

g̃k5
~gk11!~lk21!

2lk
(A6d)

f 4k5
~gk11!~lk21!sin~lk11!a22gklk sin~lk21!a

2lk@ ĝk cos~lk11!a1gklk~12n!cos~lk21!a#
(A6e)

Simply Supported „S…-Free Radial Edges

f r~r ,u!5(
k51

`

Ckr
lk@2g̃k sin~lk11!u1ĝkf 4k cos~lk11!u

1gk sin~lk21!u1gklk~12n! f 4k cos~lk21!u#

(A7a)

fu~r ,u!5(
k51

`

Ckr
lk@2g̃k cos~lk11!u2ĝkf 4k sin~lk11!u

1cos~lk21!u2lk~12n! f 4k sin~lk21!u# (A7b)

w~r ,u!5(
k51

`

Hkr
l̄k11 cos~ l̄k11!u (A7c)

where f 4k is given in Eq.~A6e!.

Simply Supported „S* …-Simply Supported „S* … Radial
Edges

For Symmetric Modes.

f r~r ,u!5(
k51

`

Dkr
lkF ḡk sin~lk21!

a

2

2lk sin~lk11!
a

2

cos~lk11!u

2gk cos~lk21!uG (A8a)

fu~r ,u!5(
k51

`

Dkr
lkF 2

ḡk sin~lk21!
a

2

2lk sin~lk11!
a

2

sin~lk11!u

1sin~lk21!uG (A8b)

w~r ,u!5(
k51

`

Hkr
l̄k11 cos~ l̄k11!u (A8c)

whereḡk5(gk11)(lk21).
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For Antisymmetric Modes.

f r~r ,u!5(
k51

`

Ckr
lkF 2

ḡk cos~lk21!
a

2

2lk cos~lk11!
a

2

sin~lk11!u

1gk sin~lk21!uG (A8d)

fu~r ,u!5(
k51

`

Ckr
lkF 2

ḡk cos~lk21!
a

2

2lk cos~lk11!
a

2

cos~lk11!u

1cos~lk21!uG (A8e)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A8f)

Simply Supported „S* …-Free Radial Edges

f r~r ,u!5(
k51

`

Ckr
lk@2g̃k sin~lk11!u2ĝkf 5k cos~lk11!u

1gk sin~lk21!u2gklk~12n! f 4k cos~lk21!u#

(A9a)

fu~r ,u!5(
k51

`

Ckr
lk@2g̃k cos~lk11!u1ĝkf 5k sin~lk11!u

1cos~lk21!u1lk~12n! f 5k sin~lk21!u# (A9b)

w~r ,u!5(
k51

`

Hkr
l̄k11 sin~ l̄k11!u (A9c)

where

f 5k5
cos~lk11!a2cos~lk21!a

2lk sin~lk11!a1lk~12n!sin~lk21!a
. (A9d)
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Free-Free Radial Edges

For Symmetric Modes.

f r~r ,u!5(
k51

`

Dkr
lkF ḡk sin~lk21!

a

2

2lk sin~lk11!
a

2

cos~lk11!u

2gk cos~lk21!uG (A10a)

fu~r ,u!5(
k51

`

Dkr
lkF 2

ḡk sin~lk21!
a

2

2lk sin~lk11!
a

2

sin~lk11!u

1sin~lk21!uG (A10b)

w~r ,u!5(
k51

`

Hkr
l̄k11 cos~ l̄k11!u (A10c)

whereḡk5(gk11)(lk21)

For Antisymmetric Modes.

f r~r ,u!5(
k51

`

Ckr
lkF 2

ḡk cos~lk21!
a

2

2lk cos~lk11!
a

2

sin~lk11!u

1gk sin~lk21!uG (A10d)
Journal of Applied Mechanics
fu~r ,u!5(
k51

`

Ckr
lkF 2

ḡk cos~lk21!
a

2

2lk cos~lk11!
a

2

cos~lk11!u

1cos~lk21!uG (A10e)

w~r ,u!5(
k51

`

Gkr
l̄k11 sin~ l̄k11!u (A10f)
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Terahertz Vibration of Short
Carbon Nanotubes Modeled as
Timoshenko Beams
Short carbon nanotubes of smaller aspect ratio (say, between 10 and 50) are fi
significant application in nanotechnology. This paper studies vibration of such s
carbon nanotubes whose higher-order resonant frequencies fall within terahertz ra
Because rotary inertia and shear deformation are significant for higher-order mode
shorter elastic beams, the carbon nanotubes studied here are modeled as Timos
beams instead of classical Euler beams. Detailed results are demonstrated for do
wall carbon nanotubes of aspect ratio 10, 20, or 50 based on the Timoshenko-beam
and the Euler-beam model, respectively. Comparisons between different single-be
double-beam models indicate that rotary inertia and shear deformation, accounted f
the Timoshenko-beam model, have a substantial effect on higher-order resonant fre
cies and modes of double-wall carbon nanotubes of small aspect ratio (between 1
20). In particular, Timoshenoko-beam effects are significant for both large-diameter
small-diameter double-wall carbon nanotubes, while double-beam effects characte
by noncoaxial deflections of the inner and outer tubes are more significant for sm
diameter than large-diameter double-wall carbon nanotubes. This suggests tha
Timoshenko-beam model, rather than the Euler-beam model, is relevant for tera
vibration of short carbon nanotubes.@DOI: 10.1115/1.1795814#
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1 Introduction
Because of novel electronic properties and superior mechan

strength, carbon nanotubes~CNTs! have become the most prom
ising candidate materials for nanoelectronics, nanodevices,
nanocomposites@1–8#. Mechanical behavior of CNTs, includin
vibrational behavior, has been the subject of numerous re
studies. Since controlled experiments at nanoscale are diffi
and molecular dynamics simulations remain expensive and fo
dable for large scale systems, continuum mechanics models,
as the classical Euler elastic-beam model, have been effect
used to study overall mechanical deformation of CNTs, such
static deflection, column buckling, resonant frequencies
modes, and sound-wave propagation@9,10#. In particular, the
single elastic-beam model, which ignores intertube radial d
placements and the related internal degrees of freedom, has
used to study static and dynamic behavior of multiwall nanotu
~MWNTs! @11–14#. As shown in @15# for column buckling of
MWNTs and@16,17# for vibration of MWNTs, such a simplified
model is adequate for MWNT of larger aspect ratio~length-to-
diameter ratio!.

Many proposed applications and designs of CNTs, however,
involved with short CNTs of aspect ratio down to 10, or perio
cally supported CNTs with finite spans. Such examples incl
suspended crossing CNTs with spans about 20 nm@1#, CNTs as
single-electron transistors of length down to 20 nm@2#, MWNTs
of aspect ratio around 20~about 300 nm long and 10–20 nm
diam! as electrometers@3# or building blocks in nanoelectronic
@4#, CNT-nanomechanical switches of aspect ratio around 10@18#,
and CNTs of aspect ratio about 10–25 as AFM tip@19,20#. Owing

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, April 16, 200
final revision; May 15, 2004. Associate Editor: A. A. Ferri. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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to the hollow structure of CNTs, short CNTs are preferred in ma
cases to prevent undesirable kinking and buckling. Therefore
brational behavior of short CNTs, say, of aspect ratio between
and 50, is of practical significance. In this case, intertube ra
displacements of MWNTs, which are ignored by the existi
single elastic-beam model@11–14#, could come to play a signifi-
cant role. Recently, we have studied the role of interlayer ra
displacements in transverse vibration of MWNTs@16,17# based on
a simple linear model of multiple elastic beams. Our results sh
that noncoaxial intertube vibration of MWNTs will be excited
ultrahigh frequencies~above 1 THz! at which the characteristic
wavelength of vibrational modes is just a few times the outerm
diameter of MWNTs. For instance, for a shorter 1.4 nm d
double-wall carbon nanotube~DWNT! of aspect ratio between 10
and 20, the wavelength of the higher-order~say, third, fourth, or
fifth! modes are just a few times the outermost diameter and
associated vibrational modes are substantially noncoaxial. In
case, the existing single-beam model of coaxial vibration fa
and a more relevant model that considers noncoaxial intert
radial displacements of MWNTs is required. These results, fi
predicted by a simple linear multiple-beam model@16,17#, are
found to agree well with more recent atomistic simulatio
@21,22# on noncoaxial vibration of MWNTs. Since noncoaxial di
tortion could significantly affect some important physical~such as
electronic and optical! properties of MWNTs, the study of nonco
axial vibration is relevant to terahertz vibration of short MWNT

Another relevant issue to be clarified is the effect of rota
inertia and shear deformation in terahertz vibrations of sh
CNTs. It is well known that rotary inertia and shear deformatio
which are ignored in the classical Euler-beam model, would
come substantial for vibration of elastic beams when the cha
teristic wavelength is just a few times the diameter of their cro
section @23–26#. For this reason, the relevance of the classi
Euler-beam model to short CNTs is questionable. To clarify t
issue, vibration of short DWNTs is studied in this paper based
the double elastic-beam model developed in@15–17#. Unlike pre-
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vious work @15–17#, however, CNTs in the present paper a
modeled as Timoshenko beams, instead of classical Euler be
The major goal of this study is to identify the cases in which t
Euler-beam model leads to substantial errors, and thus, the m
relevant Timoshenko-beam model is required, and also to c
pare the Timoshenko-beam effects with the double-beam eff
studied in@15–17#. To this end, detailed results are demonstra
based on the Timoshenko-beam model, as well as the Euler-b
model. As will be shown below, the results show that the rota
inertia and shear deformation have a substantial effect on hig
order resonant frequencies~within terahertz range! of DWNTs of
smaller aspect ratio~between 10 and 20!. Therefore, the
Timoshenko-beam model, rather than the Euler-beam mo
should be used for terahertz vibrations of short CNTs.

2 Double Timoshenko-Beam Model
Many prior studies showed that the classical Euler elastic be

offers a reliable model for overall mechanical deformation
CNTs when its characteristic wavelength is much larger than
diameter@10#. For example, static deflection of CNTs under poi
load is found to be well predicted by the beam model@11#, and
resonant frequencies and vibational modes of CNTs given by
cantilever-beam model are in good agreement with experime
data@13#. In particular, because elastic-beam models give sim
general formulas in many important cases, such as critical st
for column buckling, resonant frequencies, and sound speeds,
which clearly indicate major factors affecting mechanical beh
ior of CNTs, they have the potential to identify key paramete
and predict new physical phenomena.

So far, to our knowledge, all elastic-beam models used
CNTs are based on the classical Euler-beam model. The pre
paper studies vibration of short DWNTs@27–29#, as shown in Fig.
1, based on the Timoshenko-beam model. In addition, unlike
single-beam model@11–14# which assumes that all originally con
centric tubes of a MWNT remain exactly coaxial during vibratio
and thus can be described by a single deflection curve, the pre
analysis considers interlayer radial displacements within
MWNT and assumes that each individual tube of MWNTs has
individual deflection curve, which is not necessarily coincide
with the deflection curves of other nested tubes of the MWN
Thus, each of the inner and outer tubes of DWNTs is modeled
a Timoshenko-elastic beam. It is known that the total deflect
Y(x,t) of a Timoshenko beam, and the slopew(x,t) of the beam
due to bending deformation alone are determined by the follow
two coupled equations@23–26#:

2kAGS ]w

]x
2

]2Y

]x2 D 1p5rA
]2Y

]t2

(1)

EI
]2w

]x2
2kAGS w2

]Y

]x D5rI
]2w

]x2

wherex is the axial coordinate,t is time, I andA are the moment
of inertia and the area of the cross-section of the beam,p is the
distributed pressure per unit axial length,E and G are Young’s
modulus and shear modulus, respectively,r is the mass density
per unit volume, andk is the so-called shear coefficient which

Fig. 1 Vibration of a short doublewall carbon nanotube
Journal of Applied Mechanics
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about 0.6–0.7 for thin-walled circular cross-sections and 0.9
solid circular cross-sections@25,26#.

Let us apply Eq.~1! to each of the inner and outer tubes of
DWNT. Thus, transverse vibration of a DWNT, of lengthL and
outer diameterd ~Fig. 1!, is described by the following four
equations

2kA1GS ]w1

]x
2

]2Y1

]x2 D 1p5rA1

]2Y1

]t2

EI1

]2w1

]x2
2kA1GS w12

]Y1

]x D5rI 1

]2w1

]t2

(2)

2kA2GS ]w2

]x
2

]2Y2

]x2 D 2p5rA2

]2Y2

]t2

EI2

]2w1

]x2
2kA2GS w22

]Y2

]x D5rI 2

]2w2

]t2

whereYj (x,t) andw j (x,t) ( j 51,2) are the total deflection and th
slope due to bending of thejth nanotube,I j and Aj are the mo-
ment of inertia and the area of the cross-section of thejth tube,
here the subscripts 1, 2 are used to denote the quantities o
inner and outer tubes, respectively,p is the van der Waals inter
action pressure between the two tubes per unit axial length,
the two tubes have the same Young’s modulusE51 TPa and
shear modulusG50.4 Tpa~with Poisson ration50.25!, with the
effective thickness of single-walled nanotubes, 0.35 nm. In ad
tion, the dependence of the shear coefficientk on the radius is
neglected for DWNTs, and we takek50.8. Here, it should be
mentioned that a mass densityr51.3 g/cm3, based on a slightly
different definition~p. 724 of@30#!, has been used in our previou
papers@16,17#. To be consistent with the definitions of the effe
tive thickness and the Young’s modulus listed above, the m
density of graphite is used in the present paper. Theref
throughout this paper, we shall use the mass densityr52.3 g/cm3

~for graphite!.
It is noticed that the deflections of the two tubes are coup

through the van der Waals intertube interactionp. Since the inner
and outer tubes of a DWNT are originally concentric and the v
der Waals interaction is determined by the interlayer spacing
tween two tubes, the net van der Waals interaction pressure
mains zero for each of the tubes if they vibrate coaxially and, th
share the same deflection curve. Hence, the van der Waals i
action plays no role in the single-beam model for isolat
DWNTs. For the double-beam model@15–17#, however, the inner
and outer tubes are described by two individual deflection curv
which are not necessarily coincident. Therefore, for sm
amplitude non-coaxial linear vibration, the van der Waals inter
tion pressure at any positionx between the two tubes depend
linearly the difference of their deflection curves at that positio
namely

p~x!5c@Y2~x!2Y1~x!# (3)

wherec is the intertube van der Waals interaction coefficient.
particular, the coefficientsc can be estimated based on an effe
tive interaction width (2r ) of the tubes~wherer is the inner radius
of DWNTs! as @15,17#

c5
2003~2r ! erg/cm2

0.16D2
, ~D50.142 nm! (4)

Thus, substitution of~3! into ~2! leads to four coupled equation
for four unknownsYj (x,t) andw j~x,t) ( j 51,2).

3 Resonant Frequencies of DWNT
Here, to isolate the effects of shear deformation and rotary

ertia on resonant frequencies~rather than resonant modes!, we
consider the case in which the inner and outer tubes of the DW
JANUARY 2005, Vol. 72 Õ 11
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DWNT are of the form@21,22#

Yj5aje
ivt sin

npx

L
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npx
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~ j 51,2! (5)
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thewhere a1 and a2 represent the amplitudes of deflections of t
inner and the outer tubes, andb1 andb2 represent the amplitude
of the slopes of the inner and outer tubes due to bending de
mation alone, respectively. In addition, integer n is the mo
number, andv is the circular frequency. Substitution of~5! into
~2! with ~3!, one has
3
rA1v22kA1GS np

L D 2

2c kA1GS np

L D c 0

kA1GS np

L D rI 1v22EI1S np

L D 2

2kA1G 0 0

c 0 rA2v22kA2GS np

L D 2

2c kA2GS np

L D
0 0 kA2GS np

L D rI 2v22EI2S np

L D 2

2kA2G

4 F a1

b1

a2

b2

G50

(6)
NT

is-

e
e
50,
ode
Thus, the resonant frequencies are determined by the eigene
tion obtained by setting the determinant of the coefficient ma
of ~6! to zero. It is readily seen that for given order numbern, the
present double-Timoshenko-beam model gives fourn-order reso-
nance frequencies, in contrast to twon-order resonant frequencie
given by the single-Timoshenko-beam model@23#, two n-order
resonant frequencies given by the double Euler-beam m
@16,17#, and the singlen-order resonance frequency given by t
single Euler-beam model. In particular, the singlen-order resonant
frequency given by the single Euler-beam model is@10#

f n15
vn1

2p
, vn1

2 5
ln

4EI

~rA!
, (7)

whereln5(np/L) for simply supported beams

whereI andA are the total moment of inertia and the total cros
sectional area of MWNT. Thus,I 5I 11I 2 and A5A11A2 for a
DWNT.

In what follows, the resonant frequencyf 5v/(2p) of simply
supported DWNTs is calculated based on four different ela
beam models:

Fig. 2 DWNT frequencies for the inner radius 0.35 nm and
L ÕdÄ10
qua-
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• DT: the double-Timoshenko beam~DT! model described by
~2!, which gives four n-order frequencies,f n1, f n2, f n3
, f n4 ;

• DE: the double-Euler beam~DE! model described in@16,17#
which treats each of the inner and outer tubes of the DW
as a single Euler beam and gives twon-order frequencies,
f n1, f n2 ;

• ST: the single-Timoshenko beam~ST! model that treats the
DWNT as a single Timoshenko beam described by~1!, with
I 5I 11I 2 and A5A11A2 , and gives twon-order frequen-
cies, f n1, f n2 ;

• SE: the single-Euler beam~SE! model that gives the single
n-order frequencyf n1 ~7!.

The n-order frequencies given by the different models are d
tinguished by DT1,DT2,DT3,DT4, DE1,DE2, ST1,ST2, or
SE, when necessary. All ninen-order frequencies given by th
four different models are shown in Figs. 2–7 for a DWNT of th
inner diameter 0.7 nm or 7 nm and aspect ratio 10, 20, or
respectively. All frequencies are shown as a function of the m
numbern, from n51 to n510, whereL/d is the aspect ratio. It is
found from Figs. 2–7 that:

Fig. 3 DWNT frequencies for the inner radius 0.35 nm and
L ÕdÄ20
Transactions of the ASME
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1. The lowestn-order frequencyf n1 increases quickly with in-
creasing mode numbern, while other highern-order fre-
quenciesf nk (k.1) are not sensitive to the numbern espe-
cially for n smaller than 3 or 4.

2. For all examples considered here, the four lowest first-or
frequency f 11 given by the four different models are ver
close to each other and almost indistinguishable. For
ample, for DWNT of inner-diameter 0.7 nm and aspect ra
10, the lowest first-order frequencyf 11 given by the four
models DT, DE, ST, and SE are 0.0728 THz, 0.0745 TH
0.0731 THz, and 0.0746 THz, respectively. On the oth
hand, for DWNT of inner diameter 7 nm and aspect ratio

Fig. 4 DWNT frequencies for the inner radius 0.35 nm and
L ÕdÄ50

Fig. 5 DWNT frequencies for the inner radius 3.5 nm and L Õd
Ä10

Fig. 6 DWNT frequencies for the inner radius 3.5 nm and L Õd
Ä20
Journal of Applied Mechanics
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the lowest first-order frequencyf 11 given by the four models
are 0.141 THz, 0.144 THz, 0.141 THz, and 0.144 THz,
spectively. In addition, the small differences of the lowe
first-order frequencies given by the four different mode
further diminish with increasing aspect ratio of DWNTs.

3. For the mode-numbern51, beside the lowest first-order fre
quency, the DT model gives three higher frequencies, wh
the ST model and the DE model give another higher f
quency, respectively. It is seen that the second first-or
frequency f 12 given by the DT model corresponds to th
second first-order frequency given by the DE model
smaller radii~Figs. 2–4!, and the third first-order frequenc
f 13 given by the DT model is close to the second first-ord
frequency given by the ST model for larger radii~Figs. 5–7!.
These higher first-order frequencies (n51) are character-
ized by substantial shear deformation or noncoaxial defl
tions of the inner and outer tubes~as will be demonstrated
below! and are at least one order of magnitude higher th
the lowest first-order frequency. Hence, if only the sing
lowest resonant frequencyf 11 is concerned, the lowest first
order frequency given by the SE model~7! for n51 is ac-
curate enough, and any double-beam model or Timoshen
beam model is not needed.

4. This conclusion remains qualitatively true even for the fi
few higher-order frequencies (n53, 4, 5, or even higher!
when the aspect ratio is larger~say, >50!. Indeed, when
L/d550, it is seen from Figs. 4 and 7 that the four lowe
n-order frequencies given by the four different models f
the mode-numbern up to 10 are very close to each othe
Hence, it is concluded that the lowestn-order frequencyf n1
for n up to 10 can be estimated satisfactorily by the S
model~7! provided that the aspect ratio of DWNTs is suffi
ciently large~say,>50!.

5. However, when the aspect ratio is relatively small, say
tween 10 and 20, it is seen from Figs. 2, 3, 5, and 6 that
lowestn-order~such asn53, 4, or 5! frequenciesf n1 given
by the DT, ST, and DE models are substantially lower th
that given by the SE model~7!. For example, for DWNT of
inner diameter 0.7 nm and aspect ratio 10, the lowest fou
order frequency (n54) given by the four models DT, DE
ST, and SE are 0.861 THz, 1.00 THz, 0.940 THz, and 1
THz, respectively, and the lowest fifth-order frequencyn
55) given by the four models DT, DE, ST, and SE are 1.
THz, 1.37 THz, 1.34 THz, and 1.86 THz, respectively.
addition, for DWNT of inner diameter 7 nm and aspect ra
10, the lowest fourth-order frequency (n54) given by the
four models DT, DE, ST, and SE are 0.177 THz, 0.231 TH
0.178 THz, and 0.231 THz, respectively, and the low
fifth-order frequency ~n55! given by the four models
~DT,DE,ST,SE! are 0.252 THz, 0.360 THz, 0.252 THz, an

Fig. 7 DWNT frequencies for the inner radius 3.5 nm and
L ÕdÄ50
JANUARY 2005, Vol. 72 Õ 13
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0.361 THz, respectively. Therefore, the single Euler-be
~SE! model ~7!, used widely in the literature, leads to su
stantial errors for the lowestn-order resonant frequencie
f n1 for n.1, ~such asn53, 4, or 5! of short DWNTs of
aspect ratio below 20.

6. Finally, because both the Timoshenko-beam model@21–24#
and the double-beam model@10,16,17# are significant only
when the characteristic wavelength is just a few times
diameter of CNTs, it is interesting to compare the relat
importance of the Timoshenko-beam effect and the dou
beam effect. It is anticipated that the role of intertube d
placements of MWNTs is more significant for sma
diameter than large-diameter CNTs@16,17# ~because the
amplitude of the intertube radial displacements is of the
der of magnitude of the intertube spacing, they are sign
cant only compared to the deflections of small-diame
CNTs, but not to the deflections of large-diameter CNT!.
Indeed, it is seen from Figs. 2 and 3 that the lowestn-order
frequenciesf n1 ~for n.1) given by the double-beam mod
els ~DT and DE! for small-diameter DWNTs are signifi
cantly different from those given by the single-beam mod
~ST,SE!. For larger-diameter DWNTs, however, it is see
from Figs. 5 and 6 that the double-beam models~DT! and
~DE! give almost the same lowestn-order frequenciesf n1
~for n.1) as those given by the single-beam mod
~ST,SE!. On the other hand, the effects of the Timoshenk
beam are significant for all DWNTs of smaller aspect ra
~Figs. 2, 3, 5, and 6!, regardless of their radii. Therefore, it i
concluded that both the Timoshenko-beam effects and
double-beam effects are significant for CNTs of smaller
pect ratio~around or below 20!, while the double-beam ef
fects are further restricted to small-diameter DWNTs. D
spite this, because the radii of DWNTs are usually sm
T
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h
t

i
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~with inner diameter 0.6–0.9 nm and outer diameter 1.3–
nm, see@27–29#!, the double-beam effects are significant f
short DWNTs.

4 Shear Deformation and Noncoaxial Deflections
Let us now discuss the effects of the Timoshenko-beam mo

as well as the double-beam model, on the deflection curve
DWNTs. The contribution of shear deformation to the total defle
tion slope is defined by

u5w2
dY

dx
5geivt cos

npx

L
(8)

where g represents the amplitude of shear deformation. Ob
ously, for the single-Euler-beam~SE! model, the deflection curves
of the inner and outer tubes are exactly the same and the s
deformation u(x,t) is identically zero, thusa15a2 , b15b2
5a1(np/L) and g15g250. However, when the Timoshenko
beam model is adopted, shear deformation and rotary intertia
taken into account, which given rise to nonzero shear deforma
g. On the other hand, the double-beam model accounts for in
tube radial displacement between the inner and outer tubes
thus can quantify the difference between two~noncoaxial! deflec-
tion curves (a1Þa2). Therefore, the effects of the Timoshenk
beam and the double beam can be studied by examining the
a1 /a2 , which indicates the degree of the noncoincidence of
deflections of the two tubes, and the ratiog2 /b2 , which indicates
the relative amplitude of the shear deformation of the outer t
of DWNTs ~the result for the inner tube is qualitatively simila
and thus not included here!. It follows from ~2!, ~5!, and~8! that
the deflection amplitude ratio of the inner to the outer tubes
the ratio of the outer tube’s shear deformation to its deflect
slope due to bending deformation are given by
a1

a2
5

~kA2Gb!22~rA2v22kA2Gb22c!~rI 2v22EI2b22kA2G!

c~rI 2v22EI2b22kA2G!

g2

w2
5

I 2~rv22Eb2!

kA2G

, ~b5np/L ! (9)
ent

e

n
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In what follows, the ratioa1 /a2 given by the DT model and DE
model for the lower twon-order frequencies are shown in Figs.
and 9 and Figs. 10 and 11, respectively, for the examples con
ered in Figs. 2–7. Here, because the secondn-order frequencyf n2
given by the DT model corresponds to the secondn-order fre-
quency given by DE model only for smaller radii~see Section 3!,
the results for the secondn-order frequencies given by the D
model and the DE model are demonstrated only for small rad
0.35 nm~Figs. 9 and 11!. Related data for the ratiog2 /b2 given
by the DT model and the ST-model for alln-order frequencies are
shown in Figs. 12–15 and Figs. 16 and 17, respectively. I
found from Figs. 8–17 that:

1. The amplitude ratioa1 /a2 corresponding to the lowes
~first-order! frequencyf 11, as shown in Fig. 8 for the DT
model and Fig. 10 for the DE model, are always very clo
to unity for all examples considered here. This indicates t
the deflection curves of the inner and outer tubes for
lowest ~first-order! frequencyf 11 are almost coincident and
thus the vibration of the DWNT is almost coaxial at th
lowest ~first-order! frequencyf 11.

2. For the lowestn-order frequenciesf n1 with n.3, it is seen
from Figs. 8 and 10 that the associated amplitude ra
a1 /a2 is no longer close to unity for small-diameter DWNT
of aspect ratio 10 or 20, which indicates that the deflect
8
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curves of the inner and outer tubes are no longer coincid
in these cases. However, for larger aspect ratio~50! or larger
inner radius~3.5 nm!, it is seen from Figs. 8 and 10 that th
amplitude ratioa1 /a2 for the lowestn-order frequenciesf n1
with n.3 is still very close to unity and thus the deflectio
curves of the inner and outer tubes are still almost coin

Fig. 8 DWNT amplitude ratio „a1 Õa2… for f n1 using a double-
Timoshenko-beam model
Transactions of the ASME
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dent. Consistent with Section 3, these results also con
that the effect of the double-beam model is significant o
for small-diameter CNTs of smaller aspect ratio. Here it
noticed from Figs. 8 and 10 that the ratioa1 /a2 for the
lowest n-order frequency withn.1 of small-diameter
DWNTs given by the DT model and the DE model are qua
tatively similar, but quantitatively different.

3. On the other hand, the amplitude ratioa1 /a2 of other higher
n-order frequency (f nk with k.1) is not close to unity. For
example, for small-diameter DWNTs, it is seen from Figs
and 11 that the amplitude ratioa1 /a2 of the secondn-order
frequency f n2 is always negative, which indicates that th
deflection of the inner tube is simply opposite to the defl
tion of the outer tube, and thus vibration of the DWNT
substantially noncoaxial. It is seen that from Figs. 2–7 t

Fig. 9 DWNT amplitude ratio „a1 Õa2… for f n2 using a double-
Timoshenko-beam model

Fig. 10 DWNT amplitude ratio „a1 Õa2… for f n1 using a double-
Euler-beam model

Fig. 11 DWNT amplitude ratio „a1 Õa2… for f n2 using a double-
Euler-beam model
Journal of Applied Mechanics
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the secondn-order frequencyf n2 for all examples discussed
here is always within terahertz range. Hence, this also in
cates that the effects of the double-beam model are esse
for terahertz vibration of MWNTs.

4. Now, let us discuss the relative amplitude of shear deform
tion. For the lowestn-order frequencyf n1 , the ratiog2 /b2 ,
which represents the relative amplitude of shear deforma
of the outer tube, is negligible only forn51, or for n.1
with larger aspect ratio 50. This indicates that the shear
formation is significant provided that the wavelength is s
ficiently short, consistent with the common concepts of t
Timoshenko beam@23,24#. For example, it is seen from
Figs. 12 and 16 that the six curves can almost be classi
by the wavelength, only slightly affected by the radius.

Fig. 12 DWNT amplitude ratio „g2 Õb 2… for f n1 using a double-
Timoshenko-beam model

Fig. 13 DWNT amplitude ratio „g2 Õb 2… for f n2 using a double-
Timoshenko-beam model

Fig. 14 DWNT amplitude ratio „g2 Õb 2… for f n3 using a double-
Timoshenko-beam model
JANUARY 2005, Vol. 72 Õ 15
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5. For small aspect ratio~10 and 20! and higher mode numbe
n.3, it is seen from Figs. 12 and 16 that the shear de
mation has a substantial effect on the deflections even for
lowestn-order frequencyf n1 . For example, it is seen from
Figs. 12 and 16 that the absolute value of the ratiog2 /b2 is
larger than unity for small aspect ratioL/d510, and is about
25% for moderate aspect ratioL/d520, almost regardless o
the radius. In these cases, the shear deformation, whic
neglected by the classical Eulerbeam model, is signific
and cannot be neglected.

6. It is seen from Figs. 13–15 and 17 that almost all hig
n-order frequencies (f nk with k.1) are characterized by
substantial shear deformation, with the only exception
scribed in Fig. 13 for the secondn-order frequencyf n2 given

Fig. 15 DWNT amplitude ratio „g2 Õb 2… for f n4 using a double-
Timoshenko-beam model

Fig. 16 DWNT amplitude ratio „gÕb … for f n1 using a single-
Timoshenko-beam model

Fig. 17 DWNT amplitude ratio „gÕb … for f n2 using a single-
Timoshenko-beam model
16 Õ Vol. 72, JANUARY 2005
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by the DT model for small diameter 0.35 nm and smal
order numbern ~up to n54 or 5!. In the latter case, as
mentioned before, the secondn-order frequencyf n2 given
by the DT model corresponds to the secondn-order fre-
quencyf n2 given by the DE model in which shear deform
tion is neglected. This explains why the shear deformation
negligible in this case.

7. Except for the above case, all other cases described in F
13–15 and 17 exhibit substantial shear deformation cha
terized by large absolute values of the ratiog2 /b2 . In par-
ticular, it is seen from Figs. 13–15 and 17 that the six curv
shown there can almost be classified by the radius, o
moderately affected by the wavelength. This indicates th
unlike the vibration of the lowestn-order frequencyf n1
which largely depends on the wavelength, the vibration
the highern-order frequenciesf nk ~with k.1) is not sensi-
tive to the wavelength. This conclusion is consistent to sim
lar results obtained in the analysis of resonant frequen
given in Section 3.

5 Conclusions

Free vibration of short DWNTs is studied using a doub
Timoshenko-beam model, which considers intertube radial
placements between the inner and outer tubes and treats the
and outer tubes as two individual Timoshenko beams. The res
indicate that both the Timoshenko-beam effect and the dou
beam effect are significant when the wavelength of DWNTs is j
a few times larger than the outer diameter of DWNTs. In partic
lar, it is the case when the higher-order frequencies~within the
terahertz range! of short DWNTs~of smaller aspect ratio aroun
or below 20! are considered. Furthermore, the results show t
the effects of the double beam are more significant for sm
diameter than for large-diameter DWNTs, while the Timoshen
beam effects are significant for both large-diameter and sm
diameter DWNTs. This is attributed to the fact that the doub
beam effects become significant only when the amplitude
interlayer radial displacements~which are of the order of the in-
terlayer spacing! is comparable to the overall deflections
MWNTs ~which are of the order of the radius!. Because the radii
of DWNTs are usually small, the double-beam effects play a s
nificant role in free vibration of short DWNTs. Hence, the effec
of the Timoshenko beam and the double beam are relevan
terahertz vibration of short MWNTs of aspect ratio below
around 20. On the other hand, if only the single lowest~first-
order! resonant frequency is concerned, the classical single Eu
beam model is accurate enough, any double-beam or Timoshe
beam model is not needed even for short MWNTs.

Here it should be stated that the present work is limited
small-amplitude linear free vibration of simply supporte
DWNTs. Although there is evidence~as stated in the present pa
per! that noncoaxial vibrational frequencies and modes first p
dicted by the simple linear double-beam model are found to ag
well with more recent atomistic simulations, the nonlinearity
the intertube van der Waals interaction~which is not considered
by the present linear model! would play a significant role in mod-
erate or large amplitude noncoaxial vibration of MWNTs. In a
dition, further study is needed for the effects of the Timoshen
beam model on the natural modes of MWNTs with other e
conditions~such as clamped or cantilever MWNTs, or differe
end conditions for the inner and outer tubes!, and forced vibra-
tions of MWNTs, especially under impulsive loading. Finally, th
role of internal damping in ultrahigh-frequency noncoaxial vibr
tion of MWNTs is also of interest for future work.
Transactions of the ASME
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Calculation of the Response of a
Composite Plate to Localized
Dynamic Surface Loads Using a
New Wave Number Integral
Method
This study is motivated by the need for an efficient and accurate tool to analyze the
field produced by localized dynamic sources on the surface or the interior of isotr
plates and anisotropic composite laminates. A semi-analytical method based on the
number integral representation of the elastodynamic field is described that reduce
overall computational effort significantly over other available methods. This metho
used to calculate the guided wave field produced in a thin unidirectional graphite/e
composite laminate by a dynamic surface point load. The results are compared with
obtained from a finite element analysis, showing excellent agreement, except for
differences at higher frequencies. A recently discovered feature of the calculated su
motion, namely, a spatially periodic ‘‘phase reversal’’ of the main pulse with propaga
distance, is observed in both cases. The present work is expected to be helpful in
oping impact damage monitoring systems in defect-critical structural components thr
real time analysis of acoustic emission wave forms.@DOI: 10.1115/1.1828064#
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1 Introduction

Elastic waves generated by foreign object impact and initiat
or growth of fatigue cracks in aircraft, aerospace, and civil str
tures carry useful information about the nature of the dam
associated with these events. A clear understanding of the qu
tative relationship between the waves and their sources is esse
in developing algorithms for detecting and characterizing
damage. Model-based analysis of the wave form signals reco
by surface mounted or embedded sensors located in the vicini
the sources can lead to the development of an effective he
monitoring system for a variety of structures.

The general features of elastic waves that can be transmitte
isotropic and anisotropic plates have been studied in great d
over the past several decades@1,2#. These studies were motivate
in part, by the need to understand the nature of ultrasonic wa
that can be transmitted in structural components@3#. In contrast,
the literature on the response of anisotropic plates to buried
surface sources that are representative of imapact or fatigue
age is relatively sparse@4–8#. Approximate thin-plate theories
such as classical plate theory~CPT, under Kirchoff-Love kine-
matic assumption! and shear deformation plate theory~SDPT! or
Mindlin theory have been developed to obtain the analytical so
tion to a variety of problems involving the dynamic response
thin isotropic and anisotropic laminated plates@9,10#. A compre-
hensive review of recent research on guided waves in compo
plates and their use in nondestructive material characterization

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, May 12, 200
final revision, July 7, 2004. Editor: K. Ravi-Chandar. Discussion on the paper sh
be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mech
ics, Department of Mechanical and Environmental Engineering, University
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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be found in@11#. An extensive review of published research o
low velocity as well as ballistic impact on laminated composi
can be found in@12#.

The exact solution of three-dimensional problems consisting
multilayered, angle-ply laminates of finite thickness and large
eral dimensions subjected to various types of surface loads,
been given in@6–8#. In these papers, the response problem w
formulated using triple integral transforms involving one in tim
and two in space, leading to an exact representation of the ela
dynamic field in the transformed frequency–wave number
main. The inversion of the transforms required numerical eval
tion of a double wave number integral followed by frequen
inversion using the fast Fourier transform algorithm. The m
computational effort in this approach involves the accurate ev
ation of the double wave-number integral. The evaluation of t
integral is extremely difficult due to the presence of singularit
within the integration domain and the highly oscillatory nature
the integrands at higher frequencies and large distances bet
the field and source points.

Although several efficient and accurate methods are availab
evaluate the single wave-number integrals which arise for tw
dimensional problems,@13,14#, no such algorithm is available to
date to evaluate the double wave number integrals that appe
the corresponding three-dimensional problems. The conventi
integration schemes~e.g., Simpson, Gaussian, Clenshaw-Cur
etc.! require millions of function evaluations, resulting in ex
tremely slow turnaround time. An ‘‘adaptive surface-fittin
scheme’’ using material dissipation was used in@7,8# to evaluate
the double integral for dissipative media. However, the compu
tional effort is still quite large to achieve the desired degree
accuracy due to its two-dimensional nature and the presenc
spikes near points where the integrand becomes singular in
absence of dissipation.

The finite element method~FEM! is also a versatile tool to
analyze this class of problems and a dynamic finite element c
has been developed by NIST for the calculation of acoustic em
sion wave forms in isotropic and anisotropic plates@15–17#. This
code has been validated with both experimental measurem
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and analytical predictions for a variety of source conditio
and plate dimensions in isotropic materials. Although t
FEM can handle complex geometries and has the capabilit
accommodate reflections from the lateral boundaries, it is com
tationally much more intensive than the analytical metho
discussed above.

A method for relatively rapid calculation of the wave form
generated by localized dynamic sources in isotropic as wel
anisotropic composite plates is presented in this paper.
method involves a new scheme, in which the double integra
transformed, using contour integration, into a single integ
which is then evaluated numerically using conventional integ
tion schemes. This reduces the computational effort significan
The method is used to calculate the surface motion in a unidi
tional graphite/epoxy composite laminate due to a localized
namic surface load. The results are compared with those obta
from FEM for their mutual verification.

2 Problem Formulation
A detailed formulation of the exact and approximate theori

SDPT and CPT, for wave field calculations in composite lam
nates can be found elsewhere@7,10#, and will not be repeated
here. The typical wave number integral representation of the
face displacement in three-dimensional problems can be
pressed in the form

I 5
1

4p2 E
2`

` E
2`

` f ~k1 ,k2 ,v!

g~k1 ,k2 ,v!
ei ~k1x11k2x2!dk1dk2 (1)

where k1 and k2 are the wave numbers in 1 and 2 direction
respectively,v is the circular frequency, andx1 , x2 are the coor-
dinates of the field point. The functionsf andg are obtained from
the solution of a system of linear equations of order 6N, whereN
is the number of layers. This integral must, in general,
evaluated numerically for a large number~.100! of frequency
points. As indicated in the Introduction, the integrand underg
highly irregular and rapid oscillations at higher frequenc
and larger propagation distances, and its denominator vanish
the ‘‘poles’’ on the integration path associated with the guid
waves in the plate. In@7#, the poles were removed from th
path of integration through the introduction of dissipation in t
medium, and the double integration was carried out using
adaptive quadrature scheme to reduce the number of func
evaluations. Although the method produced accurate results
computational effort is still quite high, especially for thicke
laminates.

2.1 A New Integration Scheme. As an alternative to evalu
ate the double integral numerically, it is proposed that one inte
in Eq. ~1! be evaluated by contour integration analytically, usi
the residue theorem. For example, thek2-integral in Eq.~1! can be
evaluated by contour integration in the complex plane, keepingk1
fixed, resulting in residue contributions at the rootsk2(k1) of
g(k1 ,k2). The remaining integral with respect tok1 can then be
integrated numerically. At a given frequency,g(k1 ,k2) has a finite
number of real roots, and an infinite number of complex roo
The real roots represent the propagating guided waves in the p
while the complex roots represent nonpropagating modes tha
cay exponentially with propagation distance from the source
has been shown@18# that the amplitude of the nonpropagatin
modes become negligible in comparison with the propaga
modes at distances from the source larger than about only a
multiples of the plate thickness. Since this condition is satisfied
most nondestructive evaluation applications, the residue contr
tions from the complex roots can be ignored without significan
affecting the accuracy of the results.
Journal of Applied Mechanics
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For a given frequency, the real roots,k2r(k1), of g(k1 ,k2 ,v)
50 describe closed symmetric curves on thek1–k2 plane due to
the fact thatg is an even function of bothk1 andk2 . Each curve
corresponds to a fixed propagating mode. In Fig. 1, the first s
metric and antisymmetric~AS0! modes are drawn in the positiv
quadrant for simplicity. It can be assumed, without loss of gen
ality, that these curves are defined byg1(k1 ,k2)50 ~symmetric!,
g2(k1 ,k2)50 ~antisymmetric!, where bothg1 and g2 are even
functions ofk1 andk2 , and are obtained from the decompositio
of g in the form g5g1g2 . Let us assume that the functionsg1
50 andg250 cut thek1 axis at the points6k0r1 and6k0r2 as
shown in Fig. 1. For a givenk1 , the rootsk2(k1) can be expressed
in the form

k25Ak0rn
2 2cn~k1!5k2r ,

uk1u,k0rn5 iAcn~k1!2k0rn
2 5k2c , uk1u.k0rn , n51,2

(2)

wherec1 andc2 are even functions ofk1 and are obtained from
the equationsg150 andg250, respectively, after expressingk2

in terms ofk1 . The functioncn must be equal tok0rn
2 when k1

equals6k0rn . In Eq. ~2!, k2c can be pure imaginary or comple
depending on the material properties and the range ofk1 chosen,
and the real and imaginary parts ofk2c>0, for (x1 ,x2).0. In
reality, analytical expressions forg1 and g2 cannot be found di-
rectly from g using the general plate theory, and for givenk1 , k2
in Eq. ~2!, must be obtained numerically by settingg50. The
integration of Eq.~1! on k2 can now be carried by contour inte
gration as

E
2`

` f ~k1 ,k2 ,v!

g~k1 ,k2 ,v!
ei ~k1x11k2x2!dk252p iF ~k1 ,k2r ,v!ei ~k1x11k2rx2!;

uk1u,k0rn52p iG~k1 ,k2c ,v!ei ~k1x11k2cx2!; uk1u.k0rn (3)

where

Fig. 1 The locus of the real roots, k 2„k 1… of g „k 1 ,k 2… in the
k 1 – k 2 plane
JANUARY 2005, Vol. 72 Õ 19
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F~k1 ,k2r ,v!5
f ~k1 ,k2r ,v!

dg~k1 ,k2 ,v!

dk2
U

k25k2r

and

G~k1 ,k2c ,v!5
f ~k1 ,k2c ,v!

dg~k1 ,k2 ,v!

dk2
U

k25k2c

Thus, the double integration is transformed into a single integ
in k1 and can be explicitly written as

I 5(
n

2p i

4p2 F E
0

k0rn

F~k1 ,k2r ,v!ei ~k1x11k2rx2!dk1

1E
0

k0rn

F~2k1 ,k2r ,v!ei ~2k1x11k2rx2!dk1

1E
k0rn

`

G~k1 ,k2c ,v!ei ~k1x11k2cx2!dk1

1E
k0rn

`

G~2k1 ,k2c ,v!ei ~2k1x11k2cx2!dk1G (4)

Sincef, g, k2r , k2c and the derivatives ofg with respect tok2 are
all even functions ofk1 , F andG are also even functions ofk1 .
Therefore, the four integrals in Eq.~4! reduce to

I 5(
n

2p i

4p2 F2E
0

k0rn

F~k1 ,k2r ,v!eik2rx2 cos~k1x1!dk1

12E`

G~k1 ,k2c ,v!eik2cx2 cos~k1x1!dk1G (5)

k

20 Õ Vol. 72, JANUARY 2005
ral

The integral in Eq.~5! can be evaluated numerically by usin
any suitable integration scheme. However, it should be noted
its integrand is highly oscillatory, especially at high frequenc
and large distances from the source. In addition, there is an i
grable singularity atk15k0rn that appears from the derivative o
g; it is best handled by expressingF andG in terms of polynomi-
als in (k0rn2k1) and (k12k0rn), respectively, near this point, an
integrating out exactly. Furthermore,G is a decaying function of
k1 and the exponential term associated with it gives additio
decay for nonzerox2 . As a consequence, the contribution of th
second integrand for large values ofk1 is negligible. It will be
shown later that the contribution of the second integral in Eq.~5!
is concentrated within a very small region beyondk0rn for large
valuesx2 , and one need not even calculate the complex ro
Thus, one major advantage of the present scheme would b
split the positivex1–x2 plane into two halves by the lineu545
deg, whereu is measured counter clockwise from thex1 axis. The
integration onk1 can then be performed as described earlier
the observation points located inu.45 deg. In order to obtain the
solution for the field points located inu,45 deg, the order of the
integration needs to be reversed. The basic procedure rem
same. The current integration scheme will work both in prese
and absence of material dissipation. In a mildly dissipative ma
rial, the real roots will have a small imaginary part, which can
obtained by means of a number of available techniques~e.g.,
Muller’s method!.

In the next section, we use the new method to calculate
response in a number of simple model problems.

2.2 Guided Waves in a Thin Anisotropic Plate „CPT….
Assuming that the material of the plate is transversely isotro
with its symmetry axis along its surface, the vertical surface d
placement of the plate due to a normal concentrated forcef (t) at
the origin can be expressed in the form@10#
0rn

ū3~x1 ,x2,0,v!5
F~v!

4p2 E
2`

` E
2`

` 1

D11k1
412~D1212D55!k1

2k2
21D22k2

42rv2H
ei ~k1x11k2x2!dk1dk2 (6)
where,D11, D12, D22, andD55 are functions of the elastic con
stants of the plate material andF(v) is the Fourier transform of
the load.

Thus,

f 51, g5D11k1
412~D1212D55!k1

2k2
21D22k2

42rv2H (7)

Settingg50,

k2
252bk1

26Ab2k1
42ck1

41
rv2H

D22
(8)

where

b5
D1112D55

D22
, c5

D11

D22

In order to obtain the real roots, for a givenk1 , the positive sign
must be chosen for the second term in the right-hand side of
~8!. Hence,
-

Eq.

k2
252bk1

21Ab2k1
42ck1

41ck0r1
4 (9)

wherek0r15@rv2H/D11#
1/4 gives only one propagating mode.

Thus, Eq.~9! can be expressed in the form

k2
25k0r1

2 2c1~k1! (10)

where

c1~k1!5k0r1
2 1bk1

22Ab2k1
42ck1

41ck0r1
4

Using Eq.~3!,

F~k1 ,k2r ,v!5
1

4D22a~k1!Ak0r1
2 2c1~k1!

,

G~k1 ,k2c ,v!5
1

4D22a~k1!iAc1~k1!2k0r1
2

(11)

where
Transactions of the ASME
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2 2c1~k1!1bk1

2#

The rest of the calculation can be carried out in a straightforw
manner starting from Eq.~4! of Sec. 2.1.

If the plate is isotropic,b5c51, so thatc1(k1)5k1
2. Thus, the

first of Eq.~2! produces an equation of a circle in thek1–k2 plane
with radiusk0r1 centered at the origin. Thus from Eq.~11!,

F~k1 ,k2r ,v!5
A

Ak0r1
2 2k1

2
, G~k1 ,k2c ,v!5

A

iAk1
22k0r1

2
(12)

where

A5
1

4D22k0r1
2

Thus, from Eqs.~5! and ~6!,

Fig. 2 Schematic of a loaded unidirectional composite plate
showing position of the sensors with respect to the fiber direc-
tion
Journal of Applied Mechanics
ard

ū3~x1 ,x2,0,v!5F~v!iAH0
1~k0r1r ! (13)

whereH0
1 is the Hankel function of first kind andr 5Ax1

21x2
2. It

can be further shown that the surface displacement in the
quency domain obtained using exact theory@6#, and following the
same procedure, has the same form as Eq.~13!. However, a sum
on all propagating modes,k0rn , wheren is the number of propa-
gating modes, should be taken in Eq.~13! andA will be a function
of k0rn and the material properties. The time domain response
be obtained after performing inverse Fourier transform
Eq. ~13!.

3 Numerical Results
Numerical results are presented for a unidirectional graph

epoxy composite plate subjected to a vertical dynamic po
load on its top surface. A loaded unidirectional composite pl
with surface mounted sensors is shown in Fig. 2. The elastic p
erties of the material used in the calculations are giv
in Table 1.

3.1 Typical Behavior of the Integrand of Wavenumber In-
tegral. The integrand of the approximate solution given in E
~10! is plotted in Fig. 3 for propagation at 45 deg to the fibers

Table 1 Material constants of graphite Õepoxy composite mate-
rial

Thickness
~mm!

Density
~g/cm3!

C11
~GPa!

C12
~GPa!

C22
~GPa!

C23
~GPa!

C55
~GPa!

1 1.578 160.73 6.44 13.92 6.92 7.07
Fig. 3 Kernel behavior for a unidirectional graphite Õepoxy composite plate of thickness 1 mm for propagation
along 45 degh for two cases: „a… at a distance 10 mm from the source at 0.1 MHz and „b… at a distance 50 mm from
the source at 1.0 MHz „CPT…. „i… Locus of real „k 2r… and imaginary roots „k 2c… of g „k 1 ,k 2… in the k 1 – k 2 plane, „ii …
absolute plot of Eq. „3…, and „iii … real and imaginary parts of the integrand in Eq. „5….
JANUARY 2005, Vol. 72 Õ 21
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two cases:~a! at a distance of 10 mm from the source at 0.1 MH
and~b! at a distance of 50 mm from the source at 1.0 MHz. Fr
the first plots of cases~a! and~b!, it can be seen thatk2 is purely
imaginary within a small region beyondk0r1 , and becomes com
plex afterwards. An increase in the amplitude of the functionuGu
~Eq. ~15!! is observed in both cases~second plots! when k2 be-
comes complex. However, as shown in the third plots of Fig
the contributions from the complex values ofk2 are very small at
all frequencies of interest. The contribution is negligible for lar
distances and high frequencies as shown in case~b!. As indicated
earlier, the integrand is highly oscillatory at higher frequencie

A typical plot of the behavior of the integrand in Eq.~5!, using
exact theory@6# is presented in Fig. 4, for the same plate at
MHz, for propagation along 90 deg at a distance of 50 mm fr
the source. The complex roots are not shown in the plots.
same features are found in this case as well. It can be seen
most of the contribution towards the integral comes from the A
mode only.

3.2 Evaluation of the Wave Number Integral. The calcu-
lations are carried out for a concentrated vertical surface loa
the form @8#

Fig. 4 Kernel behavior for a unidirectional graphite Õepoxy
composite plate of thickness 1 mm for propagation along 90
deg at a distance 50 mm from the source at 1 MHz „exact
theory …. „i…, „ii …, and „iii … are the same as that of Fig. 3.
22 Õ Vol. 72, JANUARY 2005
z,
m

3,

e

.

1
m
he
that

S0

in

F~x1 ,x2 ,t !5 f ~ t !d~x1!d~x2! (14)

where

f ~ t !5sinS 2pt

t D20.5 sinS 4pt

t D , 0,t,t (15)

The time dependence of the load,f (t), and its Fourier transform
F(v), are plotted fort51 ms in Fig. 5. The source spectrum
maximum around 1.1 MHz and becomes negligibly small beyo
3 MHz.

The new integration scheme has also been implemented on
exact theory to obtain the time histories of the vertical surfa
displacement. The results are compared with those from FEM
propagation along 0 deg, 30 deg, 60 deg, and 90 deg with res
to the fiber direction at a number of field points in Figs. 6~a!–6~d!.
Since the displacements calculated from the CPT diverge gre
from the exact and FEM solutions, the results are omitted
brevity. A third-order elliptic digital filter@19# with a pass band
of0.05–0.65 MHz is applied to all calculated spectra to elimin
high frequency numerical noise. The agreement between the
sults from the two models is excellent in almost all cases. T
time histories of surface motion from the exact theory show
strong influence of the higher order modes at high frequenc
which are absent in those from FEM. This requires further inv
tigation. The arrival time of the peak in the two sets of signa
however, coincides. A recently discovered behavior of the w
forms, namely, phase reversal of the main pulse with propaga
distance@20# caused by the strong dispersion of the AS0 mode
also present in the results.

4 Concluding Remarks
The time histories of the vertical surface displacement cal

lated from FEM and exact theory show excellent agreement.
two methods can be combined for efficient and accurate calc
tion of the wave forms in both near and far fields. The new in
gration scheme for the evaluation of the double wave-number
tegral representation of the field involves the numeri
computation of only one of the integrals, thus reducing the co
putational effort significantly. Another major advantage of the c
rent method is that the integration scheme can be exploite
obtain the solution for any specific propagating mode by usin
suitable numerical approach. As an example, if only the A
mode is chosen for evaluation, the computational effort will
extremely small. The approach can be used for rapid calcula
of the elastic waves generated by impact and fatigue damag
plates and should be useful in real time heath monitoring of c
cal structural components. Extension of the current work
thicker laminates and laboratory experiments are currently un
way.

Fig. 5 Time history and spectrum of the source
Transactions of the ASME
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Fig. 6 Time history of vertical surface displacement i n a 1 mm thick unidirecti onal graphite Õepoxy composite
plate subjected to a point load from exact theory „first column … and FEM „second column …, „a… 0 deg propa-
gation, „b… 30 deg propagation, „c… 60 deg propagation, and „d… 90 deg propagation
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Steady Mechanics of Belt-Pulley
Systems
Steady state analysis of a two-pulley belt drive is conducted where the belt is mode
a moving Euler-Bernoulli beam with bending stiffness. Other factors in the classical c
theory, such as elastic extension and Coulomb friction with the pulley, are retained
belt inertia is included. Inclusion of the bending stiffness leads to nonuniform distribu
of the tension and speed in the belt spans and alters the belt departure points fro
pulley. Solutions for these quantities are obtained by a numerical iteration method
generalizes to n-pulley systems. The governing boundary value problem (BVP), whic
undetermined boundaries due to the unknown belt-pulley contact points, is first conv
to a standard fixed boundary form. This form is readily solvable by general purpose
solvers. Bending stiffness reduces the wrap angles, improves the power efficien
creases the span tensions, and reduces the maximum transmissible moment.
@DOI: 10.1115/1.1827251#
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1 Introduction
Belt-pulley drives have been widely used to transmit power

hundreds of years. The power is transmitted from the driver pu
to the driven pulleys through friction between the belt and
pulleys. The belt-pulley mechanics are important in industrial
plications as they impact belt tension, belt life, power transm
sion efficiency, maximum transmissible moment, and noise. C
siderable research has been done in the field of belt mecha
Fawcett@1# gives a comprehensive review of belt mechanics up
1981. Two different theories have been used to describe the
behavior. One is known as creep theory, which assumes tha
belt is elastically extensible, friction is developed due to the re
tive slip motion between the belt and pulley, and a Coulomb l
describes the belt-pulley friction. Another model is the sh
theory, which addresses shearing deformation of the belt and
sumes that the belt is inextensible. The shear theory is develo
recently in@2,3#. Alciatore and Traver@4# give a comparison be
tween these two different theories. In this paper the creep the
is adopted with the refinement of incorporating belt bend
stiffness.

Johnson@5# gives a review of the classic creep theory. Gerb
@6# analyzes a symmetric system with no belt bending stiffn
where the driver and driven pulleys have the same radius.
cently, by considering inertial effects, Bechtel et al.@7# update the
classic creep theory to include belt inertia and present a comp
solution for a two-pulley belt drive. Independently, Rubin@8# in-
vestigates the effects of the same inertia terms and presen
method to find solutions for general multi-pulley systems. A
though the derivations in@7,8# seem different, the analysis an
main conclusions are essentially the same. The main contribu
of these two papers is that they include belt inertia terms
determine the relative errors of prior creep theories that neg
these terms.

In both @7,8#, the belt is treated as a string and belt bend
stiffness is not considered. Bending stiffness introduces a
tional, nonuniform tension in the belt due to the induced cur
tures in the spans, leads to nonuniform speed along the belt s

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 1, 200
final revision; February 19, 2004. Associate Editor: M. P. Mignolet. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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alters the wrap angles, and influences performance criteria suc
maximum transmissible moment and efficiency. When bend
stiffness is appreciable compared to tension stiffness~especially
for thick, low tension, or short span belts!, the effects of bending
stiffness are more significant than the inertia terms introduce
@7,8#. The main concern of this study is to investigate the infl
ence of bending stiffness on the steady motion while keeping
inertia.

The belt is modeled as a moving Euler-Bernoulli beam. Even
the belt spans, the distributions of tension and speed are no lo
uniform and there is no explicit analytical solutions for the ord
nary differential equations~ODEs! governing the belt spans, in
contrast to the string models@7,8#. Furthermore, inclusion of the
bending stiffness makes the contact points between the belt
pulleys ~boundaries for the ODEs! not known a priori. Conse-
quently, the steady motion analysis is governed by boundary v
problem with unknown domain. This presents one of the m
obstacles. By suitable transformation using ordinary differen
equation conversion techniques, however, this problem is for
lated as a standard BVP with fixed boundaries. This form is
cepted by general-purpose two-point BVP solvers. No spatial
cretization~e.g., Galerkin, Ritz! is used; the final result can b
viewed as numerically exact. Although the iteration method
presented for two-pulley belt drives, it can be readily extended
multi-pulley drives.

In related works, Wang and Mote@9# and Hwang and Perkins
@10# consider belt bending stiffness while investigating a ba
wheel system with two identical pulleys. The steady state anal
in this work and those in@7,8# are different in spirit from those in
@9,10#, where calculation of the steady state is mainly for sub
quent linearized free vibration analysis. The problems discus
here, like the nonuniform tension and speed distributions, belt
on the pulleys, power transmission efficiency, and maxim
transmissible torque, are not addressed in@9,10#. Correspondingly,
some simplifying assumptions are adopted in@9,10#. For example,
the belt speed is assumed to be uniform throughout the sys
variations of belt tension along a span and on the pulleys are
considered, friction between the pulley and belt is neglected,
no energy is dissipated during steady power transmission. In@9#,
the boundaries of the spans are fixed at the belt-pulley con
points of the string model. In@10#, although the belt-pulley con-
tact points are not fixed, the belt is assumed to be inextensib

Note the present analysis is only an approximation for V-b
drives because V-belt systems have deep grooves that gen
seating and unseating zones not modeled here.

Section 2 presents the governing differential equations of
moving Euler-Bernoulli beam in the steady state. Section 3 in
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duces techniques to transform the unknown boundary BVP
fixed-boundary form. These techniques are presented for the
where a single belt span wraps around two pulleys. This solu
is a fundamental building block for the overall belt-pulley syste
solution. Section 4 presents the steady state analysis for a
pulley belt drive system. Two different problems are consider
One finds the steady motion when the moments on the pulleys
specified. The second problem finds the maximum transmiss
moment that can be exerted on the pulleys. Section 5 pres
numerical results corresponding to these two problems.

2 Nonlinear Equations of a Moving Curved Beam
Figure 1 shows the free body diagram of an extensible b

which is modeled as a moving Euler-Bernoulli beam. Rotary
ertia and shear deformation are ignored. An Eulerian formula
is adopted for the control volume. The radius of curvaturer(s) is
a function of the arclength coordinate.f (s) andn(s) are contact
forces per unit length exerted on the belt.

For steady motions, conservation of mass requires that

G5m~s!V~s!5const (1)

where m(s) is the belt mass density per unit length. Eule
Bernoulli beam theory requires

M5EIk (2)

Fig. 1 Free body diagram of a moving curved beam
26 Õ Vol. 72, JANUARY 2005
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whereEI is the bending stiffness andk is the curvature of the
beam.k equals the varying rate of inclination of the beam

k5du/ds (3)

where the inclination angleu is measured from the due east dire
tion ~Fig. 2!. The balance of angular momentum with respect
the center of mass of the control volume yields

dM2Qds50, Q5dM/ds5EI~dk/ds! (4)

Balance of linear momentum projected in the tangential direct
leads to

dT2 f ds5GdV2Qdu (5)

Substitution of~2!–~4! into ~5! leads to

~T2GV!81EIkk85 f (6)

where~ !8 denotes differentiation with respect to the arclengths.
Balance of linear momentum projected in the normal direct
yields

nds5~T2GV!du2dQ (7)

Substitution of~4! leads to

~T2GV!k2EIk95n (8)

The above derivation assumes thatdu! 1, cos(du/2)'1,
sin(du/2)'du/2, and products of infinitesimal quantities a
negligible.

For the belt in the spans, the contact forcesf andn are zero, and
Eqs.~6! and ~8! become

~T2GV!81EIkk850, ~T2GV!k2EIk950 (9)

This converges to the string model@7# when the bending stiffness
is zero. Because the curvature is constant for the belt on the
leys, Eqs.~6! and ~8! in these contact regions become

~T2GV!85 f , ~T2GV!/R5n (10)

The governing equations~10! are the same as for a string mod
@7,8#.

3 BVP Solver Based Method for Problem With Un-
known Boundaries

Figure 2 presents a single belt span stretched between two
pulleys. This boundary value problem has unknown boundar
the belt departure points from the pulleys are determined in
analysis. This case is a key step in the subsequent solution
general belt-pulley systems. Furthermore, it shows the techniq
for converting the problem with unknown boundaries into a st
dard form@11# that can be solved by general purpose BVP solve
Fig. 2 Single span boundary value problem with unknown boundaries
Transactions of the ASME
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For this reduced problem, the belt speed is zero. This redu
~9! to

T81EIkk850, Tk2EIk950 (11)

Three boundary conditions are needed. For reasons to be ev
later, the tension at the start point is assumed to be known

T~0!5T0 (12)

The curvaturesk at the two boundaries are specified by the ge
metric relations~Fig. 2!

k~0!521/R1 , k~s5L& !521/R2 (13)

whereL& is the total arclength of the belt in the span. What mak
the problem unusual is thatL& is not known a priori. The geometric
requirement is that the curved belt should contact and be tan
with both pulleys.

By applying ODE conversion techniques, the above system
transformed into a standard form defined on the interval~0,1!.
This formulation is readily accepted by most general-purp
BVP solvers. First, the following nondimensional variables a
introduced

ŝ5
s

L&
, x̂5

x

L&
, ŷ5

y

L&
, k̂5L&k, p̂5

TL&2

EI
(14)

wherex(s) and y(s) are the rectangular coordinates of belt pa
ticles ~Fig. 2!. Substitution of~14! into ~11! yields

dp̂

dŝ
1k̂

dk̂

dŝ
50,

d2k̂

~dŝ!2
2 p̂k̂50, 0, ŝ,1 (15)

The boundary conditions~12! and ~13! become

p̂~0!5T0L&2/EI, k̂~0!52L& /R1 , k̂~1!52L& /R2 (16)

The unknown constantL& is defined as the functionL&5L& ( ŝ), gov-
erned by

dL&

dŝ
50, 0, ŝ,1 (17)

Geometric relations lead to

du

dŝ
5k̂,

dx̂

dŝ
5cosu,

dŷ

dŝ
5sinu, 0, ŝ,1 (18)

The corresponding boundary conditions are

@L&~0!x̂~0!#21@L&~0!ŷ~0!#25R1
2, L&~0!x̂~0!52R1 sinu~0!

(19)

@L&~1!x̂~1!2L#21@L&~1!ŷ~1!#25R2
2,

2R2 sinu~1!5L& x̂~1!2L (20)

where L is the known distance between the centers of the
fixed pulleys~Fig. 2!. Equations~19! and~20! ensure that the bel
contacts and is tangent to the bounding pulleys. Tangency is
posed by the angles on the pulleys to the contact points b
equal to the span inclination anglesu~0! and2u~1!.

The seven boundary conditions~16!, ~19!, and ~20! equal the
total order of the six differential equations~15!, ~17!, and ~18!.
Equation~15! involving higher derivatives can be reduced to sta
dard first order form with the definitionsq1( ŝ)5k̂( ŝ), q2( ŝ)
5k̂8( ŝ), q18( ŝ)5y2( ŝ). The problem is cast entirely on the inte
val ŝP(0,1) even though the problem involves unknown boun
aries. This standard form is readily accepted by general-purp
two-point BVP solvers.

There are several advantages of the BVP solver based me
1! Because there is no spatial discretization and because o
high quality and robustness of state-of-the-art BVP solver cod
the results can be viewed as numerically exact. 2! It is easy to
Journal of Applied Mechanics
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implement with minimal programming. 3! It not only gives the
tension and curvature of the belt but also gives the con
points and explicit positions of the entire belt@x(s) and y(s)]
simultaneously.

Further, the method can be extended to other problems tha
not seem amenable to a general-purpose BVP solver at first s
In Section 4, two additional required ODE conversion techniqu
are presented. One shows how to incorporate an integral ter
the BVP system. The other shows how to incorporate an algeb
equation.

4 Steady State Analysis of Belt Pulley Drives:
An Iteration Method

In this part, the steady motion analysis is presented for a g
eral two pulley belt drive with different pulley radii. Following
@7#, the specified parameters are driver pulley radiusR1 , driven
pulley radiusR2 , center distance between the two fixed pulleysL,
belt longitudinal stiffnessEA, constant rotation speedv1 of the
driver pulley, coefficients of frictionm1 and m2 on the two pul-
leys, static tension of the beltTini of the reference state~where
there is no moment exerted on the pulleys and the belt spee
zero!, and belt mass flow rateG. Due to consideration of the
bending stiffness, the reference state tensions are no longer
form along the belt;Tini is assumed to be the tension at the m
points of the spans.~Note that in the string model of@8#, instead
of specifyingv1 andG, the undeformed belt mass per unit leng
m0 and c5G/m0 are the chosen parameters. In Section 5.2 a
the Appendix, these definitions are shown to be equivalent.!

Two problems are considered:~1! If the momentM2 on the
driven pulley is specified, one finds the driving moment, distrib
tions of tension, speed, and friction along the belt as well as
slip and adhesion angles on the two pulleys, and~2! the moments
on the pulleys are not specified, and one first finds the maxim
transmissible moment and then calculates the correspon
steady state mechanics; the implicit condition here is that one
both of the adhesion angles vanishes and no additional mom
can be transmitted.

The governing equations for the spans are~9!. In the contact
zones, the governing equations are~10!. On the boundaries be
tween the spans and contact zones, the tension, curvature
speed must be continuous. To complete the problem, a constitu
law is needed. Following@12#, a differential belt element with
undeformed lengthdso has deformed length

ds5~11T/EA!dso (21)

and the mass density per unit lengthm(s) becomes

m~s!5
m0dso

ds
5

m0

11T/EA
(22)

Substitution of~22! into ~1! leads to

G5m~s!V~s!5
m0

11T/EA
V~s! (23)

So, the constitutive law is

T5EA~V/Vre f21!, Vre f5G/m0 (24)

as used in@7#. Note thatVre f is not known a priori because onl
one ofm0 andG is specified;Vre f is determined in the solution
Finally, the system must satisfy the compatibility condition

LT
~0!1LS

~0!1Lb1

~0!1Lb2

~0!1La1

~0!1La2

~0!5L ~0! (25)

whereLT
(0) andLS

(0) are the unstretched lengths for the tight a
slack spans,La1

(0) andLa2

(0) are the unstretched lengths of the adh

sion zones on the driver and driven pulleys,Lb1

(0) andLb2

(0) are the
unstretched lengths of the slip zones on the driver and dri
pulleys, andL (0) is the unstretched length of the total belt when
JANUARY 2005, Vol. 72 Õ 27
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Fig. 3 Two-pulley belt drive with inclusion of belt bending stiffness
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is removed from the pulleys.L (0) can be calculated from the ref
erence state. Physically, the compatibility equation~25! means
that the unstretched length computed from the steady state sh
equal that computed from the reference state, guaranteeing
the same belt is considered@8#.

The compatibility equation~25! is that used in@8# and prior belt
drive analysis@13#. In @7#, the compatibility equation is mistak
enly omitted and this makes the derivation inconsistent. Equa
~17! in @7# leads toTt2Ts5M /r . This contradicts their equation
~3!, which requires that, after integration, (Tt2GVt)2(Ts
2GVs)5M /r .

4.1 Regular Moment Transmission Problem. In this prob-
lem, the momentM2 exerted on the driven pulley is a specifie
value less than the maximum transmissible moment.

To find the driving moment and distributions of tension, spe
and friction along the belt loop, an iteration method is used. T
iteration starts from the tight span, which has the following go
erning ODE

~T12GV1!81EIk1k1850 (26)

~T12GV1!k12EIk1950 (27)

where the subscript 1 represents the tight span~subscript 2 repre-
sents the slack span!. First, the tension at the left boundary~con-
tact point between the driver pulley and the tight span! is assigned
an initial guess

T1~0!5T1I0 (28)

At the same boundary of the tight span (s150), the speed of the
belt is the same as the driver pulley

V1~0!5v1R1 (29)

Substitution of~28! and~29! into the constitutive law~24! leads to

Vre f5
v1R1

11~T1I0 /EA!
(30)

Thus the relationship between the tensionT1 and speedV1 can be
completely determined from~24! ~for the assumedT1I0), andT1
2GV1 can be treated as one unknown field variable. Equati
~28! and ~29! give the boundary condition for this unknown fie
variable. The other two boundary conditions for the govern
equations~26! and ~27! are

k1~0!521/R1 , k1~L&1!521/R2 (31)

whereL&1 is the total arclength of the tight span, which is to
determined. This single span problem with unknown boundaryL&1
is of the form discussed previously. By adopting the ODE conv
sion techniques presented earlier, the solution for the tight s
can be found.
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For the belt in the belt-pulley contact zones, the govern
equation~10! is the same as for the string models. All relations f
these segments of the belt derived from prior string models@7,8#
still hold. For the adhesion zones, the tension and speed are
stant. For the sliding zone on the driver pulley~see Fig. 3!, ~10!
and f 5m1n lead to

b15
1

m1
ln

T1~0!2GV1~0!

T2~0!2GV2~0!
(32)

whereT2(0) andV2(0) are the as yet unknown boundary valu
of tension and speed for the slack span. For steady operation
balance of angular momentum on the driver and driven pull
leads to

Fig. 4 Flowchart of the iteration for the regular transmission
problem
Transactions of the ASME



Fig. 5 Steady solutions for the system properties specified in Table 1. „a… EIÄ0.0015, „b… EIÄ0.015, and „c… EIÄ0.05 N"m2.
-

M1 /R15E
0

b1R1

f 1 ds5@T1~0!2GV1~0!#2@T2~0!2GV2~0!#

(33)

M2 /R25@T1~L&1!2GV1~L&1!#2@T2~L&2!2GV2~L&2!# (34)

The governing equations for the slack span are

~T22GV2!81EIk2k2850, ~T22GV2!k22EIk2950 (35)

Two boundary conditions for~35! are

k2~0!51/R1 , k2~L&2!51/R2 (36)

where L&2 is the total arclength of the slack span~to be deter-
mined!.

Integration of~26! and the first of~35! yields
Journal of Applied Mechanics
F ~T2~s2!2GV2~s2!#2F ~T1~s1!2GV1~s1!#

52
1

2
EIk2

2~s2!1
1

2
EIk1

2~s1!1D (37)

whereD is a constant. Taking the two choicess150, s250 and
then s15L&1 , s25L&2 in ~37!, subtracting the two resulting equa
tions, and using~31! and ~36! gives

Table 1 Physical properties of the belt drive with two identical
pulleys

R15R250.05 m L5pR150.1571 m EA525 kN m15m250.6
Tini550 N ~midspan! v15500 rad/s M 252 N•m G50.5 kg/s
JANUARY 2005, Vol. 72 Õ 29
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This gives rapid convergence of the iteration to the true solution.
@T2~L&2!2GV2~L&2!#2@T1~L&1!2GV1~L&1!#

5@T2~0!2GV2~0!#2@~T1~0!2GV1~0!!# (38)

Comparison of~33!, ~34!, and ~38! yields M15(R1 /R2)M2 for
steady operation.

Using ~28!–~30!, ~33!, M15(R1 /R2)M2 and the constitutive
law ~24! gives two equations forT2(0) andV2(0), fixing the field
variableT22GV2 at s250. This gives a third boundary condition
in addition to~36!, for the governing equations~35! of the slack
span. Again, this boundary value problem has the form discus
previously for the single span case and can be solved by a ge
purpose BVP solver. The sliding angleb2 on the driven pulley is
calculated from ~10! and f 5m2n as b25(1/m2)ln$@T1(L&1)
2GV1(L&1)#/@T2(L&2)2GV2(L&2)#%.

For the adhesion zones of the belt on pulleys, the adhe
angles are

a15p2b12u1~0!1u2~0!, a25p2b21u1~L&1!2u2~L&2!
(39)

Thus, the steady motion has been calculated for the assu
tensionT1I0 . This includes the torque on the driver pulleyM1 ,
the span lengths (L&1 ,L&2), the deflected belt shapes in the spa
(x1(s1),y1(s1),x2(s2),y2(s2)), the tension and speed distribu
tions along the belt (T1(s1),V1(s1),T2(s2),V2(s2)), the belt-
pulley contact points (u1(0),u1(L&1),u2(0),u2(L&2)), and the ad-
hesion and slip zones (a1 ,a2 ,b1 ,b2).

The calculated result for the assumed tensionT1I0 is a possible
steady state that can physically exist. But whether or not it is
same belt specified in the reference state, which has the
stretched lengthL (0), depends on if the system satisfies the co
patibility equation~25!. To check the compatibility condition, on
must find the unstretched length of the total belt for the assum
T1(0)5T1I0 .

For the adhesion and slip zones, the unstretched lengths a

La1

~0!5
a1R1

11T1~0!/EA
, La2

~0!5
a2R2

11T2~L&2!/EA
(40)

Table 2 Numerical results for the belt drive specified in Table
1

EI
~N•m2!

b15b2
~deg!

a15a2
~deg!

u1(0)

@2u1(L&1)#
~deg!

2u2(0)

@u2(L&2)#
~deg! L&1 /L L&2 /L

0 109.4 70.60 0 0 1 1
0.0015 100.2 64.67 5.645 9.503 1.063 1.10
0.0150 87.18 50.05 16.86 25.92 1.189 1.29
0.0500 90.26 15.91 29.82 44.00 1.339 1.51
30 Õ Vol. 72, JANUARY 2005
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Lb1

~0!5E
0

b1R1 1

11T~s* !/EA
ds*

5S 12
GVre f

EA D R1

m1

3 ln
11EA/@T1~0!2GV1~0!2M1 /R1#

11EA/@T1~0!2GV1~0!#
(41)

Lb2

~0!5S 12
GVre f

EA D R2

m2
ln

11EA/@T1~L&1!2GV1~L&1!2M2 /R2#

11EA/@T1~L&1!2GV1~L&1!#
(42)

wheres* is the local arclength for the slip zone of the belt. Th
unstretched length of the tight span is

LT
~0!5E

0

L&1 1

11T1~s1!/EA
ds1 (43)

To calculate this term, direct integration method could be u
because the distribution of the tensionT1(s1) and the total ar-
clength of the tight spanL&1 have been calculated. Instead we u
an alternative method that integrates the integral term into
standard BVP form for the tight span with little additional effor
We define I T(s)5*0

s$1/@11T1(s1)/EA#%ds1 and add an addi-
tional ODE and boundary condition to the corresponding B
standard form for the tight span

dIT~s!

ds
5

1

11T1~s!/EA
, 0,s,L&1 with I T~0!50 (44)

Then I T(L&1) is equivalent to the desired integral termLT
(0) and is

a natural product of the BVP solution. Although the added OD
and boundary condition~44! are written in the dimensional form
over the range (0,L&1), ~14! transforms them into the necessa
form on ~0,1!. Similar operations can be performed on the BV
for the slack span to obtain the unstretched belt lengthLS

(0) .
The error between the unstretched length for the assumedT1I0

and the actual unstretched lengthL (0) ~discussed below! is

Lerror
~0! 5~LT

~0!1LS
~0!1Lb1

~0!1Lb2

~0!1La1

~0!1La2

~0!!2L ~0! (45)

Physically, if Lerror
(0) ,0, the assumedT1I0 is larger than the true

T1(0) and should be reduced in the next iteration step;Lerror
(0)

.0 impliesT1I0 is smaller than the trueT1(0). Lerror
(0) is a mono-

tonically decreasing function of the assumed tensionT1I0 . This
property allows use of the bisection method in the iteration lo

6
3
1

Fig. 6 Variations of tension in the tight and slack spans for the belt-pulley drive in Table 1
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Fig. 7 Deflections of the spans for two different belt-pulley models. „a… and „b… correspond to the current
model „symbols denote span endpoints …; „c… and „d… correspond to the fixed boundary model in †15‡. The
system is specified in Table 1.
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In this study, the results converge such thatuLerror
(0) /L (0)u,0.1%.

The above iteration procedure is summarized in the flowchar
Fig. 4.

The unstretched length of the total beltL (0) must be calculated
from the reference state when the analysis follows those in@7,8#
and the reference state tensionTini in a chosen span is specifie
~instead ofL (0)). Because the span tensions are nonuniform in
reference state when bending stiffness is modeled, this cond
is modified such thatTini is given at an arbitrary point in the be
loop. A similar iteration method as already presented can be
plied to obtainL (0) with the only difference that during the trial
and-error process, instead of checking the compatibility condi
~25!, one checks if the calculated tension at the appropriate p
equals the specified valueTini . In practical applications, the mor
appropriate problem formulation provides the unstretched
lengthL (0) instead ofTini . In that case, the iteration to determin
L (0) is not necessary.

4.2 Maximum Transmissible Moment Problem. The
above iteration method is valid for the case of specified pu
moments. How is this extended to calculate the maximum m
ment that can be transmitted? One obvious solution is to
specify a small momentM2 exerted on the driven pulley an
calculate the steady motion by using the above iteration meth
then increase the specified momentM2 towards the unknown
maximum transmissible momentM2Imax until one of the adhesion
angles reaches zero. This method is feasible, but it involves
iteration loops. In the following analysis, a modification of th
above iteration method is introduced that only involves one ite
tion loop.
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As in the specified moment case, the tensionT1(0) changes in
each iteration loop. The first step is also the same, namely ca
lating the steady mechanics for the tight span using the sin
span BVP building block. After this step, instead of addressing
belt in the contact zones and the belt in the slack span suc
sively, we address both of them simultaneously to findM2Imax ~for
the assumedT1I0) as follows.

The unknownM2Imax is defined as a field variableM2Imax
5M2Imax(s2) governed by

dM2Imax~s2!

ds2
50 (46)

forcing M2Imax to be a constant. This ODE is added to the BV
~with unknown boundaries! for the slack span. Correspondingl
one additional boundary condition is needed to make the O
system complete. BecauseM2Imax is constant along the domain
the boundary value ofM2Imax(0) at s250 equals the maximum
transmissible moment. Substitution of~33! and M1
5(R1 /R2)M2Imax into ~32! yields

b152
1

m1
lnF12

M2Imax~s250!/R2

T1~0!2GV1~0! G (47)

Similarly, for the belt on the driven pulley,

b252
1

m2
lnF12

M2Imax~s250!/R2

T1~L&1!2GV1~L&1!
G (48)
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Table 3 Physical properties of the belt drive with two different pulleys

R150.01 m R250.05 m EA540 kN m15m251
Tini5800 N ~midspan! m05r0* A50.0056 kg/s L50.1 m ccr5374 m/s
t

c

t
t

t

fi

d

i
l
g
d

h

s
a

t
r

e
u

ws
are

belt
hes.

t

Without loss of generality, we assume that full slip appears firs
the driver pulley (a150). Substitution of~47! into the first of
~39! yields

p1
1

m1
lnF12

M2Imax~s250!/R2

T1~0!2GV1~0! G2u1~0!1u2~0!50 (49)

whereu1(0) has been calculated in the last step when solving
BVP for the tight span. Equation~49! serves as the required ad
ditional boundary condition for the ODE~46!. The rest of the
iteration process is the same as discussed previously.M2Imax
emerges naturally as part of the solution along with all other qu
tities giving the mechanics forM25M2Imax.

Since most general-purpose BVP solvers can not dire
handle coupled BVP/algebraic equations, this conversion te
nique is useful in general for addressing such coupled system

5 Results and Discussion
Two example two-pulley belt drives are examined. The firs

for the regular moment transmission problem. Except for
bending stiffness, all specified data of this drive~Fig. 5! are the
same as for the string model example in@7#. The second example
is for the maximum transmissible moment problem. Except for
bending stiffness, all specified data of this drive~Fig. 8! are the
same as in@8#. The uniform reference state span tensions speci
in @7# and @8# are taken to be midspan tensions in the pres
analysis where span tension is nonuniform.

Three different belt bending stiffness values are considere
the examples (EI50.0015,0.015,0.05 N•m2). All are within prac-
tical estimates for poly-ribbed belts. For V-belts, the bending st
ness can be much larger.

5.1 Example of Regular Moment Transmission Problem.
The data for this system are specified in Table 1. The calcula
results for slip/adhesion zones, belt-pulley departure po
u1,2(0), andspan lengths are presented in Table 2 for three va
of bending stiffness. The deflected belt shapes are shown in Fi
where the strokes of the belt in the spans are thickened. Ben
stiffness decreases the wrap angles. For appreciable bending
ness, the adhesion angles are reduced significantly. Notice tha
belt transverse deflections are significantly increased for la
bending stiffness. Figure 6 shows the tension variations in
spans. WhenEI50, this converges to the string model where t
tension and speed are uniform throughout the spans@7,8#. Large
percentage increases in belt tension result with increased ben
stiffness, and this impacts belt life. Comparing line lengths in F
6 shows the increased span lengths for increased bending
ness. Note the variations of speed in the spans, which are e
calculated from~24!, are low~,0.04%! becauseEA is very large.
In the adhesion zones, the tension and speed are uniform; in
sliding zones, the tension and speed are exponentially distribu
similar to the string models.

Figures 7a,b give the span deflections. The boundaries of
spans change as the bending stiffness changes. In the literatu
alternative theory concerning bending stiffness in belt-pulley s
tems has been used@9,14–16#. These works assume that th
boundaries of the spans are fixed at the belt-pulley contact po
of the string model, the speed is uniform throughout the syst
the tensions are uniform throughout the spans, and at the bo
aries the beam displacement satisfiesEIw,xxuBC56EI/r , wherer
is the radius of the pulley. Figures 7c,d give the deflections of the
spans derived from the fixed boundary analysis of Kong a
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Parker@15#. Comparison of results from these two theories sho
that as the bending stiffness increases, the differences
pronounced.

5.2 Example of Maximum Transmissible Moment Prob-
lem. Following @8#, the data are specified in Table 3.ccr is the
critical speed for the string model, that is, the speed where the
expands such that the maximum transmissible moment vanis
Note that in the string model of@8#, instead of specifyingv1 and
G, m0 andc ~or C5c/ccr , 0<C<1) are specified. This does no
change the definition of the problem becausec5Vre f and m0
5G/Vre f @see Eq.~24! and the Appendix for the reasoning#. For

Fig. 8 Steady solutions for the system properties specified in
Table 3. Full slip occurs on the driver pulley. „a… EIÄ0.0015, „b…
EIÄ0.015, and „c… EIÄ0.05 N"m2.
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Fig. 9 Comparison of maximum transmitted moment MmaxÄM2Omax ÕTiniR2 , power efficiency
h, Tt Omidspan ÕTini , and Ts Omidspan ÕTini between the string and beam models for the belt drive
in Table 3
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any assumedT1I0 , c andm0 can be obtained fromG andv1 , or
vice versa. For example, supposec and m0 are specified. Then
G5m0c and, using~30!,

v15
Vre f

R1
S 11

T1I0

EA D5
c

R1
S 11

T1I0

EA D
Figure 8 depicts the steady states of the belt drive transmit

maximum moment atc5ccr/2; full slip occurs on the driver pul-
ley, a150. When EI50, the results are for the string mode
Especially for pulleys of small radius, the wrap angle is reduc
significantly with increasing bending stiffness as shown by
belt-pulley departure angles listed on the figure. Because ge
ally it is the small pulley that first reaches the full slip state, a
this determines the maximum transmissible moment, inclusion
the bending stiffness can greatly reduce the maximum trans
sible moment, as shown in Fig. 9.

In Fig. 9, four nondimensional variables are plotted with
spect to C5c/ccr at different bending stiffness values:Mmax
5M2Imax/(TiniR2), TtImidspan/Tini , TsImidspan/Tini , andh, where
TtImidspanandTsImidspanare tensions at the midpoints of the tig
and slack spans, respectively, and the power efficiencyh is de-
fined as the ratio between the power of the driven pulley and
driver pulley

h5
M2v2

M1v1
5

V2~L&2!

V1~0!
5

11~T2~L&2!/EA!

11~T1~0!/EA!
(50)

Figure 9 shows that increasing the bending stiffness significa
decreases the maximum transmissible moment and increase
power efficiencyh. The significant overestimation of the max
mum transmissible moment using the string model can lead
poor performance and unanticipated full belt slip, especially
belts with appreciable bending stiffness. Bending stiffness redu
d Mechanics
ing
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the effects of belt speedC on the steady motion; variations of th
nondimensional variables over the same range ofC are decreased
for increasing bending stiffness.

6 Conclusions
Belt bending stiffness is included in the steady state analysi

belt-pulley systems where belt inertia is also modeled. An itera
solution is presented to determine the deflections of the belt, b
pulley contact points, span lengths, and the distributions of sp
tension, and friction along the belt. Inclusion of bending stiffne
leads to initially unknown belt-pulley contact points, yielding
governing boundary value problem~BVP! with undetermined
boundaries. This requires a transformation of the governing eq
tions to a standard ODE form with fixed boundaries. This form
readily accepted by general-purpose BVP solver codes. The m
conclusions include:

1. Inclusion of bending stiffness leads to nonuniform speed
tension in the spans and reduces the belt wrap angles
pulleys, especially for small radii. Span tensions, which
rectly impact belt life, increase markedly with bending sti
ness.

2. Bending stiffness decreases the wrap angles, causes e
full slip of the belt on the pulleys, increases the power e
ciency h, and decreases the maximum transmissible m
ment. Some of these effects are pronounced for appreci
bending stiffness and may cause poor performance in
tems designed based on string model analysis.

3. The effects of belt speed on the steady motion are reduce
the bending stiffness increases.
JANUARY 2005, Vol. 72 Õ 33
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Appendix: Relationship With Results of †8‡
Because in@8#, Eq. ~16!4 is di511Ti /EA and Eq.~23!2 is

v i5cdi /Ri ,

Ti5EA~v iRi /c21! (A1)

Comparison of~24!, ~29!, and~A1! leads to

c5Vre f (A2)

Equations~24! and ~A2! yield G5m0c.
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An Electric Node Concept for
Solid-Shell Elements for
Laminate Composite Piezoelectric
Structures
The eight-node solid-shell finite element models have been developed for the anal
laminated composite plate/shell structures embedded with piezoelectric actuators
sensors. To resolve the locking problems of the solid-shell elements in laminated ma
and improve accuracy, the assumed natural strain method and hybrid stress metho
employed. Introduction of the concept of the electric nodes can effectively eliminat
burden of constraining the equality of the electric potential for the nodes lying on
same electrode. Furthermore, the nonlinear electric potential distribution in piezoele
layer is described by introducing internal electric potential. The developed finite elem
models, especially electric potential node model, are simpler over other models bu
still obtain same accuracy as exact solution described. Several examples are studie
compared with exact solution and other predicted results to illustrate the accuracy o
present model, and efficacy and effect caused by nonlinear electric potential distrib
on frequency and electric fields in smart structure modeling.@DOI: 10.1115/1.1827249#
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1 Introduction
Piezoelectric materials have attracted significant attention

to their potential application in sensors and actuators becaus
ezoelectric materials are coupled with mechanical and elect
properties. Recent advances in design and manufacturing t
nologies have greatly enhanced the use of advanced fi
reinforced composite materials in aircraft and aerospace struc
applications. As a consequence, the integration of composite
terials and adaptive structures with the smart system could po
tially result in significant improvement in the performance a
reliability of aircrafts, space structures, satellites, and other
vanced structures. Such materials will combine the superior
chanical properties of composite materials as well as inheren
pability to sense and adapt their static and dynamic respon
However, this effort requires the development of admissible m
chanics entailing capabilities to model the unified electromech
cal response of sensory/active structures including the coup
between sensors and actuators. For smart structures, experim
models, and prototypes are limited to relatively simple structu
such as beams and plates. Thus, in practical applications, fi
element techniques provide the versatilities in modeling, simu
tion, and analysis of engineering designs in modern sm
intelligent material and structures.

There have been many theories and models proposed fo
analysis of laminated composite plates containing active and
sive piezoelectric layers@1–19#. Owing to the geometric complex
ity of surfaces bonded with sensors and actuators which are m
conveniently be modeled by continuum elements~no rotational
d.o.f.!, many of the developed finite element models are c
tinuum in nature@7–11#. However, strict considerations of lockin
deficiencies are often lacking in the course of developing th

1To whom correspondence should be addressed. e-mail: mpeluli@nus.edu.s
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 1, 200
final revision, March 15, 2004. Associate Editor: B. M. Moran. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California, Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
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finite element models. It is unfortunate that solid elements, w
applied to plate and shell analyses, can be plagued by the la
number of finite element deficiencies which include shear, me
brane, trapezoidal, thickness, and dilatational lockings. Hen
solid-to-plate/shell transition elements may have to be adop
whereas excessive aspect ratios of the solid and transition
ments must be avoided. Alternatively, transition elements can
avoided by introducing numerical constraints to tie up the ro
tions in plate/shell elements with the translations in the solid e
ments. This practice is tedious and also adversely affects the
dition of the system equation. Moreover, for piezoelect
element, most of researchers use simplified approximations
tempting to replicate the electric field generated by a piezoelec
layer under an external electric field or applied load. Very oft
the electric potential distribution is assumed to vary linearly
through-thickness of piezoelectric layer. An exact solution for
ezoelectric laminate plates has shown that the distribution of e
tric field given by Heyliger and Saravanos@12# is often poorly
modeled using simplified theories. According to the results of t
exact solution, the electric field distribution in piezoelectric lay
is not constant. For the finite element model reported by Sa
vanos et al.@3#, each layer is modeled using independent appro
mations for the in-plane displacement components and the e
trostatic potential in a unified representation, as mandated by
linear theory of piezoelectricity. The predicted results reported
Saravanos et al.@3# are well closer with exact solution, indicatin
that electric field distribution through-thickness in piezoelect
layer is not constant.

In this paper, an eight-node hybrid stress and assumed s
~ANS! solid-shell element for laminate composite structures
used. Since piezoelectric patches are always coated with elect
which constitute equal-potential surfaces, the concept of elec
nodes is introduced. The introduction of the electric nodes
effectively eliminate the burden of constraining the equality of t
electric potential for the nodes lying. To model the distribution
electric field through thickness in piezoelectric layer, the elec
potential distribution is assumed to vary second-order or to
linear instead of constant through thickness in the piezoelec
layer by introducing internal electric potential of piezoelect
element.
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2 Geometric and Kinematic Interpolation
Figure 1 shows an eight-node hexahedral element in whichj, h,

andz are the natural coordinates. Letz be aligned with the trans
verse direction of the shell; the geometric and displacement in
polation can be expressed as:

X~j,h,z!5(
i 51

4

Ni~j,h!S 11z

2
X i

11
12z

2
X i

2D
5~a01a1j1a2hj1a3h!1z~b01b1j1b2hj1b3h!

5X01zXn , (1)

U~j,h,z!5(
i 51

4

Ni~j,h!S 11z

2
Ui

11
12z

2
Ui

2D
5N~j,h!q01zN~j,h!qn5U01zUn , (2)

where N15(12j)(12h)/4, N25(11j)(12h)/4, N35(11j)
3(11h)/4, N45(12j)(11h)/4, X, X i

1 , andX i
2 are the coor-

dinate vectors, its value at thei 1 and i 2 nodes of the element
respectively. U,Ui

1 , and Ui
2 are the displacement vectors wit

respect to the global Cartesian coordinates, its value at thei 1 and
i 2 nodes of the element, respectively,

N~j,h!5@N1I3 ,N2I3 ,N3I3 ,N4I3#, q05
1

2 H U1
11U1

2

U2
11U2

2

U3
11U3

2

U4
11U4

2

J ,

qn5
1

2 H U1
12U1

2

U2
12U2

2

U3
12U3

2

U4
12U4

2

J ,

whereIm is themth order identity matrix.
To resolve the trapezoidal and shear locking in the eight-n

elemen@5,20–24#, ANS is employed. Truncating the first- an
second-orderz-terms in transverse shear strains and the tange
strains, respectively, the physical strains can be expressed as

H «5

« i
J 5H «x

«y

gxy

«z

J 5 H «m1z«b

«i
J 5FBm1zBb

Bi
Gqe,

g5 H gzx

gzy
J 5Btq

e, (3)

whereB’s are independent ofz andqe is the element displacemen
vector.

Fig. 1 An eight-node thin hexahedral solid element
36 Õ Vol. 72, JANUARY 2005
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3 Solid-Shell Element for Piezoelectric Patches
Although it is often assumed that the distribution of elect

potential varies linearly through thickness in piezoelectric lay
an exact solution for piezoelectric laminate plates given by H
liger and Saravanos@12# has shown the nonlinear distribution o
electric potential. Moreover, the electric potential distributed
piezoelectric material is generally function of place space. Pra
cally, electropolar direction is perpendicular to in-plane of t
piezoelectric patch as sensor and/or actuator. Thus, the sam
ezoelectric patch/film~i.e., it has the same electrode! has the same
electric potential on its same surface. For generic piezoelec
solid elements, each node is equipped with three translations
one electric potential as the nodal d.o.f.s. It is necessary to c
strain the equality of the electric d.o.f.s of the nodes on the sa
electrode. To avoid this task, the electric d.o.f.s are separated
the kinetic nodes. It should be noted that unlike kinetic nod
electric nodes have no coordinates.

Figure 2 shows two elements modeling the same piezoele
patch in which two elements only need three electric d.o
grouped under the electric node ‘‘p.’’ To model real throug
thickness electric field distribution in piezoelectric layer, the ele
tric potential distribution is assumed to vary with second-ord
through thickness by introducing internal electric potential of
ezoelectric element. Electric potentialf can, hence, be expresse
as:

f5
1

2
~11z!f top1

1

2
~12z!fbottom1~12z2!f in

e

5F11z

2

12z

2 GFe1~12z2!f in
e , (4)

whereFe5$f top,fbottom%T is the electric potential of node ‘‘p,’’
f top, fbottom, and f in

e are the top, bottom, and internal electr
potential of the piezoelectric patch. The electric field in the tra
verse direction with respect to the local Cartesian system is
rived from the above potential expression as:

Ez52f ,z52
1

iXni S F1

2
2

1

2GFe22zf in
e D52BeFe2zBeif in

e

5EC1zEL , (5)

whereBe is the electric field–electric potential matrix in the tran
verse direction.

Furthermore, transverse shear response is assumed to b
coupled from the others. Since two of the electric field comp
nents vanish and the poling direction is always aligned with
transverse direction, the piezoelectric constitutive relation
therefore be expressed as

Fig. 2 The solid elements modeling the same piezoelectric
patch Õfilm share the same electric node, i.e., connectivity for
l.h. element: †a,c,j,h,b,d,k,i,p ‡; connectivity for rh element:
†c,f,m,j,d,g,n,k,p ‡
Transactions of the ASME
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H s5

s i

Dz

J 5F C5 C3 2e5
T

C3
T Ci 2e33

e5 e33 k33
«
G H «5

« i

Ez

J ,

or H «5

« i

Dz

J 5F S5 S3 d5
T

S3
T Si d33

d5 d33 k33
s
G H s5

si

Ez

J ,

t5 H tzx

tzy
J 5CtH gzx

gzy
J 5Ctg, (6)

where
e
n

Journal of Applied Mechanics
s55$sx ,sy ,txy%
T, «55$«x ,«y ,gxy%

T,

FS5 S3

S3
T Si

G5FC5 C3

C3
T Ci

G21

in which e55(e31,e32,e36), e33, d55(d31,d32,d36), d33 is pi-
ezoelectric coefficient, andDz and k33

« (k33
s ) are the electric dis-

placement and the permittivity coefficient in the transverse dir
tion, respectively.

4 Solid-Shell Element for Laminated Materials
The average thickness strain can be calculated by first rewri

Eq. ~6! as:
H s5

« i

Dz

J 5F A B G

2BT D F

2GT F R
G H «5

si

Ez

J 5F S5
21 2S5

21S3 2S5
21S3e332e5

T

S3
T S5

21 Si2S3
T S5

21S3 ~Si2S3
T S5

21S3!e33

S3
T S5

21e331e5 ~Si2S3
T S5

21S3!e33 k33
« 1~Si2S3

T S5
21S3!e33

2
G H «5

si

Ez

J . (7)
l-
gen-
n co-
he

tric
t of
r

Note, that«m , «b , «h , andEz @see Eqs.~3! and~5!# are indepen-
dent of z, and the element thickness stresss- is assumed to be
independent ofz. To achieve higher computational efficiency, th
second-orderz terms in the in-plane strain are often truncat
whereas only the zero orderz term is retained in the Jacobia
determinant that following will turn up. From Eqs.~3!, ~5!, and
~7! we have

«̄ i5
1

2 E21

11S @2BT D F#H «5

si

Ez

J D dz

5
1

2 E21

11

@2B D 2zB F zF#dz•5
«m

si

«b

EC

EL

6 ,

H s̄m

s̄b

D̄C

D̄L

J 5
1

2 E21

11H s5

zs5

Dz

zDz

J dz

5
1

2 E21

11F A B zA G zG

zA zB z2A zG z2G

2GT F 2zGT R zR

2zGT zF 2z2GT zR z2R

Gdz

•5
«m

si

«b

EC

EL

6
which can be collected as:

(8)

where
e
d

s̄5H s̄m

s i

s̄b

J , «5H «m

«̄ i

«b

J , D̄i5H D̄C

D̄L
J , Ei5 HEC

EL
J ,

C̄'5F A01B0B0
T/D0 B0 /D0 A11B0B1

T/D0

B0
T/D0 1/D0 B1

T/D0

A11B1B0
T/D0 B1 /D0 A21B1B1

T/D0

G ,

ē05$2G0
T1F0B0

T/D0 F0 /D0 2G1
T1F0B1

T/D0%,

ē15$2G1
T1F1B0

T/D0 F1 /D0 2G2
T1F1B1

T/D0%,

k̄0
«5R02F0F0 /D0 , k̄01

« 5R12F0F1 /D0 ,

k̄1
«5R22F1F1 /D0,

@A0 ,A1 ,A2#5
1

2 E21

11

@1,z,z2#Adz,

@B0 ,B1#5
1

2 E21

11

@1,z#Bdz, D05
1

2 E21

11

Ddz,

@G0 ,G1 ,G2#5
1

2 E21

11

@1,z,z2#Gdz,

@F0 ,F1#5
1

2 E21

11

@1,z#Fdz,

@R0 ,R1 ,R2#5
1

2 E21

11

@1,z,z2#Rdz,

and from Eq.~6!, obtain

t̄5
1

2 E21

11

tdz5
1

2 E21

11

Ctdz•g5C̄Tg, (9)

whereC̄' , C̄T , ē’s, andk̄«’s are termed as the modified genera
ized laminate stiffness matrices which are associated with the
eralized element stress and strain, the generalized piezostrai
efficients, and the generalized permittivity coefficient in t
transverse direction, respectively. It is worth noting two cases:~a!
the element only contains laminated material where piezoelec
coefficients are assumed to be zero and permittivity coefficien
each layer is the same;~b! the element only contains one laye
JANUARY 2005, Vol. 72 Õ 37
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piezoelectric material. In both cases, the generalized stiffness
trices in the Eq.~8! can, respectively, be reduced to:

(10)

Using the following generalized elementwise potential ene
function:

Pe5
1

2 E21

11E
21

11S H «

2Ei
J TF C̄' ēT

ē 2k̄«G H «

2Ei
J

1gTC̄TgD 2J0djdh2Pe, (11)

where Pe is the element load potential due to mechanical fo
and surface charge,J05Juz50 in which J is the Jacobian determi
nant, from Eq.~11!, the following static equations of the piezo
electric elementwise can be derived:

F kmm
e kme0

e kme1
e

~kme0
e !T kee0

e 0

~kme1
e !T 0 kee1

e
G H qe

Fe

f in
e J 5H f f

e

fQ
e

0
J , (12)

where

kmm
e 52E

21

11E
21

11

~B'
TC̄'B'1Bt

TC̄TBt!J0djdh,

kme0
e 52E

21

11E
21

11

B'
T ē0

TBeJ0djdh,

kme1
e 52E

21

11E
21

11

B'
T ē1

TBeJ0djdh

kee0
e 522E

21

11E
21

11

Be
Tk̄0

«BeJ0djdh,

kee1
e 522E

21

11E
21

11

Beik̄1
«BeiJ0djdh, B'5~Bm ,Bi ,Bb!T,

f f
e is the elementwise mechanical force due to the body force

surface traction,fQ
e is the elementwise electric force vector due

the charge density.

5 Hybrid Stress Solid-Shell Element for Laminated
Materials

To apply hybrid stress~HS! formulation to the above ANS
solid-shell element to improve the latter’s in-plane response,
following elementwise modified Hellinger–Reissner function
can be used@25#:
38 Õ Vol. 72, JANUARY 2005
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PHR
e 5E

21

11E
21

11S 21

2 H s̄

2Ei
J TF S̄' 2d̄T

2d̄ k̄s G H s̄

2Ei
J 1s̄T«

2
1

2
t̄TC̄T

21t̄1 t̄TgD J0djdh2Pe (13)

whereS̄'5C̄'
21, d̄5ēC̄'

21 and k̄s5k̄«1ēd̄T.
The following orthogonal constant and nonconstant str

nodes are chosen in a way similar to that of Pian’s eight-n
element @26,27#:

H s̄m

s i

s̄b

J 5F I4 0433 PNH 0432

0334 I3 0335 PMH
G H bNC

bMC

bNH

bMH

J ,

t̄5@ I2 PTH#H bTC

bTH
J , (14)

where

PNH5
1

J0 F j x̄hx̄h 0 h x̄jx̄j 0 0

j ȳhȳh 0 h ȳjȳj 0 0

j x̄hȳh 0 h x̄jȳj 0 0

0 j 0 h jh

G ,

PMH5
1

J0
F j x̄hx̄h h x̄jx̄j

j ȳhȳh h ȳjȳj

j x̄hȳh h x̄jȳj

G , PTH5
1

J0
F j x̄h h x̄j

j ȳh h ȳj
G ,

J05Juj5h5z50 , x̄j5xjuj5h5z50 , ȳj5yjuj5h5z50 ,

x̄h5xhuj5h5z50 , ȳh5yhuj5h5z50 .

Substituting Eq.~14! into Eq. ~13!, and condensingb’s with the
stationary conditions ofPHR

e with respect tob’s, Eq. ~13! can be
expressed as:

PHR
e 5

1

2 H qe

Fe

f in
e J TF kmm

e kme0
e kme1

e

~kme0
e !T kee0

e 0

~kme1
e !T 0 kee1

e
G H qe

Fe

f in
e J

2H f f
e

fQ
e

0
J TH qe

Fe

f in
e J , (15)

where

kmm
e 5

1

v F GNC

GMC
GT

C̄'F GNC

GMC
G1F GNH

GMH
GT

H'
21F GNH

GMH
G1 1

v
GTC

T C̄TGTC

1GTH
T HT

21GTH

kme0
e 5

1

v H GNC

GMC
J T

C̄'ECC1 H GNH

GMH
J T

H'
21ECH ,

kme1
e 5

1

v H GNC

GMC
J T

C̄'EHC1 H GNH

GMH
J T

H'
21EHH,

kee0
e 5

1

v
ECC

T C̄'ECC1ECH
T H'

21ECH2Ap0 ,

kee1
e 5

1

v
EHC

T C̄'EHC1EHH
T H'

21EHH2Ap1,

v52E
21

11E
21

11

J0djdh,
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H'52E
21

11E
21

11F PNH 0432

0335 PMH
GT

S̄'F PNH 0432

0335 PMH
GJ0djdh,

HT52E
21

11E
21

11

PTH
T C̄T

21PTHJ0djdh,

GNC52E
21

11E
21

11FBm

Bi
GJ0djdh,

GMC52E
21

11E
21

11

BbJ0djdh,

GNH52E
21

11E
21

11

PNH
T FBm

Bi
GJ0djdh,

GMH52E
21

11E
21

11

PMH
T BbJ0djdh,

GTC52E
21

11E
21

11

BtJ0djdh, GTH52E
21

11E
21

11

PTH
T BtJ0djdh,

ECC52E
21

11E
21

11

d̄0
TBeJ0djdh,

EHC52E
21

11E
21

11

d̄1
TBeiJ0djdh,

ECH52E
21

11E
21

11

PNH
T d̄0

TBeJ0djdh,

EHH52E
21

11E
21

11

PNH
T d̄1

TBeiJ0djdh,

Ap052E
21

11E
21

11

k0
sBe

TBeJ0djdh,

Ap152E
21

11E
21

11

k1
sBeiBeiJ0djdh,

d̄5S d̄0

d̄1
D , k̄s5F k̄0

s 0

0 k̄1
sG .

The elementwise static equation having the same form as Eq.~12!
can be obtained from Eq.~15!.

6 System and Eigenequations
Assembling the elemental matrices gives the global system

trices. The resulting dynamic equation becomes

FM 0 0

0 0 0

0 0 0
G H q̈

F̈

f̈in

J 1FCp 0 0

0 0 0

0 0 0
G H q̇

Ḟ

ḟin

J
1F Kmm Kme0 Kme1

~Kme0!T Kee0 0

~Kme1!T 0 Kee1

G H q
F

fin

J 5H Ff

FQ

0
J , (16)

whereM is mass matrix,Cp is proportional passive matrix,q, F
and fin are, respectively, the system vectors of nodal displa
ment and electric potentials, andFf andFQ are, respectively, the
system vectors of mechanical force and electric force.

Since the internal DOFfin does not have physical significanc
it can be condensed from the system equations in order to imp
the computation efficiency. One can obtain the modified ma
equations as
Journal of Applied Mechanics
ma-
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FM 0

0 0G H q̈

F̈J 1FCp 0

0 0G H q̇

ḞJ 1F K̃mm Kme0

Kme0
T Kee0

G H q
FJ 5 H Ff

FQ
J ,

(17)

and

fin52Kee1
21Kme1

T q, (18)

where,

K̃mm5Kmm2Kme0Kee1
21Kme1

T .

If the actuators and sensors are embedded in a structure,
convenient to partition the system vector of electric potentialF
into FA of the actuators andFS of the sensors. Since there is n
electric loading applied to the sensors, Eq.~17! can be written as:

Mq̈1Cpq̇1K̃mmq1Kme
A FA1Kme

S FS5Ff , (19)

FA5~Kee
A !21@FQ

A2~Kme
A !Tq#, (20)

FS52~Kee
S !21~Kme

S !Tq, (21)

where

H FA

FSJ 5F, F ~Kee
A !21 0

0 ~Kee
S !21G5Kee0

21 ,

@Kme
A ,Kme

S #5Kme0 , H FQ
A

0 J 5FQ .

In particular,Kee0 is block diagonal because the host structure
nonpiezoelectric, i.e.,FA and FS do not couple. Substitution o
Eq. ~21! into Eq. ~19! results in:

Mq̈1Cpq̇1@K̃mm2Kme
S ~Kee

S !21~Kme
S !T#q5Ff2Kme

A FA.
(22)

With the control algorithm known and by virtue of Eq.~21!, FA

can be expressed in terms ofq and thus all the electric d.o.f.s in
Eq. ~21! can be condensed and a standard eigenvalue equation
be obtained as

@~K̃mm2Kme0Kee0
21Kme0

T !2v2M #q50, (23)

wherev is eigen frequency. Eigenvalues and mode shapes ca
calculated and defined accordingly.

7 Numerical Examples

7.1 Laminated Simply Supported Square Plate

7.1.1 Modeling. The plates used in this simulation ar
square in shape with simply supported edges. Three diffe
lamination schemes are considered. The first is layup of@1/2/2/1#,
and second@2/1/1/2#, where digitals 1 and 2 denote the orthotrop
PVDF and the transversely isotropic PZT-4, respectively,
shown as Table 1. Each layer has equal thickness of 0.25h, where
h is the total thickness of the laminated plate. The both laminat
plates are composed of two dissimilar materials with a misma
in both elastic and electric properties. The third one is a five-
laminate @p/0/90/0/p#. The laminate configuration consists of
@0/90/0# Gr/Epoxy, denoted as 4 in Table 1, cross-ply sublamin
with composite plies each 0.8h/3 thick. Two continuous PZT-4’s,
denoted as 2 in Table 1, layers of thickness 0.1h each are also
bonded to the upper and lower surfaces of the laminate. To c
ply with the reported results of exact solution, all layers we
assumed to have equal density~r51 kg/m3!. Two aspect ratios of
thick plate (a/h54) and thin plate (a/h550) are considered
where lettera denotes the length of the square plate. The ou
surfaces of the piezoelectric layers were forced to remain alw
grounded. Based on this, two sets of electric boundary condit
were considered for the inner surface of the piezoelectric laye

~a! a closed-circuit condition, with the electric potential force
to remain zero~grounded!, and
JANUARY 2005, Vol. 72 Õ 39
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Table 1 Material properties „«0Ä8.85 10À12 farad Õm, electric permittivity of air …

Property 1~PVDF! 2 ~PZT-4! 3 ~PZT-4! 4 ~Gr/epoxy! 5 ~Gr/epoxy!

Elastic properties:
E1 (GPa) 237.0 81.3 63.0 132.38 150.0
E2 23.2 81.3 63.0 10.756 9.0
E3 10.5 64.5 63.0 10.756 9.0
G44 2.15 25.6 24.231 3.606 7.1
G55 4.4 25.6 24.231 5.6537 7.1
G66 6.43 30.6 24.231 5.6537 7.1
v12 0.154 0.329 0.3 0.24 0.3
v13 0.178 0.432 0.3 0.24 0.3
v23 0.177 0.432 0.3 0.49 0.3

Piezoelectric
coefficient~C/m2!:

20.13 25.20 44.367 0 0

e31 20.14 25.20 44.367 0 0
e32 20.28 15.08 50.182 0 0
e33 20.01 12.72 14.151 0 0
e24

Electric permittivity: 12.5 1475 1728.8 0 0
«11 /«0 11.98 1475 1728.8 0 0
«22 /«0 11.98 1300 6362.7 0 0
«33 /«0 1800.0 7600.0 7600.0 1578.0 1600.0

Mass densityr ~kg/m3!
r
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~b! an open-circuit condition, where the electric potential
mains free ~zero electric displacements!. Three elements are
meshed through thickness direction.

7.1.2 Fundamental Natural Frequency.The normalized
natural frequencies for three laminated schemes plates are s
in Tables 2–4. In the tables, the exact results reported by Hey
and Saravanos@12# are nondimension byf 1a2/(hr1/2103). The
letters ND and LD in these tables denote about through-thickn
electric potential nonlinear distributions and linear distributio
respectively. That is, the electric potentialf in in Eq. ~4! is con-
sidered for nonlinear distribution and not considered for lin
distribution. FER in Table 4 denotes the finite element res
reported by Saravanos et al.@3# in the case of three discrete
layers. According to the Tables 2–4, the predicted natural frequ
cies by means of both displacement element~D! and hybrid-stress
element methods~HS! consistently converge above and below t
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values of the exact solution depending on the type of elec
boundary conditions for both thick (a/h54) and thin (a/h550)
plates. The differences between D and HS in all results are v
small. The natural frequency is little higher under the case of
than of LD. The frequency differences between ND and LD a
the highest in the first laminated@1/2/2/1# among three laminated
plates, about 1%. The differences in case of another two lamin
plates are very small. This shows that the effect on natural
quency caused by through-thickness nonlinear electric pote
distribution is generally very small. However, this effect should
considered when the piezoelectric layer is thick and its elec
properties are strong. On the side, although predicted natural
quencies are very good in most cases, the predicted results
lower than the exact solution in the case of aspect ratiosa/h
550 and closed-circuit electric boundary condition, as shown
Tables 3 and 4. This reason remains a subject of investigatio
42
21
52
47
48
46

15
70
23
11
15
09
Table 2 The normalized natural frequencies of three layers piezoelectric plate „1Õ2Õ2Õ1…

Aspect ratios a/h54 a/h550

Mesh Method

Closed circuit Open circuit Closed circuit Open circuit

ND LD ND LD ND LD ND LD

434 D 1.0464 1.0362 1.0465 1.0363 1.0740 1.0640 1.0741 1.06
HS 1.0446 1.0343 1.0447 1.0344 1.0719 1.0620 1.0720 1.06

838 D 1.0056 0.9963 1.0057 0.9963 1.0140 1.0051 1.0141 1.00
HS 1.0052 0.9958 1.0053 0.9959 1.0136 1.0046 1.0137 1.00

12312 D 0.9983 0.9891 0.9983 0.9891 1.0035 0.9947 1.0036 0.99
HS 0.9981 0.9889 0.9982 0.9889 1.0033 0.9945 1.0034 0.99

Exact 183.791 183.834 252.029 252.057

Table 3 The normalized natural frequencies of three layers piezoelectric plate „2Õ1Õ1Õ2…

Aspect ratios a/h54 a/h550

Mesh Method

Closed circuit Open circuit Closed circuit Open circuit

ND LD ND LD ND LD ND LD

434 D 1.0207 1.0145 1.0319 1.0259 1.0040 1.0019 1.0534 1.05
HS 1.0184 1.0123 1.0297 1.0238 0.9994 0.9973 1.0489 1.04

838 D 0.9874 0.9819 0.9985 0.9933 0.9482 0.9463 0.9939 0.99
HS 0.9868 0.9814 0.9980 0.9927 0.9472 0.9453 0.9928 0.99

12312 D 0.9813 0.9760 0.9924 0.9872 0.9384 0.9365 0.9831 0.98
HS 0.9811 0.9758 0.9921 0.9870 0.9379 0.9361 0.9825 0.98

Exact 148.329 148.597 288.556 288.565
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Table 4 The normalized natural frequencies of five-ply composite piezoelectric plate „pÕ0Õ90Õ0Õp…

Aspect ratios a/h54 a/h550

Mesh Method

Closed circuit Open circuit Closed circuit Open circuit

ND LD ND LD ND LD ND LD

D 1.0402 1.0398 1.0576 1.0571 1.0204 1.0202 1.0601 1.05
434 HS 1.0383 1.0379 1.0559 1.0554 1.0164 1.0162 1.0561 1.05

FER 1.0273 1.0634 1.0314 1.1230
D 1.0053 1.0050 1.0225 1.0221 0.9635 0.9633 1.0003 1.00

838 HS 1.0049 1.0045 1.0220 1.0216 0.9626 0.9624 0.9993 0.99
FER 1.0064 1.0453 0.9743 1.0641

D 0.9990 0.9986 1.0160 1.0156 0.9535 0.9533 0.9896 0.98
12312 HS 0.9988 0.9984 1.0157 1.0154 0.9531 0.9529 0.9891 0.98

FER 1.0023 1.0423 0.9643 1.0558
Exact 145.339 145.377 245.941 245.942
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7.1.3 Electric Potential Distribution. Figures 3–6 illustrate
the through-thickness electric potential fundamental mode for
laminated@1/2/2/1# and@2/1/1/2# plates for two aspect ratios unde
open-circuit condition, respectively. The linear electric poten
distributions are also included in the figures to compare purp
Plots of through-thickness electric potential fundamental mode
laminated@p/0/90/0/p# for both electric boundary conditions ar
shown in Fig. 7 fora/h54 and in Fig. 8 fora/h550. The curves

Fig. 3 Through-thickness electric potential distributions for
three-ply †1Õ2Õ2Õ1‡, aÕhÄ4 „ … nonlinear distribution, „- - - -…
linear distribution

Fig. 4 Through-thickness electric potential distributions for
three-ply †1Õ2Õ2Õ1‡, aÕhÄ50 „ … nonlinear distribution, „- - - -…
linear distribution
Journal of Applied Mechanics
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in these figures have very similar shape with the exact soluti
reported by Heyliger and Saravanos@12# and part FE results re
ported by Saravanos et al.@3#. As seen from Figs. 7 and 8, it is
interesting to note that electric fields exist in the piezoelec
layers even with the closed-circuit conditions. Although the el
tric potential in piezoelectric layer is much lower in closed-circ
condition than in open-circuit-condition, it should not be n
glected when the piezoelectric layer is thicker. It can be seen

Fig. 5 Through-thickness electric potential distributions for
three-ply †2Õ1Õ1Õ2‡, aÕhÄ4 „ … nonlinear distribution, „- - - -…
linear distribution

Fig. 6 Through-thickness electric potential distributions for
three-ply †2Õ1Õ1Õ2‡, aÕhÄ50 „ … nonlinear distribution, „- - - -…
linear distribution
JANUARY 2005, Vol. 72 Õ 41
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the electric fields in piezoelectric layers have considerable dif
ence between linear distribution~LD! and nonlinear distribution
~ND!, especially, for electric field in middle piezoelectric laye
However, the difference is very small for the third laminated pla

7.2 Cantilever Composite Plate With Distributed Actua-
tors. Figure 9 shows a composite cantilever plate with twen
two square and eight nonsquare surface bonded piezoelectri
ramic patches, material properties denoted as 3 in Table
Stacking of the composite plate is@0°/645°#s and the plate is
made of graphite/epoxy unidirectional laminate, material prop
ties denoted as 5 in Table 1. The geometric size of the plate
the corresponding meshes are shown in Fig. 9. The deflection
induced by an applied uniform electric field of 394 V/mm,
opposite polarity at the upper and lower piezoelectric patches.
following nondimensional deflection parameters are computed
the present element model~HS! and shown in Figs. 10–12:

WL5w2 /C, WT5@w22~w11w3!/2#/C

and WR5~w32w1!/C,

which correspond to longitudinal bending, transverse bending
lateral twisting deflections. In the above equations,w2 , w1 , and
w3 are the transverse displacement along the midline and the

Fig. 7 Through-thickness electric potential distributions for
five-ply †pÕ0Õ90Õ0Õp‡ for a ÕhÄ4 „ … closed-circuit; „- - - -… open-
circuit

Fig. 8 Through-thickness electric potential distributions for
five-ply †pÕ0Õ90Õ0Õp‡ for a ÕhÄ50 „ … closed-circuit; „???? …

open-circuit
42 Õ Vol. 72, JANUARY 2005
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edges, respectively, andC is the width of the plate. For compara
tive purpose, the experimental results of Crawly and Lazarus@28#
and the finite element predictions of Ha et al.@7# are also included
in the figures. The element models developed by Ha et al.@7# are
eight-node solid elements with nine incompatible displacem
modes. These incompatible elements suffer from shear lock
when the elements are not in the form of rectangular prisms@29#.
Despite the regular geometry of the elements in this exam
WR predicted by the incompatible models are apparently sma
than that obtained by the present model and the experime
measurement.

8 Conclusions
In this paper, an eight-node hexahedral solid-shell element

laminated composite structures is employed. The general
laminate stiffness matrices are derived by the assumed na

Fig. 9 A cantilever composite plate with thirty surface-bonded
piezoelectric actuators

Fig. 10 Nondimensional longitudinal bending deflection of
cantilever plate in Fig. 9. „ … present results; „- - - -… Ha et al.
†7‡; „h… experiment †Crawly and Lazarus †21‡‡.

Fig. 11 Nondimensional transverse bending deflection of the
cantilever plate in Fig. 9. „ … present result; „- - - -… Ha et al.
†7‡; „h… experiment †Crawly and Lazarus †21‡‡.
Transactions of the ASME
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strain method and hybrid stress method. The developed finite
ement models can resolve thickness locking and some abnorm
ties of the solid-shell elements in laminated materials. The so
shell elements are then generalized for modeling piezoele
materials by including the electromechanical coupling. Unlike
conventional piezoelectric elements, the nonlinear electric po
tial distribution in the piezoelectric layer is described by introdu
ing internal electric potential. Moreover, the notion of elect
nodes is introduced that can conveniently take into account
equipotential effect induced by the electrodes. The develope
nite element models, especially, electric node model, have
advantages of simpler modeling and can obtain same effect
exact solution described. The predicted results show that the e
on natural frequency and electric field caused by throu
thickness nonlinear electric potential distribution is very sm
especially, in the case of thin plate and laminate composite st
ture with surface bonded piezoelectric patches.
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Axisymmetric Plane Stress States
of an Annulus Subject to
Displacive Shear Transformation
We study the equilibrium stress field in an annulus composed of a material that a
stress-induced displacive phase transformation that preserves volume. A standa
ample is the austenite to martensite transformation in shape memory alloys. Attent
restricted to isothermal and axisymmetric load increase. The constitutive model follo
standard J2 formulation appropriate for small strains and incorporates a single intern
variable (the martensite phase fraction). A plane-stress boundary value problem is
lyzed so as to determine the partitioning of the annulus into regions of (pure) auste
(pure) martensite, and austenite/martensite mixture. Structure maps are presented,
concise descriptions of the phase partitioning as the loads increase.
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1 Introduction
This paper presents a detailed examination of axisymme

stress, strain and phase fraction fields in an equilibrated ann
composed of a material that undergoes displacive shear tran
mation. This includes the case of shape memory alloys, wh
accounts for the basic interest in this problem. In view of stand
notions of plane stress, we regard the annulus as a thin, flat p
Attention is restricted to isothermal load increase at a tempera
for which the more ordered crystal structure~austenite! is either
stable or metastable at zero stress. In the context of shape me
materials this corresponds to temperatures above the marten
start temperatureMs . The plate is traction free on its upper an
lower faces, and subject to uniform normal tractions rr 52pi on
its inner edger 5r i , and uniform normal tractions rr 52po on its
outer edger 5r o . This type of problem for the case of an infinit
shape memory plate subject to far-field equi-biaxial load an
traction free inner edge was recently the subject of Birman@1# and
so corresponds to the specializations (r o→`,pi50) for the prob-
lem considered here. In addition to generalizing the geometry
the loading conditions of Birman@1#, we utilize a more standard
model for the determination of transformation strain. This mo
standard model does not constrain the radial normal transfor
tion strain to be equal to the azimuthal normal transformat
strain and so is in keeping with conventionalJ2 style formula-
tions. Like Birman @1#, solutions involving nonconstant phas
fractions require a numerical treatment, however by employin
Nadai transformation we achieve a more concise analytical for
lation that in turn gives rise to certain efficiencies in the numeri
treatment of the resulting two-point boundary value problem.

Engineering scale models for shape memory behavior typic
introduce one or more phase fraction internal variables in orde
track the transformation between the austenite phase and the
tensite phase that is responsible for the shape memory effec
present there exist a variety of such models, and the read
referred to one of the various reviews on this subject~e.g.,@2,3#!.
For a simpler geometry corresponding to uniaxial load, many
the most common models can be put in close equivalence

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 8, 200
final revision, August 16, 2004. Associate Editor: K. Ravi-Chandar. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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each other provided that the loading is not reversed. Loadin
associated with what is typically referred to as the forward tra
formation ~austenite to martensite!. Such equivalences brea
down in unloading after full or partial completion of the forwar
transformation. This is due to the different treatments in the v
ous models for the hysteresis associated with the reverse tran
mation ~martensite to austenite!.

For more complicated loading geometries, similar close equ
lences occur in loading so long as only the forward transforma
is activated. Here the work of Bondaryev and Wayman@4# evi-
dently provides the first useful and general multi-dimensio
model of such thermomechanical behavior. Their work gives w
can be viewed as theJ2-style flow generalization of an infinitesi
mal strain uniaxial treatment. In particular, so long as unloadin
not at issue, this provides a conceptual setting that in effect wo
apply to many currentJ2-style models for displacive shear tran
formation. For multi-axial load, the utility ofJ2-based models as a
useful first approximation is apparent from experiments on sh
memory alloys by Gall et al.@5# and Lim and McDowell@6#
among others.

Isothermal loading response of shape memory materials
been extensively studied and modeled in the one-dimensional
ting of uniaxial tension such as is appropriate for thin wires.
shown by the schematic diagram in Fig. 1~a!, the stress-strain
curve for loading is then characterized by a loading plateau as
material converts from austenite to martensite. This convers
takes place over a relatively small stress interval fromss

FT(T) to
s f

FT(T) which depends on temperature~hence the argumentT!.
The superscriptFT denotes ‘‘forward transformation,’’ while the
subscripts refer to ‘‘start’’ and ‘‘finish.’’ This is referred to a
pseudoelastic behavior. The threshold stressesss

FT and s f
FT in-

crease with temperature at an essentially constant rate, as
cated in Fig. 1~b!, so as to be consistent with the Clausiu
Clapeyron relation. The associated modeling considerations
reviewed, for example, in@3#.

Again with reference to Fig. 1~a!, the stress-strain curve fo
unloading in uniaxial tension atT.Af is also characterized by a
pseudoelastic unloading plateau~below the loading plateau! as the
material converts martensite back to austenite~the reverse trans-
formation!. Let ss

RT(T) ands f
RT(T) denote the associated thres

old stresses. In particular,s f
RT(Af)50, which is due to the fact

that unloading at temperatures belowAf results in an incomplete
reverse transformation. The temperature orderingM f,Ms,As

,Af implies for T.Af that s f
RT(T),ss

RT(T),ss
FT(T)

,s f
FT(T).
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Fig. 1 „a… Typical one-dimensional stress-strain curve for TÌA f . „b… Temperature dependence of
threshold stresses ss

FT , s f
FT , ss

RT and s f
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Since the stress is essentially uniform in a thin wire, the c
version of austenite to martensite takes place over a relati
small load interval. For more complicated geometries, such as
plate geometry considered in this paper, the conversion of
entire structure from the austenite to the martensite state may
place over an appreciable range of load. Over this load range,
necessary to describe the partitioning of the structure into reg
of austenite, martensite and their mixture. For this purpose,
standard practice to employ a field variable, herej, for the volu-
metric phase fraction of martensite within a general mixture
austenite and martensite. From the viewpoint of continuum m
chanics,j is an internal variable as it describes additional mic
structure features at each point in the continuum. At each ra
value r, the phase fractionj is determined from the effective
stress. If the temperature is not constant, then the phase fractj
is determined from both effective stress and temperature.

It is to be noted that certain shape memory models further
fine such a phase fraction field variable so as to distinguish
ferent types or different variants of martensite and to prope
account for the directionality of transformation strain. The sa
effect can typically be achieved inJ2 theories without such refine
ment by specifying transformation strain in terms of the str
deviator@4#.

We do not consider unloading issues associated with the rev
transformation from martensite back to austenite even though
present modeling framework is sufficiently general to accomm
date this extension. If both forward and reverse transformati
occur, then the phase fractionj depends not only on the curren
values of effective stress and temperature but also on their
history. It is at this juncture that the various models exhi
marked differences in the treatment of the associated phase
tion hysteresis. Further brief commentary on such extended m
eling is presented in the next section.

In the next section we also formulate the boundary value pr
lem for the annulus. Similar boundary value problems have b
considered for materials that admit dilatational martensitic tra
formation @7# instead of the shearing martensitic transformat
considered here. Dilatational martensitic transformation is resp
sible for transformation toughening in certain ceramic mater
@8#. On the other hand, the martensitic transformations associ
with shape memory behavior in metal alloys have little, if an
volume change and the associated continuum models inv
transformation strains that are volume preserving.

The boundary value problem of interest here reduces to
ordinary differential equations; one follows from the stress eq
tions of equilibrium and the other follows from the dependence
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j upon effective stress. No additional assumptions are introdu
such as the assumption in@1# which postulates that the ratio
s rr /suu , as a function ofr, shares the same formula as that of t
elastic solution. Indeed we find that such an assumption is
obeyed, due to a significant redistribution of stress associated
the martensitic transformation.

Additional analytical simplification follows by employing a
change of variables due to Nadai@9#. The associated boundar
value problem admits simple closed form solutions for the cas
which no transformation takes place anywhere within the plate
all other cases we find it necessary to employ a numerical pro
dure to obtain solutions. However, in all cases it does follow a
lytically that the effective stress is a nonincreasing function or.
Thus the martensite phase fraction is also nonincreasing witr.
The most general phase distribution involves a plate that is p
tioned into an inner martensite ring (r i,r ,r M), an intermediate
ring involving phase coexistence (r M,r ,r A), and an outer ring
of austenite (r A,r ,r o) as shown in Fig. 2. Less complicate
phase arrangements involve only one or two such rings. In

Fig. 2 Generic phase distribution within the shape memory
alloy annulus. The inner ring M „r iÏrÏrM… consists of mar-
tensite. The outer ring A „rAÏrÏr o… consists of austenite. The
intermediate ring C „rMËrËrA… consists of an austenite Õ
martensite mixture.
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setting a quasi-static program of increasing loads (pi ,po) results
in the original austenite ring for (pi ,po)5(0,0) giving way to a
two-ring structure via the emergence of the mixture zone at
inner boundary. The emergence itself corresponds to the sp
case whereinr A5r i . The particular combinations (pi ,po) asso-
ciated with the emergence of the mixture zone can be comp
analytically.

Further increase in (pi ,po) causes the interfacer 5r A to ad-
vance from the inner radius into the interior of the plate. Even
ally the loads (pi ,po) may increase to values such that the int
face r 5r A encounters the outer boundaryr 5r o . The loads may
also increase to values such that the second interfacer 5r M
emerges at the inner boundaryr 5r i , heralding the conclusion o
the austenite to martensite transformation at that location. Con
ued load increase now also advances the second front into
plate. At a fixed radiusr, passage of the first front initiates th
austenite-to-martensite transformation and passage of the se
front completes this transformation.

Values of (pi ,po) associated with either scenarior A5r o or
r M5r i can be obtained numerically. Either scenario may oc
first, depending on the geometry~characterized byr i andr o) and
on the constitutive parameters. Similar ring shaped zones des
configurations associated with dilatant phase transformations,
the work of Giannakopoulos and Olson@7# shows how the devel-
opment of such zones is sensitive to various modeling assu
tions on the nature of the dilitant transformation. For the disp
cive shear transformations considered here the partitioning of
plate into various pure and mixed phase regions is described
the aid of structure maps in the (pi ,po) plane. The structure map
is completed by determining the loads associated with the di
pearance of the second frontr 5r M at the plate outer boundar
r 5r o . Thus a general structure map consists of four closed cu
in the (pi ,po) plane associated with the conditionsr A5r i , r A
5r o , r M5r i , andr M5r o . Examples of various structure map
are presented in Sec. 6.

2 Problem Statement
Following a standard development@10# we consider a plate o

constant thickness in the shape of an annulus with inner radiur i
and outer radiusr o ~Fig. 2!. It is held at a constant temperatu
and prior to loading is everywhere in the austenite phase.
subject to uniform edge thrusts described by

s rr 52po at r 5r o ,
(1)

s rr 52pi at r 5r i .

There is no shear traction on the boundaries. This setting is
sistent with axisymmetric radial displacementur(r ) and vanishing
azimuthal displacementuu50. A plane stress solution of the plat
involves onlys rr andsuu , both functions ofr only.

The equilibrium equations reduce to the single equation

ds rr

dr
1

s rr 2suu

r
50. (2)

Attention is restricted to infinitesimal strains. The polar coor
nate system provides a principal frame in which the in-pla
strains are given by

« rr 5
dur

dr
and «uu5

ur

r
. (3)

The out-of-plane strain«zz need not enter the problem formula
tion, but can be determined from the constitutive description
shown in what follows. To maintain compatibility, the in-plan
strain components in~3! must satisfy

« rr 5
d~r«uu!

dr
. (4)
46 Õ Vol. 72, JANUARY 2005
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The plate is composed of a material capable of transform
between the two distinct phases of martensite and austenite.
martensite phase fraction is denoted byj so thatj51 corresponds
to martensite andj50 corresponds to austenite, while 0,j,1
indicates a state of austenite/martensite mixture. In generalj var-
ies with radial location. The strains are additively decompos
into two parts, the elastic part which can be expressed in term
stresses, and the inelastic part consisting of the transforma
strains that result from phase transformation:

« rr 5~s rr 2nsuu!/E1« r
tran,

«uu5~suu2ns rr !/E1«u
tran, (5)

«zz52n~s rr 1suu!/E1«z
tran

where E is the Young’s modulus,n is the Poisson’s ratio, and
« r

tran, «u
tran and«z

tran are the transformation strains. In the prese
analysis, the elastic moduli are taken to be the same in both
tenite and martensite. Conventional thermal expansion is not c
sidered here as the analysis is isothermal.

Let t be the stress tensor and1 be the identity tensor so tha
S5t21/3~tr t!1 is the deviatoric stress tensor andJ2

51/2tr(STS). The transformation strain tensor«tran is taken to be
in the same direction asS and proportional toj, specifically

«tran5
S

Atr~STS!
A3/2aj. (6)

Note that tr«tran50, indicating that the phase transformation b
itself is volume preserving in the present small strain setting. T
material constanta in ~6! corresponds to the axial transformatio
strain under uniaxial load for complete conversion of austenite
martensite. Namely if t5sxxe1^ e1 then «tran5aj(e1^ e1

21/2e2^ e221/2e3^ e3) so that«xx
tran5a if the forward transfor-

mation is complete~j51!. The expression~6! is a deformation
version of the flow rule in the model of Bondaryev and Waym
@4#. Namely, their model gives the specification of d«tran rather
than «tran. The present deformation version follows closely t
recent formulation of Briggs and Ostrowski@11#. It is expected
thatJ2-style theories would generally involve either a formulatio
like ~6! or else an associated rate version~see for example~3.25!
of @12#!. Recently, for example, Briggs and Ponte Castaneda@13#
have employed such a model to estimate the effective behavio
shape memory alloy fiber composites.

Specializing~6! to the case of plane stress gives

« r
tran5

2s rr 2suu

2s
aj,

«u
tran5

2suu2s rr

2s
aj, (7)

«z
tran52

suu1s rr

2s
aj,

wheres is the effective stress given by

s5As rr
2 2s rr suu1suu

2 . (8)

The effective stresss for general three-dimensional analysis
A3tr(STS)/25A3J2 and so reduces to~8! for our problem. Note
from ~7! that « r

tranÞ«u
tran if s rr Þsuu . This differs from the con-

stitutive assumption« r
tran5«u

tran employed in@1# @Eq. ~5!#. The
effective stress can be regarded as a scalar representation o
shear character resident in the stress tensor. That this dictate
martensite phase fraction is consistent with experiments on sh
memory alloys showing for these materials that shear is the
dominant factor in stress induced martensitic transformation@14#.

For J2-style theories the dependence ofj on t is only through
J2 or equivalently only throughs. Starting from a state of pure
Transactions of the ASME
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austenite~j50!, let gFT(s,T) give the phase fractionj for unin-
terrupted forward transformation. AnyJ2-style theory will define
such a function, which for our purposes is referred to as the
ward envelope function. In a similar fashion, the reverse envel
function gRT(s,T) gives j for uninterrupted reverse transforma
b
i

o

e

i

i

m

n
a
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or-
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tion starting from a state of pure martensite~j51!. An example of
such as-j curve for T.Af is shown in Fig. 3. Such envelop
functions play a role that is analogous to yield surface function
traditional plasticity theory. A useful approximation forgFT(s,T)
andgRT(s,T) is then~cf. @15#!
gFT~s,T!55
1 for s>s f

FT~T!,

1

2 F12cosS s2ss
FT~T!

s f
FT~T!2ss

FT~T!
p D G for ss

FT~T!,s,s f
FT~T!,

0 for s<ss
FT~T!,

(9)
n an

n

ina-
due

and
the

the
s al-
ion

f
y
-

e

e
ois-
dis-

that
en-
er-
with similar construction forgRT(s,T). This framework is suffi-
cient for the description of complete transformation behavior,
incompletely posed for the description of partial transformat
behavior associated with subloops. Extensions that allow for
description of subloops due to partial transformation followed
transformation reversal can be accomplished in this framew
but such extensions are highly model dependent. For exam
Duhem-Madelung hysteresis models extend the above framew
using history dependent kinetic rules framed in terms of differ
tial equations that depend on the envelope functions@16#. Other
models, such as those using a Preisach algorithm, are not qu
conveniently described@3#. As the present study restricts attentio
only to the forward transformation starting from pure austen
such considerations are not germane.

In this paper, attention is restricted to the case of isother
loading beginning from pure austenite as may occur forT.Ms .
Loading here refers to conditions such that effective stresss at
each locationr is increasing with time~or keeps the same value!
whereupon the reverse transformation is never activated. U
such circumstances, temperature can be dropped from the not
and only the forward transformation need be considered. He
Eq. ~9! is rewritten as

g~s!55
1 for s>s f ,

1

2 F12cosS s2ss

s f2ss
p D G for ss,s,s f ,

0 for s<ss

(10)

by employing the following replacement:

gFT~s,T!→g~s!, ss
FT~T!→ss , s f

FT~T!→s f . (11)

In this convention, we havej5g(s) with j50 if s<ss andj51
if s>s f . In general the martensite fraction functiong(s) is a
continuous, differentiable and nondecreasing function, obeyin

Fig. 3 Martensite phase fraction as a function of effective
stress for TÌA f
ut
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<g(s)<1. This definition ofj together with~5! and ~7! implies
tension/compression symmetry for such purelyJ2-style models. A
useful extension that allows tension/compression asymmetry i
otherwise initially isotropic setting involves the refinementg
5g(s,J3), where J35detS as considered, for example, i
@12,17#.

The framework presented above is sufficient for the determ
tion of how the plate transforms from austenite to martensite
to change in the thrustspi andpo . If the applied thrusts (pi ,po)
are regarded as functions of time, then the stresses, strains
phase fraction are also functions of time. It is assumed that
thrust loads change slowly so that the effect of inertia on
deformation and phase transformation can be neglected. Thi
lows for the interpretation in terms of quasi-static phase evolut
within the plate as discussed in the Introduction.

In the present treatmentj(r ) is a continuous function ofr obey-
ing 0<j(r )<1. For fixedpi and po the plate can be in one o
three broad phase states: a fully austenite state denoted bA
meaning thatj(r ) is identically zero, a fully martensite state de
noted byM meaning thatj(r ) is identically 1, or some kind of
combined state denoted through the use ofC meaning that there is
at least one value ofr such that 0,j(r ),1.

3 A Useful Reformulation
Equations~5! and ~7! lead to the following expression for th

in-plane strains

« rr 5
1

E
~s rr 2nsuu!1S 1

Es~s!
2

1

ED S s rr 2
1

2
suuD ,

(12)

«uu5
1

E
~suu2ns rr !1S 1

Es~s!
2

1

ED S suu2
1

2
s rr D ,

whereEs(s) is the secant modulus given by

Es~s!5
1

1/E1aj/s
5

1

1/E1ag~s!/s
. (13)

Substituting from~12! into the compatibility condition~4! now
gives

d

dr
~s rr 1suu!2

2suu2s rr

2Es~s!

d

dr
Es~s!50, (14)

in which the equilibrium equation~2! has been used to eliminat
the terms involving the Poisson’s ratio. The absence of the P
son’s ratio is not unexpected for the case of plane stress as
cussed for example by Budiansky@18# in the context of what is
known as the extended Michell’s theorem. This theorem gives
the stress field for a traction boundary value problem is indep
dent of Poisson’s ratio for the type of problems under consid
JANUARY 2005, Vol. 72 Õ 47



n

-

:

n

es

ec-

res

deg
of

the
ve

-
ng
n-

ed

s a

e-

ten-

he
ation here. Rather than directly substituting from~8! into ~14!, we
introduce the following change of variables due to Nadai@9#:

s rr 5
2s

A3
sinS b1

p

6 D ,

suu5
2s

A3
sinS b2

p

6 D ,

~s.0! (15)

whereb is a function ofr and for convenience is taken as obeyi
0<b,2p. Notice that the stresses given by~15! automatically
satisfy ~8!.

By virtue of the definition ofEs(s) given in ~13!, the equilib-
rium ~2! and the compatibility~14! can be written in terms ofs
5s(r ) andb5b(r ) as

sinS b1
p

6 D ds

dr
1s cosS b1

p

6 D db

dr
52

s cosb

r
,

Fsinb2
Ea~g2sg8!

2~Eag1s!
sin~b2p/3!G ds

dr
1s cosb

db

dr
50,

~s.0! (16)

where for simplicityg(s) is written asg andg85g8(s) denotes
the derivative dg/ds. Solving ~16! for ds/dr and db/dr gives

ds

dr
52

s2 cos2 b

rD
,

db

dr
5

s cosb

rD Fsinb2
Ea~g2sg8!

2~Eag1s!
sin~b2p/3!G ~s.0!

(17)

with D given by

D5
s

2 F12
Ea~g2sg8!

Eag1s
cos2~b1p/6!G . (18)

Note that the dependence of governing equations~17! and~18! on
parametersE anda is solely through the productEa which serves
as a basic measure of complete transformation stress in the s
of a one-dimensional description.

By definitions.0 andE, a, g, andg8 are non-negative, there
fore D.0. It follows from ~17! with D.0 that

ds

dr
<0. (19)

Thus the maximum effective stresssmax occurs atr 5r i and the
minimum effective stresssmin occurs at r 5r o . Accordingly
dj/dr<0 whereupon there are six possible phase distributionsA,
M, C, AC, CM, ACM, as follows:

A: j~r i !50⇔s~r i !<ss ,

AC: 1.j~r i !.0, j~r o!50⇔s f.s~r i !.ss , s~r o!<ss ,

ACM: j~r i !51, j~r o!50⇔s~r i !>s f , s~r o!<ss ,
(20)

C: 1.j~r i !.0, j~r o!.0⇔s f.s~r i !>s~r o!.ss ,

CM: j~r i !51, 1.j~r o!.0⇔s~r i !>s f , s f.s~r o!.ss ,

M: j~r o!51⇔s~r o!>s f .

The phase distributionAC involves an austenite outer ring o
r A,r ,r o and a mixture zone on an inner ringr i,r ,r A . The
separating interfacer 5r A is associated with satisfaction of th
conditions(r A)5ss . The phase distributionCM involves a mix-
ture zone on an outer ringr M,r ,r o and a martensite inner ring
r i,r ,r M . The separating interfacer 5r M is associated with
satisfaction of the conditions(r M)5s f . The phase distribution
ACM involves three rings: an austenite outer ringr A,r ,r o , a
48 Õ Vol. 72, JANUARY 2005
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mixture zone on an intermediate ringr M,r ,r A , and a marten-
site inner ringr i,r ,r M . These are the same type of structur
as obtained in@1#.

From the first equation of~17!, it follows that a constant effec-
tive stress field requires eitherb5p/2 or b53p/2. These corre-
spond to uniform equi-biaxial stress solutionss rr (r )5suu(r )
52p so thats5upu. Such solutions occur if and only ifpo5pi
and are the only solutions with effective stresss(r )5const. Here
pi5po5p.0 gives b53p/2 and pi5po5p,0 gives b5p/2.
The phase distribution for uniform equi-biaxial stress is resp
tively of type A, C, M according to whetherupu<ss , ss,upu
,s f , upu>s f .

For the generic casepoÞpi , it follows that ~19! holds with
strict inequality. To obtain the effective stress distribution requi
integration of~17!. Note for example that, if (s* (r ),b* (r )) is a
solution of ~17! corresponding to boundary conditionss rr

52pi* at r 5r i and s rr 52po* at r 5r o , then (s* (r ),b* (r )
1p) is a solution corresponding to boundary conditionss rr

51pi* at r 5r i ands rr 51po* at r 5r o . Therefore in the (pi ,po)
plane, two load pairs that are related to each other by a 180
rotation about the origin will produce the same distribution
effective stress and hence the same phase configuration in
plate. This symmetric property is inherent in the constituti
model in view of its tension/compression symmetry.

Now if s andb are specified at some locationr, then Eqs.~17!
can in principle be integrated fors5s(r ), b5b(r ). However,
boundary conditions in the original form~1! do not generate con
ditions for ~s,b! at any one point. Generally, the iterated shooti
method@19# can be used in the case of two-point boundary co
ditions such as~1!. The iterated shooting method can be avoid
for the case of alternative boundary conditions wherein boths and
s rr are specified at one boundary. In particular this provide
direct procedure for studying the four special conditionsr A5r i ,
r A5r o , r M5r i , r M5r o that are associated with transitions b
tween the different phase distribution types in~20!.

4 A Fully Austenitic Plate „A Phase Distribution…
This section considers plates that are completely in the aus

ite phase and so correspond to a phase distribution of typeA in
~20!. This requiress<ss everywhere in the plate, henceg5g8
50, D5s/2 and Eq.~17! reduces to

ds

dr
52

2s cos2 b

r
and

db

dr
5

2 sinb cosb

r
. (21)

The solution to Eq.~21! is given by

s sinb5c1 and sinb/cosb5c2r 2 for cosbÞ0,
(22)

s5c3 for cosb50

where c1 , c2 , and c3 are constants to be determined by t
boundary conditions. Radial stresss rr and hoop stresssuu can be
obtained by substituting~22! into ~15! as

s rr 5c11
c1

A3c2r 2
and suu5c12

c1

A3c2r 2
for cosbÞ0,

(23)
s rr 5suu56c3 for cosb50

and it follows from this equation that cosb50 if and only if pi
5po .

If piÞpo , then the constantsc1 and c2 can be obtained from
the first equation of~23! as

c15
pir i

22por o
2

r o
22r i

2
and c25

pir i
22por o

2

A3~po2pi !r i
2r o

2
for piÞpo .

(24)

If insteadpi5po5p, then the second equation of~23! gives c3
5upu whereupon
Transactions of the ASME
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s rr ~r !5suu~r !52p, s~r !5upu for pi5po . (25)

Equations~23!–~25! together retrieve the classical linear elas
solution, with in-plane stress given by

s rr 5
pir i

22por o
2

r o
22r i

2
1

~po2pi !r i
2r o

2

~r o
22r i

2!r 2
,

(26)

suu5
pir i

22por o
2

r o
22r i

2
2

~po2pi !r i
2r o

2

~r o
22r i

2!r 2
.

The effective stress is given by

s5ŝ~r !ª
A~r o

2po2r i
2pi !

213r i
4r o

4~pi2po!2/r 4

r o
22r i

2
. (27)

The maximum and minimum effective stresses are given
smax5ŝ(ri) andsmin5ŝ(ro), respectively.

The validity of this solution requiressmax<ss . The casesmax
5ss is associated with parameter values obeying

~r i
413r o

4!pi
222r o

2~r i
213r o

2!pipo14r o
4po

25~r o
22r i

2!2ss
2.

(28)

Equation~28! defines an ellipse in the (pi ,po) plane containing
the origin (pi ,po)5(0,0). Values (pi ,po) internal to this ellipse
are associated with anA phase distribution. This ellipse will be
referred to as thefully austenitic loop~FAL! in the (pi ,po) plane
and corresponds to the transitional conditionr A5r i . The FAL is
symmetric with respect to 180° rotation about the origin, a c
sequence of the tension/compression symmetry in the mode
description. In the sequel additional curves will be constructed
the (pi ,po) plane, thus giving rise to a fully articulatedstructure
mapthat distinguishes between the phase distribution possibil
~20!.

An alternative way of obtaining the FAL is to solve~21! subject
to a requirements(r i)5ss . If b(r i)5b0Þp/2, 3p/2, then ac-
cording to ~22! c1 and c2 are given byc15ss sinb0 and c2

5tanb0 /ri
2, hence the stresses are given by

s rr 5ss@sinb01r i
2 cosb0 /~A3r 2!#,

suu5ss@sinb02r i
2 cosb0 /~A3r 2!#, (29)

s5ssAsin2 b01r i
4 cos2 b0 /r 4.

Applied thrustspi andpo are then given by

pi52S sinb01
cosb0

A3
D ss

and po52S sinb01
cosb0r i

2

A3r o
2 D ss . (30)

Equation ~30! defines an ellipse in parametric form within th
(pi ,po) plane whereb0 is the varying parameter. Solving~30!
gives sinb0 and cosb0 as

sinb05
pir i

22por o
2

~r o
22r i

2!ss

and cosb05
A3~po2pi !r o

2

~r o
22r i

2!ss

, (31)

whereupon the identity sin2 b01cos2 b051 retrieves~28!. The use
of b as a varying parameter in obtaining loops associated with
remaining transitional casesr A5r o , r M5r i , r M5r o is central to
the remaining development.

5 A Fully Martensitic Plate „M Phase Distribution…
We now consider plates that are completely in the marten

phase, whereupong51 andg850, and Eq.~17! reduces to
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ds

dr
52

s2 cos2 b

rDM
,

(32)

db

dr
5

s cosb

rDM
Fsinb2

Ea

2~Ea1s!
sin~b2p/3!G

whereDM is obtained from~18! as

DM5
s

2 F12
Ea

Ea1s
cos2~b1p/6!G . (33)

A closed form solution to~32! is not obvious, hence prompting
numerical approach. Such solutions are valid provideds(r o)
>s f .

As an example, Fig. 4 displays the radial variation ofs, s rr and
suu for a plate with E550 GPa, a50.05, ss575 MPa, s f
5300 MPa, r o /r i52, po55ss and pi5ss . The corresponding
stress distributions for an elastic material~a50! subject to the
same edge thrustspi andpo are plotted as dashed lines. Note th
the s rr distributions for these two materials are similar, but t
suu distributions are quite different. In particular the two mate
als give different ratioss rr /suu , therefore raising questions with
respect to any assumption that such a ratio is preserved.

The equality case for the validity conditions(r o)>s f defines
the fully martensitic loop~FML! in the (pi ,po) plane. The FML at
fixed s f , Ea andr o /r i can be obtained from integrating Eq.~32!
with boundary condition (s(r o),b(r o))5(s f ,b0) upon varying
b0 from 0 to 2p. Like the FAL, the FML is also symmetric with
respect to 180° rotation about the origin. The FML correspond
the transitional conditionr M5r o , and the region exterior to the
FML corresponds to loads (pi ,po) that generate anM phase
distribution. The FML will surround the FAL in the (pi ,po) plane,
although unlike the FAL, the FML is generally not an ellipse. T
region between the FAL and the FML corresponds to loa
(pi ,po) that generate one of the phase distributions containin
mixture zone:C, AC, CM or ACM.

Although the FML is usually determined numerically, it wi
pass through (pi ,po)56(s f ,s f) which provides the uniform
equi-biaxial stress solutions on the FML. More generally, the l
pi5po provides the uniform equi-biaxial stress solutions in t
(pi ,po) plane. On this lines rr (r )5suu(r )52p, giving a uni-
form effective stresss(r )5upu and hence a phase fraction fie
j(r ) that is also independent ofr and determined directly fromp
asj5g(upu). Hence such loading results in a phase distribution
either typeA, C or M.

Figure 5 displays both the FAL and the FML for the paramet
E550 GPa,a50.05, ss575 MPa, s f5300 MPa, andr o /r i52.
Note that the region enclosed by the FML is not convex for th
parameters. Note also that the FML is highly elongated in thepi
direction compared with thepo direction. In this case the externa
thrustpo is significantly more efficient than the internal thrustpo
in promoting anM phase distribution. For example, a tractio
free inner boundary requires an outer thrustpo53.39ss to fully
martensitize the plate, whereas a traction free outer boundary
quires an inner thrustpi527.74ss .

The FML is completely determined by the parameterss f , Ea
and r o /r i . Figure 6 shows the effect of varyings f at fixed Ea
and r o /r i . In particular, this figure displays a family of seve
FMLs corresponding tos f /ss51, 2, 3, 4, 6, 8, 10, with the othe
parameters set atE550 GPa, a50.05, ss575 MPa andr o /r i
52. As one would anticipate, the FMLs are nested with respec
increasings f . The small internal ellipse is the common FAL
Note that the FML corresponding tos f /ss51 intersects the FAL
at the uniform equi-biaxial stress solutions (pi ,po)56(s f ,s f).
Thus if s f5ss , then equi-biaxial loading such thatpi5po5p
results in a uniform phase distribution of typeA transitioning
directly to a uniform phase distribution of typeM as the com-
mon thrust valuep passes through the common threshold str
s f5ss .
JANUARY 2005, Vol. 72 Õ 49
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6 A Plate Containing Mixtures of Martensite and Aus-
tenite „Phase Distributions of Type:AC,ACM, CM
and C…

We now turn to consider the remaining types of phase distri
tion given in ~20!. The structure map is useful in this discussio
as all such phase distributions occur in the region between
FAL and the FML. The phase distribution in this region is ensu
to be of typeC on the line of uniform equi-biaxial load (pi ,po)
5(p,p), ss,upu,s f . However, off of this line it is not yet clea
what type of phase distribution occurs. To make this determ
tion it is useful to complete the structure map via the construc
of two additional curves.

The first such curve is theaustenite disappearing loop~ADL !
that is associated with solutions obeyings(r o)5ss or, equiva-
lently, r A5r o . Austenite~unmixed with martensite! can only be
present at locations on the structure map inside of the ADL. Ins
the ADL the phase distribution must be of typeA, AC, or ACM.
Outside of the ADL the phase distribution must be of typeC, M,
or CM. The ADL is strictly within the FML so long ass f.ss .

Fig. 4 Typical stress distributions „normalized by ss… for a
plate with M phase distribution †s„r …Ðs f‡. Here EÄ50 GPa,
s fÄ4ssÄ300 MPa, r o Õr iÄ2 and „p i ,p o…Ä„1,5…ss . Solid lines
represent the case of aÄ0.05. For comparison, stresses for an
elastic solution „aÄ0… under the same boundary conditions are
plotted as dashed lines.
50 Õ Vol. 72, JANUARY 2005
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The ADL is also external to the FAL except at the two points
intersection (pi ,po)56(ss ,ss) which are on the equi-biaxia
load line of the structure map.

The final curve for completing the structure map is themarten-
site emerging loop~MEL! that is associated with solutions obe
ing s(r i)5s f or, equivalently, r i5r M . Martensite ~unmixed
with austenite! can only be present at locations on the structu
map outside of the MEL. Outside the MEL the phase distribut
must be of typeM, CM, or ACM. Inside of the MEL the phase
distribution must be of typeC, AC, or A. The MEL is strictly
outside the FAL so long ass f.ss . The MEL is also internal to
the FML except at the two points of intersection (pi ,po)
56(s f ,s f) which are on the equi-biaxial load line of the stru
ture map.

With the exception of locations on the equi-biaxial line, bo
the ADL and the MEL are determined numerically. This is mo
easily accomplished using the same procedure that generate
FML upon replacing the FML conditions(r o)5s f with either the
ADL condition s(r o)5ss or the MEL conditions(r i)5s f . Like
the FML, both the ADL and the MEL are generally not elliptica
Like the FAL and the FML, both the ADL and the MEL ar
symmetric with respect to 180 deg rotation about the origin, he
the symmetry of structure map follows.

Two examples of fully articulated structure maps are presen
in Figs. 7 and 8. Both correspond to material parametersE
550 GPa,a50.05,ss575 MPa, ands f5300 MPa. Their differ-
ence is due to differing values ofr o /r i , namelyr o /r i52 for Fig.
7 andr o /r i55 for Fig. 8. Each structure map is partitioned in
various regions by the four loops FAL, FML, ADL and MEL
Each region corresponds to a distinct phase distribution type
also displayed in Figs. 7 and 8.

The qualitative difference between these two structure map
that in Fig. 7 the ADL is strictly inside the MEL while in Fig. 8 i
is not. We shall refer to the former as atype I structure mapand to
the latter as atype II structure map. A type II structure map has
two symmetric regions corresponding to anACM phase distribu-
tion whereas a type I structure map does not involve this type
phase distribution. To within unit scaling, the structure map
determined by the material parameter combinationsEa, s f , ss
and geometry parameter ratior o /r i . For fixed material param-
etersEa, s f , ss one finds that the structure map is of type I f
small r o /r i but is of type II for larger o /r i . The conditionr o
sufficiently greater thanr i makes possible a situation supportin
the conditionr i,r M,r A,r o that is associated with the phas
distributionACM.
Fig. 5 The FML „fully martensitic loop … and FAL „fully austenitic loop … for EÄ50 GPa,
aÄ0.05, s fÄ4ssÄ300 MPa and r o Õr iÄ2. Thrusts inside the smaller ellipse „FAL … pro-
duce a fully austenitic plate, while thrusts outside the bigger loop „FML… produce a fully
martensitic plate.
Transactions of the ASME
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Fig. 6 FMLs for various s f values. Here EÄ50 GPa, aÄ0.05, ssÄ75 MPa and r o Õr iÄ2.
The smallest loop is the common FAL, and the other curves are FMLs, each marked with
corresponding value of s f Õss .
t

t
h

s

t

s

en

d-

oad
.

th

se

is-
edge
ure
For givenEa ands f , ss there is thus a special value ofr o /r i
such that the structure map is of type I below the special value
of type II above the special value. For the material parame
associated with Figs. 7 and 8 (Ea/ss5100/3, s f /ss54), this
special transitional value is found to ber o /r i53.58. The structure
map forEa/ss5100/3,s f /ss54, r o /r i53.58 is plotted in Fig. 9
showing how the ADL osculates the MEL.

The stress distribution for the phase distributions under disc
sion can be determined numerically on the basis of~17! using the
iterated shooting method, in a similar fashion to this determina
for a fully martensitic plate. For example, Fig. 10 displays t
radial variation ofs, s rr , suu for the CM phase distribution
associated with the load (pi ,po)5(5,0.5)ss represented by the
dot in Fig. 7 (Ea/ss5100/3,s f /ss54, r o /r i52). A mixture of
austenite and martensite obtains on the outer plate boundar
5r o . This mixture becomes progressively richer in martensite
r decreases tor 5r M51.29r i within which the plate is in the
martensite phase. This solution could in principle be obtained
many quasi-static load paths in the (pi ,po) plane so long as the
effective stress at each point in the plate remains nondecrea
In particular the proportional loading path (pi ,po)5(5,0.5)ssk,
where k is a load path parameter, is associated with an ini
phase distribution of typeA. There will then be three values o
k,1, say k1,k2,k3 , associated respectively with transition
through the sequence of phase distributions:A, AC, C, CM. Here
Mechanics
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k5k1 is associated with the emergence of theAC front r A at the
inner plate boundary. This front proceeds through the plate ak
increases until it merges with the outer boundary whenk5k2 .
TheCM front r M then emerges at the inner plate boundary wh
k5k3 and continued loading drives this front tor 51.29r i when
k51. Further loading will then drive this front to the outer boun
ary, resulting in a phase distribution of typeM.

Figure 11 shows the stress distributions at the same l
(pi ,po)5(5,0.5)ss as in Fig. 10 but for the structure map of Fig
8. In this case the larger value ofr o (r o55r i) gives rise to a phase
distribution of typeACM with r A54.84r i and r M51.24r i . In
this case the proportional loading path (pi ,po)5(5,0.5)ssk
passes through phase distribution states of typeA, AC, ACM
with the transitions taking place at two specialk values that are
analogous tok1 and k3 of the previous example associated wi
Fig. 10.

A final set of stress distributions is shown in Fig. 12. The
correspond to the osculation point of ADL with MEL at (pi ,po)
5(3.565,0.995)ss . Along the proportional loading line from the
origin through this point, this solution is associated with the d
appearance of the pure austenite phase at the outer plate
(r A5r o) that is simultaneous with the appearance of the p
martensite phase at the inner plate edge (r M5r i).
Fig. 7 Structure map „type I … for r o Õr iÄ2. Here EÄ50 GPa, aÄ0.05 and s fÄ4ssÄ300 MPa.
Note that there is no ACM region. Thrust pair „p i ,p o…Ä„5,0.5…ss , marked as a dot, produces
a CM phase distribution. The resulting stresses are shown in Fig. 10.
JANUARY 2005, Vol. 72 Õ 51
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Fig. 8 Structure map „type II … for r o Õr iÄ5. Here EÄ50 GPa, aÄ0.05 and s f
Ä4ssÄ300 MPa. All six types of phase distributions are present. Thrust pair
„p i ,p o…Ä„5,0.5…ss , marked as a dot, produces a ACM phase distribution. The
resulting stresses are shown in Fig. 11.

Fig. 9 Structure map for the special value r o Õr iÄ3.58. Lower values produce
type I structure maps, while higher values produces type II. Here EÄ50 GPa,
aÄ0.05 and s fÄ4ssÄ300 MPa. There is no ACM region, and ADL contacts
MEL at two points. One of the two points „shown as a dot … represents „p i ,p o…

Ä„3.565,0.995…ss , producing a C phase distribution with s„r i…Äs f and s„r o…

Äss . The resulting stresses are shown in Fig. 12.
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7 Conclusions
In this paper, a boundary value problem is formulated a

solved for the equilibrium stress and strain fields in an annu
composed of a material undergoing displacive shear transfor
tion. The description allows for mixtures of austenite and mart
site as described by a single phase fraction field variable. E

Fig. 10 Stresses „normalized by ss… for a CM phase distribu-
tion. Here EÄ50 GPa, aÄ0.05, s fÄ4ssÄ300 MPa, r o Õr iÄ2 and
„p i ,p o…Ä„5,0.5…ss . An elastic solution „aÄ0… is shown for
comparison „dashed lines ….
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point in the annulus may be either in a state of austeniteA, mar-
tensiteM or their mixtureC. Transformation strain is assumed
be proportional to the stress deviator. The properties of the s
tions to the governing equations are studied and the stress d
butions are obtained when the annulus is subject to normal e
loadspi and po on the inner and outer boundaries. The effecti

Fig. 11 Stresses „normalized by ss… for a ACM phase distri-
bution. Here EÄ50 GPa, aÄ0.05, s fÄ4ssÄ300 MPa, r o Õr iÄ5
and „p i ,p o…Ä„5,0.5…ss . An elastic solution „aÄ0… is shown for
comparison „dashed lines ….
Transactions of the ASME
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stress and the martensite phase fraction are each shown to
nonincreasing function ofr. This restricts the phase partitioning t
be one of six generic types:A, C, M, AC, CM, andACM, the
latter three of which correspond to various ring structures. T
phase partitioning is described by structure maps in the (pi ,po)
plane that provide a straightforward guide for finding loads t
are required to produce a desired phase partitioning. Param
studies show how geometry and material properties affect
structure maps. Such information would generally be useful
systems involving device control by means of shape memory
loy plates and tubes. If warranted, the strain and displacem
fields are easily obtained from the stress distribution using E
~5! and ~3!. The boundary value problems studied in detail he
apply to situations involving isothermal loading. The role of te
perature in such an isothermal process is simply to determine
values of the ‘‘start’’ and ‘‘finish’’ effective stresses,ss and s f .
However, the modeling framework is presented in a sufficien
general manner so as to permit further studies on unloading
havior, load cycling and temperature variation as would be va
able in developing shape memory applications in such plate
tube geometries.

Fig. 12 Stresses „normalized by ss… for a special C phase dis-
tribution with rMÄr i and rAÄr o , for EÄ50 GPa, aÄ0.05, s f
Ä4ssÄ300 MPa, r o Õr iÄ3.58 and „p i ,p o…Ä„3.565,0.995…ss . An
elastic solution „aÄ0… is shown for comparison „dashed lines ….
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Experiment and Analysis on the
Free Dynamics of a Shallow Arch
After an Impact Load at the End
In this paper we consider a sinusoidal arch with one end pinned in space while the
end attached to a mass and supported by a spring. The supporting wall of the spr
moved a distance quasi-statically to initiate preload in the arch and the spring.
assembly is then set in motion by an impact at the attached mass. The condition
which the arch may snap to the other side dynamically depends on the initial speed
attached mass due to impact. Sufficient condition on the initial speed against dyn
snap-through is formulated based on the concept of minimum energy barrier. The e
of damping on the transient response of the assembly are also discussed. An experi
setup is designed to measure the transient response of the arch following the impa
the critical initial speed of the attached mass. The experimental results are in g
agreement with theoretical predictions.@DOI: 10.1115/1.1827245#
n

l

f
e

a
a

b
n

n
l

e

e
e

f

d

l
uffi-
rst
by

f
ad-

rch
al.
nds
ch

nu-
ical
es a

of

h of

ly-
der
-
nd
er

ed
p-
tion
on
ial

ory
-
sets

t-
s is

dif-
is
, a
rch
f the

ass

0
s
u

l
M

1 Introduction
An arch subjected to lateral loads may become elastically

stable. If the initial height of the arch is of the same order as
span of the arch, the buckling deformation is nearly inextensio
On the other hand, an arch is termed shallow if the initial heigh
much smaller than the span. When the lateral load of a sha
arch reaches a critical value the deformed shape may under
sudden jump called snap-through buckling. The buckling de
mation of a shallow arch will be extensional rather than inext
sional. Depending on how the lateral load is applied, the sn
through buckling of a shallow arch can be divided into tw
categories, i.e., static buckling and dynamic buckling. In the c
of static buckling, the lateral load is applied in a quasi-static m
ner. The first theoretical prediction on the static critical load w
conducted by Timoshenko in 1935@1#, in which a pinned sinu-
soidal arch was subjected to a uniformly distributed load. Fu
and Kaplan@2# extended the research by considering a flexi
supported shallow arch under various kinds of lateral loadi
Fung and Kaplan also conducted a series of experiments on
pin-ended arches having rigid simple supports. Gjelsvik a
Bonder @3# presented a complete theoretical and experime
analysis on a clamped arch under a central concentrated
Franciosi et al.@4# extended the conventional limit analysis to th
collapse of arches under repeated loading. Schreyer and Masu@5#
analyzed a clamped circular arch and demonstrated that the
tence of a bifurcation of the equilibrium state is not an adequ
condition for the use of the asymmetric buckling criterion. L
and Murphy@6# considered the inelastic buckling of a clamp
circular arch made of work-hardening material. Simitses@7# stud-
ied the effect of an elastic foundation on the critical loads o
sinusoidal arch. Roorda@8# conducted a series of experiments
study the effect of small imperfection on the buckling of elas
structures, including a laterally loaded circular arch.

In the case when the lateral load is applied suddenly instea
in quasi-static manner, the phenomenon is dynamic and m
more complicated. Generally speaking, the methodologies use
estimating dynamic critical loads of elastic structures can be c

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 15, 20
final revision, March 18, 2004. Associate Editor: N. Sri Namachchivaya. Discus
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Jo
of Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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sified in two groups@9#. The first approach is to study the tota
energy and the phase plane of the system. By this method s
cient conditions for dynamic stability may be established. The fi
theoretical prediction of dynamic buckling load was conducted
Hoff and Bruce in 1954@10#, in which they studied the stability o
a sinusoidal arch under unit step loading and ideal impulsive lo
ing. Hsu @11,12# and Hsu et al.@13# studied the effects various
parameters on the stability of a flexibly supported sinusoidal a
under impulsive and other types of time-varying loads. Xu et
@14# considered a shallow arch elastically supported at both e
in the lateral direction and under impulsive loading. This approa
provides a lower bound of the dynamic critical load.

The second approach is to solve the equations of motion
merically to obtain the system response and identify the crit
load for specified system parameters. This approach provid
more accurate prediction of the critical load at the expense
large amount of calculation. Humphreys@15# performed both nu-
merical and experimental studies on the dynamic snap-throug
a circular arch under uniform impulsive loading. Lock@16# used a
numerical integration method and an infinitesimal stability ana
sis to predict the dynamic critical load of a sinusoidal arch un
a step loading. Huang and Nachbar@17# added the effects of geo
metric imperfection and viscoelastic behavior. Ariaratnam a
Sankar@18# studied the dynamic buckling of a shallow arch und
stochastic loads. Fulton and Barton@19# introduced a different
criterion for dynamic stability. Sundararajan and Kumani@20# in-
vestigated the dynamic stability of a shallow arch under inclin
loads. Lo and Masur@21# presented a hybrid method for sna
through stability analysis, which incorporates an integral equa
formulation in conjunction with a finite element method. Johns
and Mclvor@22# investigated numerically the effects of the spat
distribution of impulsive loads and damping@23# on the dynamic
snap-through of a shallow arch. Huang and Plaut@24# studied the
dynamic stability of a shallow arch under pulsating loads. Greg
and Plaut@25# and Donaldson and Plaut@26# discussed the stabil
ity boundaries for arches that are loaded by two independent
of dynamic loads.

It is noted from the earlier literature review that while theore
ical development on dynamic snap-through of shallow arche
quite well-established, experimental investigation@15# is rela-
tively rare compared to the static case, partly because of the
ficulty in applying prescribed time-varying lateral force. In th
paper we will investigate, both theoretically and experimentally
dynamic problem which involves an elastically supported a
subjected to impact at the end, as shown in Fig. 1. One end o
arch is pinned in space, while the other end is attached to a m
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and supported by a spring. The arch is not subjected to any la
load. After a quasi-static movement of the supporting wall to p
load the arch and the spring, the attached mass is subjected
impact and attains a substantial initial speed. The arch-m
spring assembly is then set in motion. The question we are in
ested in this paper is whether the arch will snap to the other
before it settles to a steady state position. Intuitively, if the imp
is minor the arch will return to its original position after the v
bration following impact is damped out. On the other hand, if
impact is more severe and the initial speed of the attached m
reaches a critical value, the arch may snap to the other side.
oretical prediction of the critical initial speed will be present
and verified later by an experiment. By adjusting the stiffness
the supporting spring and the height of the arch, the assembly
be used as a mechanical warning device against severe impa

2 Equations of Motion
Figure 1 shows a flexibly supported shallow arch, with one e

pinned in space while the other end attached to a massm* and
supported by a spring with spring constantk* . We assume tha
both the arch and the spring are in unstrained state initially.
initial shape of the arch when it is unstrained isy0* (x* ) with the
two ends being separated by a distanceL. Before timet* 50 we
move quasi-statically the supporting wall of the spring a dista
a* to the right. The arch-mass-spring system is then in a sta
equilibrium position with the distance of the two ends of the a
being increased by an amountd i* , while the spring being
stretched a distanced i* 2a* . The shape of the prestressed arch
denoted byyi* (x* ). The axial thrust throughout the arch and t
spring ispi* . If the supporting wall of the spring is moved to th
left then a* is negative. We assume that at timet* 50 the at-
tached mass of the prestressed assembly is under impact b
object and attains an initial speedḋ* (0)5v i* . The arch-mass-
spring system is then set in motion with the shape of the vibra
arch being denoted byy* (x* ,t* ). The equation of motion of the
arch can be written as

rAy,t* t*
* 52EI~y* 2y0* ! ,x* x* x* x* 1~p* 2m* d̈* !y,x* x*

* (1)

The parametersE, r, A, andI are Young’s modulus, mass densit
area, and area moment of inertia of the cross section of the a
The comma represents partial differentiation, while the overh
dot represents the derivative with respect to time. In writing E
~1! we assume that the curvature of the arch is small and ca
approximated by2(y* 2y0* ),x* x* . An arch is termed high arch
when its curvature cannot be treated as small. We also assum
the effects of rotary inertia and shearing deformations are
glected. Strains are assumed to remain within the elastic limit
Hooke’s law is valid. The termp* 2m* d̈* is the axial thrust in
the arch, whilep* alone is the axial force in the spring

p* 52k* ~d* 2a* ! (2)

We assume that the axial thrust is constant along the arch a
thus a function only of the time. The moving distanced* of the
attached mass from its initial rest position before the quasi-st

Fig. 1 Schematic diagram of a flexibly supported arch under
impact at the end
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wall movement can be related to the arch shapey* (x* ,t* ) by
considering the equilibrium of the attached mass as

d* 5
~p* 2m* d̈* !L

EA
1

1

2 E0

L

@~y0,x*
* !22~y,x*

* !2#dx* (3)

The first term on the right-hand side of Eq.~3! represents the
effect of extensibility of the arch, while the second term represe
the effect of shape change~mainly due to rotation!. From Eqs.~2!
and ~3! we can derivep* as

p* ~ t !5
k*

EA1k* L H Lm* d̈* 1EAa* 2
EA

2 E
0

L

@~y0,x*
* !2

2~y,x*
* !2#dx* J (4)

The parametersd i* , pi* , and functionyi* (x* ), which refer to the
mass position, axial force, and deformed shape of the arch be
impact, can be calculated from Eqs.~1!, ~3!, and~4! by ignoring
all the terms involving differentiation with respect to time.

Equations~1! and ~4! can be nondimensionalized to the form

y,tt52~y2y0! ,xxxx1~p2md̈ !y,xx (5)

p5
k

2p E
0

p

~y,x
2 2y0,x

2 !dx1a1kmd̈ (6)

where

y5
y*

r
, y05

y0*

r
, x5

px*

L
, t5

p2t*

L2
AEI

Ar
,

p5
p* L2

p2EI
, k5

k*

k* 1EA/L

d5
Ld*

p2r 2~12k!
, a5

kLa*

p2r 2
, m5

~12k!Ip4m*

L3A2r
,

v i5
L3v i*

p4r 3~12k!
Ar

E

As a general rule in this paper, a variable without asterisk i
dimensionless counterpart of the one with asterisk.r is the radius
of gyration of the cross section of the arch.p51 corresponds to
the Euler buckling load for a perfectly straight simply support
beam. The dimensionless spring constantk ranges from 0 (k*
50) to 1 (k* →`). The boundary conditions fory at x50 andp
are

y~0!2y0~0!5y,xx~0!2y0,xx~0!5y~p!2y0~p!

5y,xx~p!2y0,xx~p!50 (7)

The initial shape of the unstrained arch is assumed to be in
form

y0~x!5h sinx (8)

h is the initial height of the arch. It is assumed that the shape
the arch can be expanded as

y~x,t !5y01(
n51

`

an~ t !sinnx (9)

After substituting Eqs.~8! and ~9! into ~5! and ~6! we obtain the
equations governing the generalized coordinatesan :

ä152a12~p2md̈ !~h1a1! (10)

än52n4an2n2~p2md̈ !an n52,3, . . . (11)

where

p5kS h

2
a11

1

4 (
i 51

`

i 2a i
2D 1a1kmd̈ (12)
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It is noted that the parameterd̈ in Eqs.~10!, ~11!, and~12! is still
unknown. To obtain the additional equation of motion account
for d we substitute Eq.~4! into Eq. ~3!, nondimensionalize, and
discretize by using Eq.~9!:

md̈52d2S h

2
a11

1

4 (
i 51

`

i 2a i
2D 1

a

12k
(13)

Equations~10!–~13! are the discretized equations of motion of t
assembly.

3 Equilibrium Configurations
We first study the equilibrium configurations of the prestres

arch-mass-spring assembly following the quasi-static wall mo
menta. The shape of the prestressed arch can be determined
Eqs.~10! and~11! by neglecting all the acceleration terms. The
are two different types of equilibrium configurations, i.e., on
mode and two-mode solutions. It can be easily shown that E
~10! and~11! do not admit an equilibrium configuration with mor
than two modes.

One-Mode Solution y5y01a1 sinx.
a1 satisfies the following cubic equation

a~a11h!52
a1

4
~ka1

213kha112kh214! (14)

After defining parametera1 as

a15
kh2

4
2

3

4
~4kh2!1/321 (15)

we can make the following observations.

1. If a.a1 , then there is only one equilibrium configuratio
denoted byP0 .

2. If a,a1 , then there are three equilibrium configuratio
P0 , P1

1 , andP1
2 , where

a1~P1
2!,2h2S 2h

k D 1/3

,a1~P1
1!,2h,a1~P0! (16)

3. If a5a1 , then the configurationsP1
1 and P1

2 coincide. We
denote this special one-mode configuration asP1 . Also

a1~P1!52h2S 2h

k D 1/3

(17)

Two-Mode Solution y5y01a1 sinx1aj sin jx.
It can be shown that a two-mode solution always contains

first mode a1 sinx. For this case the solutions can be writte
explicitly

a15
2 j 2h

j 221
(18)

a j56
2

j
Aaj2a

k
(19)

where

aj5
~ j 222! j 2h2k

4~ j 221!2
2 j 2 (20)

These configurations are denoted byP1 j
1 and P1 j

2 , which exist
only when

a,aj (21)

It is noted that in both Eqs.~15! ~for a1) and ~20! ~for aj ) the
parametersk andh appear together in the formkh2. By compar-
ing Eqs.~15! and ~20! we observe that

a1>aj (22)
56 Õ Vol. 72, JANUARY 2005
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The special initial height which rendersa15aj is denoted byh̄ j ,
where

kh̄j
252~ j 221!3 j 52,3,4, . . . (23)

The values of some ofkh̄j
2 arekh̄2

2554, kh̄3
251024, etc. Figure 2

shows theaj curves in thekh2-a plane. Theseaj curves divide
the kh2-a plane into several regions. The black dot ath5h̄2 sig-
nifies the touching point betweena1 and a2 curves. For a given
set of kh2 and a, we can determine the number of equilibriu
configurations. For instance, if the point (kh2,a) fall in the region
1, then there is only one equilibrium configurationP0 . For the
parameter ranges in Fig. 2 there are seven regions, whose eq
rium configurations are listed in Table 1.

4 Stability of Equilibrium Configurations
First of all, the dimensionless total energyH of any configura-

tion can be calculated as

H5
2

p E
0

p

@~y,t!
21~y,xx2y0,xx!

2#dx12~p2md̈ !21
2p2~12k!

k

12mḋ2~12k! (24)

The two terms in the integral represent the kinetic energy and
bending strain energy. The second term is the strain energy du
the axial force. The third term is the strain energy of the spri
The last term is the kinetic energy of mass. For an equilibri
configuration corresponding to a specified wall movementa, the
kinetic energy is zero and the total energy consists of only
strain energyU:

U5
2

p E
0

p

~y,xx2y0,xx!
2dx1

2p2

k
(25)

Fig. 2 aj curves on the kh 2-a plane

Table 1 Equilibrium configurations in various regions of Fig. 2

Region Equilibrium configuration Stability of P1
2

1 P0
2 P0 , P1

6 Stable
3 P0 , P1

6 , P12
6 Stable

4 P0 , P1
6 , P12

6 , P13
6 Stable

5 P0 , P1
6 , P12

6 , P13
6 , P14

6 Stable
6 P0 , P1

6 , P12
6 , P13

6 , P14
6 , P15

6 Stable
7 P0 , P1

6 Unstable
Transactions of the ASME
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For the two-mode configurationsP1 j
1 andP1 j

2 the strain energy are
equal, and can be written as

U~P1 j
1 !5U~P1 j

2 !5
1

k S j 4kh2

j 221
22 j 424 j 2aD (26)

For the one-mode solutions the strain energy is

U5a1
21

2p2

k
(27)

wherea1 andp are the generalized coordinate and the axial thr
of the one-mode solution. The physical total energyH* and strain
energyU* are related toH andU by

H5
4AL3H*

p2EI2
, U5

4AL3U*

p2EI2
(28)

In order to study the stability of the equilibrium configuratio
with shapeȳ, we perturb the equilibrium shape by a small amou
« ŷ to examine how the strain energy changes.« is a small positive
number. The strain energyU of the perturbed configuration can b
expanded in terms of« as

U~ ȳ1« ŷ!2U~ ȳ!5«H 4

p E
0

p

@~ ȳ,xx2y0,xx!ŷ,xx1py,xŷ,x#dxJ
1«2H 2

p E
0

p

@~ ŷ,xx!
21 p̄~ ŷ,x!

2#dx

1
2k

p2 F E
0

p

ȳ,xŷ,xdxG2J
1«3H 2k

p2 F E
0

p

ȳ,xŷ,xdxGF E
0

p

~ ŷ,x!
2dxG J

1«4H k

2p2 F E
0

p

~ ŷ,x!
2dxG2J (29)

p̄ is the axial force of the equilibrium configurationȳ, and can be
calculated from Eq.~10! as

p̄5
2a1

a11h
(30)

To prove that an equilibrium shapeȳ is stable we have to show
that the energy differenceU( ȳ1« ŷ)2U( ȳ) is positive for any
ŷÞ0. On the other hand, to prove thatȳ is an unstable equilibrium
shape, we only need to find oneŷÞ0 which rendersU( ȳ1« ŷ)
2U( ȳ) negative. After integrating by parts and using the fact t
ȳ satisfies the static equilibrium equations it can be shown that
coefficient of« in Eq. ~29! is zero. To determine the stability w
next examine the second variation of the strain energy

d2U5
2

p E
0

p

@~ ŷ,xx!
21 p̄~ ŷ,x!

2#dx1
2k

p2 F E
0

p

ȳ,xŷ,xdxG2

(31)

In some casesd2U is zero identically, and higher order variatio
is needed. More details of the above energy method can be fo
in Ref. @27#, and the conclusions are summarized in the followin

One-Mode Solutions: P0 is always stable.P1
1 is always un-

stable. Ifh<h2, thenP1
2 is stable if and only ifa,a1 . On the

other hand, ifh.h2, thenP1
2 is stable if and only ifa,a2 .

Two-Mode Solutions: P1 j
1 andP1 j

2 are always unstable.
From the earlier analysis, we know that for any combination

a andkh2 there are at most two stable configurations. One of th
is alwaysP0 , and the other possible stable configuration isP1

2 .
In Table 1 we also identify the regions with stableP1

2 . For those
Journal of Applied Mechanics
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quasi-static wall movementsa, which result in only one stable
equilibrium positionP0 , the assembly will return to the origina
position following impact. On the other hand, for those w
movements which render the existence of two stable positionsP0

and P1
2 , then it is possible for the arch to snap and settle toP1

2

following the impact. It is the purpose of this paper to determ
the lowest possible initial speed of the impacted mass, be
which the arch-mass-spring assembly is in no danger to snap.
lowest initial speed is called the critical initial speed.

5 Snap-Through Criterion
While it is in general difficult to determine the necessary a

sufficient condition for dynamic snap-through to occur, we c
establish the sufficient conditions against dynamic snap-thro
in terms of the dimensionless total energyH of the vibrating arch-
mass-spring assembly following the impact. The basic idea of
snap-through criterion is that if the total energy gained by
assembly from the impact is smaller than the minimum ene
barrier lying between the nearest stable equilibrium position
the distant stable one, then the arch has no chance to snap dyn
cally. The energy barrier can be proved to be the strain energ
either the unstable configurationP1

1 or P12
6 , depending on the

parametersk, h and a @27#. The sufficient conditions against dy
namic snap-through fromP0 to P1

2 can then be stated in th
following.

Case ~1! h<h2 and a2<a,a1 : The sufficient condition
against snap-through isHi,U(P1

1), whereHi is the total energy
immediately following impact.

Case~2! a,a2 : The sufficient condition against snap-throug
is Hi,U(P12

6 ).
Figures 3~a!, 3~b!, and 3~c! show the equilibrium positions and

strain energy contours for three typical situations. In Fig. 3~a! k
50.4, h510, anda53, which falls in region 3 of Fig. 2. There
are five equilibrium positions in this region, among themP12

6 are
the saddle points whose strain energy is the energy barrier
venting the system from snapping from positionP0 to another
stable positionP1

2 . In Fig. 3~b! k50.2,h510, anda50.6, which
falls in region 2 of Fig. 2. There are three equilibrium positions
this region, among themP1

1 is a saddle point whose strain energ
serves as the energy barrier. In Fig. 3~c! k50.8, h510, anda
513.8, which falls in region 7 of Fig. 2. There are three equil
rium positions in this region, among themP0 is the only stable
equilibrium position.P1

2 becomes a saddle point in this case.

6 Effect of Damping
Figures 4~a!, 4~b!, and 4~c! show the deformation history of an

arch withh510, k50.4, a53, andm50.001, which falls in re-
gion 3 of Fig. 2. In calculating the response we modify Eq.~10!
by adding a damping parameterm:

ä152mȧ12a12~p2md̈ !~h1a1! (32)

The relation betweenm and its physical counterpartm* is

m5
m* L2

p2rAr
Ar

E
(33)

The initial speedv i is set to be 110. The dampingm used in Figs.
4~a!, 4~b!, and 4~c! are 0.2, 0.3, and 0.6, respectively. The initi
conditions are

a i~0!50, i 51,2,3, . . .

ȧ1~0!52
2v i

h
, (34)

ȧ i~0!50, i 52,3,4, . . .

For the small damping case in Fig. 4~a! the energy gained by the
assembly is large enough to surpass the energy barrierU(P12

6 ) and
JANUARY 2005, Vol. 72 Õ 57
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a1 can reacha1(P1
2). However, due to small damping, the arch

snapped back and finally settles to positionP0 . For the medium
damping case in Fig. 4~b!, the assembly not only gains enoug
energy to surpassU(P12

6 ) anda1 can reacha1(P1
2), the damping

also prevents it from snapping back toP0 . The arch settles toP1
2

eventually. In Fig. 4~c! the damping is so large that it prevents t
arch from surpassingU(P12

6 ), and the arch has no choice but
settle to P0 . The existent equilibrium positions are plotted
dashed horizontal lines for reference. These examples demon
that damping plays an important role in dynamic snap-throu
when the total energy of the assembly gained from impac
greater than the energy barrier.

7 Critical Initial Speed
Another important factor in determining whether snap-throu

will occur is the end initial speed. Apparently, for very sma
initial speed no snap-through is possible. Asv i increases, on the
other hand, snap-through might occur. It is therefore possibl
define a critical initial speedvcr below which no snap-through i
possible even if there exist two stable equilibrium positions. Fr
the snap-through criterion discussed previously, we can derive
expression of the critical initial speed as follows.

For the case whenh<h2 anda2<a,a1 the energy barrier is
U(P1

1). From the conditionHi(vcr)5U(P1
1), whereHi(vcr) is

the total energy of the system immediately after the attached m
attains initial speedvcr from the impact, it can be found that th
critical initial speedvcr for this case is

Fig. 3 Strain energy contours for „a… kÄ0.4, hÄ10, aÄ3, „b…
kÄ0.2, hÄ10, aÄ0.6, „c… kÄ0.8, hÄ10, aÄ13.8
58 Õ Vol. 72, JANUARY 2005
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vcr5
h@ka1

2~P1
1!2ka1

2~P0!12p2~P1
1!22p2~P0!#1/2

@2mh2k~12k!14k#1/2
(35)

p(P0) and p(P1
1) are the axial thrust of the assembly in th

equilibrium positionsP0 andP1
1 , respectively. For the case whe

a,a2 the energy barrier isU(P12
6 ). From the conditionHi(vcr)

5U(P12
6 ) it can be found that the critical initial speedvcr for this

case is

vcr5
h@16kh2296248a23ka1

2~P0!26p2~P0!#1/2

@6mh2k~12k!112k#1/2
(36)

It is noted that the one-mode solutionP0 and P1
1 cannot be

solved explicitly whenaÞ0. Therefore, the parametersa1(P0),
a1(P1

1), p(P0), and p(P1
1) in Eqs. ~35! and ~36! can only be

calculated numerically. On the other hand whena50, i.e.,
the assembly is unstrained before impact, Eqs.~35! and ~36! can
be expressed in the following closed forms. For the ca
18.kh2.16:

vcr5
h2~32c!

4~12c! H 1612kh2~12c!2

kh2@mh2~12k!12#
J 1/2

,

where c5A12
16

kh2
(37)

For the casekh2.18:

vcr5
h

2 F 32h2k2192

3mh2k~12k!16k
G 1/2

(38)

Fig. 4 Effect of damping m on the response of the assembly
with hÄ10, kÄ0.4, aÄ3, v iÄ110, mÄ0.001. „a… mÄ0.2, „b…
mÄ0.3, „c… mÄ0.6.
Transactions of the ASME



r

n
’

i

g
t

n

l

m
i

e
eri-
ori-

ram-

ec-
e

8 Experimental Setup
An experimental setup is designed to verify the earlier theo

ical prediction. The schematic diagram of the setup is shown
Fig. 5. The function of each component in the setup is explai
as follows.~1! The arch is made of aluminum strip with Young
modulus 70 GPa and mass density 2800 kg/m3. The lengthL of
the arch is 40 cm and the cross section is 25 mm31.5 mm. ~2!
Attached mass, which consists of a roller bearing and a lin
bearing at the end, is scaled atm* 5473 g. The roller bearing is
installed to simulate the pinned condition, while the linear bear
is to reduce the friction when the mass slides on the guiding r
~3!. ~4! Spring to support the arch in the axial direction, who
spring constant can be adjusted in the rangek* 5200– 400 N/cm
by changing its working length.~5! A lock-and-release striking
mechanism, which consists of a striking hammer and a sprin
store the striking power.~6! An adjustable screw mechanism
control the quasi-static wall movementa* . ~7! An LDV system
made by Polytec Co.~optical measurement head OFV-508 a
electronic signal processor OFV-2802! to measure the speed of th
sliding mass in the axial direction or the lateral speed at the m
point ~one at a time! of the arch. The converting ratio of the LDV
signal is 1 V to 125 mm/s. The instrument can record a signa
to 15 V. Displacement can be obtained by integrating the sp
signal. ~8! A digital oscilloscope is used to visually monitor an
record the signals from the LDV system. A photograph of t
laboratory setup is shown in Fig. 6.

9 Transient Response Measurements
Figure 7 shows the measured speed history of the attached

following the impact. The parameters of the assembly are in
height h* 52.80 cm (h565), spring constantk* 5327 N/cm (k
50.0050), wall movementa* 50. The complicated impact phe
nomenon between the striking hammer and the metallic flange
the sliding mass is not of our interest. Instead, we focus our
tention to the initial speed gained by the sliding mass after

Fig. 5 Schematic diagram of the experimental setup

Fig. 6 A photograph of the experimental setup in the
laboratory
Journal of Applied Mechanics
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impact. The initial speed is measured atv i* 51.72 m/s (v i

52860) and is signified by a black dot in the figure. The rise tim
from impact to the speed peak is about 0.0005 s. In this exp
ment snap-through occurs with the arch passing through the h
zontal position at 0.015 s~the first crossing of theḋ* 50 line!. For
easy reference we present the results with both physical pa
eters~with asterisk! and the dimensionless ones~without asterisk!.
The same labeling style is adopted in the following figures.

The solid lines in Fig. 8 represent the measured lateral defl
tion history at the midpoint of the arch following the impact. Th
parameters of the assembly in Fig. 8~a! are h* 53.46 cm (h
580), k* 5206 N/cm (k50.0034), v i* 51.44 m/s (v i52400).

Fig. 7 Measured speed history of the attached mass following
the impact. Parameters of the assembly are h *Ä2.80 cm,
k *Ä327 NÕcm, a*Ä0.

Fig. 8 Deflection history at the midpoint of the arch following
the impact. The solid lines are the measured response while
the dashed lines are the numerical results. „a… h *Ä3.46 cm,
k *Ä206 NÕcm, v i*Ä1.44 mÕs. „b… h *Ä3.00 cm, k *Ä333 NÕcm,
v i*Ä1.79 mÕs.
JANUARY 2005, Vol. 72 Õ 59
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No snap-through occurs in this case and the arch settles to
original shape eventually. Figure 8~b! shows the deflection history
of another assembly with parametersh* 53.00 cm (h570), k*
5333 N/cm (k50.0051), v i* 51.79 m/s (v i52975). Snap-
through occurs in Fig. 8~b! and the arch settles eventually to th
other side.

To simulate the motion of the assembly numerically, we have
estimate the damping of the system. The dissipating mechanis
the system comes from the friction in the moving parts and
material damping in the arch and the spring. We assume tha
first mode is dominant in the dynamic response in Fig. 8~a!. The
damping factor may be estimated from the decaying rate of
two peaks as signified by black dots. The heights of the two pe
are measured aty1538 andy2524. The ratio of the damping o
the systemm in Eq. ~32! to a critical dampingmc is @28#

m

mc
5

ln~y1 /y2!

$~2p!21@ ln~y1 /y2!#2%1/2
(39)

The damping ratio in Eq.~39! is calculated as 0.07. The critica
dampingmc is estimated numerically by adjusting the dampi
parameterm in Eq. ~32! until the responsea1 ceases to oscillate
In this way the dimensionless critical dampingmc is estimated as
10. As a consequence the damping of the assembly is estimat
m50.7 ~m*59.8 N s/m!. It is noted that the concept of critica
damping and the logarithmic decrement approach is for a lin
oscillator. We assume that the similar concept can be extende
a nonlinear system with a linear viscous damping such as
~32!. Although this estimate may appear somewhat engineer
oriented, it is believed that the damping factor in our experimen
setup is about this order. Whether this approach is satisfacto
examined by experimental results. The dashed lines in Figs.~a!
and 8~b! are the deflection history from numerically integratin
Eq. ~32!. The short rise time from impact to the peak speed
explained in Fig. 7 is ignored. It is noted that the actual respo
as measured in the experiment may contain multiple-mode c
ponents, while the numerical simulation contains only a sin
modea1 because of the initial conditions~34!. The actual multi-
mode response may result from imperfect initial shape of the a
The good agreement between the experiment and the nume
simulation as demonstrated in Figs. 8~a! and 8~b! confirms
that the one-mode solutiona1(t)sinx is indeed the dominan
component.

10 Critical Speed Measurements
Figure 9 shows the results from a series of experiments on

critical initial speed. Figure 9~a! shows the relation between th
critical initial speedvcr* and the wall movementa* . The fixed
parameters of the assembly ish* 53.46 cm (h580), k*
5206 N/cm (k50.0034). The symbol3represents the measure
critical initial speed. In the experiment we increase the strik
power of the hammer incrementally until snap-through occu
The increment in the corresponding initial speed change is a
0.0125 m/s, which may be considered as the accuracy of the
cal speed measurement. Each experiment is repeated three
Therefore, there are three3clustered for each specifieda* . The
solid line represents the theoretical predictions. The two bl
dots represent the wall movement corresponding toa1 anda2 . In
the rangea2,a,a1 the theoretical critical initial speed is give
by Eq.~35!. In the rangea,a2 the theoretical critical initial speed
is given by Eq.~36!. In the rangea.a1 no snap-through is pos
sible because there exist only one stable equilibrium positionP0 .
It is noted that the wall movementa in the experiment range
from negative to positive values. It is observed that the criti
initial speed decreases as the wall movementa increases until the
point a5a1 .

Figure 9~b! shows the critical initial speed as a function of th
supporting spring constantk* . The fixed parameters of the assem
bly is h* 53.46 cm (h580), a* 50. The two points signified by
60 Õ Vol. 72, JANUARY 2005
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black dots arek1516/h2 andk2518/h2. In the rangek1,k,k2
the theoretical critical initial speed is given by Eq.~37!. In the
rangek,k2 the theoretical critical initial speed is given by Eq
~38!. It is observed that the critical initial speed increases as
spring constantk* increases. Figure 9~c! shows the critical initial
speed as a function of the initial heighth* of the arch. The fixed
parameters of the assembly isk* 5208 N/cm (k50.0035), a*
50. The two points corresponding toa1 and a2 are outside the
range of this figure. The critical initial speed increases as
initial height of the arch increases. Generally speaking, the exp
mental results of the critical initial speeds are satisfactory co
pared to the theoretical predictions.

11 Conclusions
In this paper we consider a shallow arch with initial heighth.

One end of the arch is attached to a massm and supported by a
spring with constantk. After the supporting wall is moved quas
statically a distancea to preload the arch-mass-spring assemb
the attached mass is subjected to impact and attains initial s
v i . We are interested in the conditions under which the arch w
snap to the other side dynamically. Some results can be sum
rized in the following.

~1! There are at most two stable equilibrium configurations
any given combination ofa, h andk. One of them isP0 , which is
always stable. The other isP1

2 , which is stable only in certain
range ofa andkh2.

~2! Whenh<h2 anda2<a,a1 , the energy barrier preventing
the arch from snapping fromP0 to P1

2 is the strain energy ofP1
1 .

In the case whena,a2 the energy barrier is the strain energy
P12

6 .
~3! The assembly is safe from dynamic snap-through as lon

the initial speed of the attached mass from the impact is sma
than a critical speed. This critical initial speed can be predic
analytically and confirmed by experiments.

Fig. 9 Critical initial speed v cr* as a function of „a… wall move-
ment a* , „b… supporting spring constant k * , „c… initial height h *
of the arch. Symbol Ãrepresents the measured data, while the
solid lines are the theoretical predictions.
Transactions of the ASME
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~4! Generally speaking the critical initial speed decreases aa
increases, while it increases ask andh increase.
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A Plane Stress Perfectly Plastic
Mode I Crack Solution With
Continuous Stress Field
A statically admissible solution for a perfectly plastic material in plane stress is prese
for the mode I crack problem. The yield condition employed is an alternative type
proposed by von Mises in order to approximate his original yield condition for pl
stress while eliminating most of the elliptic region as pertaining to partial differen
equations. This yield condition is composed of two intersecting parabolas rather th
single ellipse in the principal stress space. The attributes of this particular solution o
mode I problem over that previously obtained are that it contains neither stress disc
nuities nor compressive stresses anywhere in the field.@DOI: 10.1115/1.1828061#
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The mode I perfectly plastic solution for the plane stress cr
problem under the von Mises yield condition@1# has a discontinu-
ous radial stress in the trailing portion of the plastic zone. Beyo
this stress discontinuity and extending to the crack face lie
region under compression, which is a counterintuitive feature f
crack subject to tensile loads. In contrast, neither this stress
continuity nor compressive region is found in the analogous pl
strain crack problem~see, e.g.,@2#!. These features are likely in
herent to the plane stress problem because of the extended re
of the yield surface where the governing differential equations
elliptic. In the analogous plane strain problem, only hyperbo
partial differential equations govern over the entire yield surfa

Cognizant of the innate mathematical difficulties that arise w
ellipticity in plasticity theory, von Mises@3# proposed an alterna
tive yield condition for plane stress. This yield condition appro
mates the shape of the original surface in the principal st
plane, while eliminating most of the elliptic region of the yie
surface—the exceptions being just two points. Using this alter
tive yield criterion, it will be shown that a continuous stress fie
is derivable for the perfectly plastic mode I crack problem un
plane stress loading conditions.

The traditional von Mises yield condition@3# assumes the fol-
lowing form for a plane stress, nonwork hardening material

s1
21s2

22s1s25s0
253k2, (1)

wheres1 and s2 are the first and second principal stresses (s3
50), s0 is the tensile yield stress, andk is the yield stress in pure
shear. A plot of the corresponding yield surface in Fig. 1 sho
that the curve itself in principal stress space is an ellipse. Reg
VW and UZ on the yield surface are governed by hyperbo
partial differential equations@2#, while regions UV and WZ are
governed by elliptic equations. At the transition points U, V,
and Z, parabolic partial differential equations govern.

For purposes of comparison, inscribed in the von Mises yi
condition in Fig. 1 is the Tresca yield surface, which is hexago
in shape. Regions NP and ST on the Tresca have hyperbolic
tial differential equations as governing equations@2#. Regions
MN, MT, PQ, and QS have parabolic partial differential equ
tions. At points M and Q the equations become elliptic. The re

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, July 21, 20
final revision, August 13, 2004. Associate Editor: K. Ravi-Chandar. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California–Santa Barbara, Santa Barbara, CA 93106-5070, and w
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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tionship between the tensile yield stresss0 and that in shear
k differs from the von Mises yield condition and has the for
s052k.

The alternative von Mises yield condition@3# is defined below
for plane stress

s12s2

k
56

1

11&
F ~11& !22S s11s2

2k D 2G . (2)

Its plot in Fig. 2 reveals it is comprised of two intersecting p
rabolas. The positive sign in~2! corresponds to the solid parabo
shown in the figure, while the negative sign corresponds to
broken parabola. For the solid parabola, the slopeds2 /ds1 is
zero at the lowest point of the defining curveQ8 and infinite at the
highest point of the defining curveM 8. The converse is true for
the dashed line portion. The associated governing partial diffe
tial equations are hyperbolic, except where the slope is zero
infinity. At these extreme pointsM 8 andQ8 on the diagonal line,
the equations are elliptic. These points are similar mathematic
to corresponding points on the Tresca yield conditionM andQ,
which are also located at extreme points along the diagonal l
For the alternative von Mises yield condition, the tensile yie
stresss052k; however,k is no longer interpreted as the yiel
stress in pure shear.

To gain insight into the varying predictions of these three d
ferent yield criteria, the mode I linear elastic, small scale yield
stresses@2# have been substituted into the various criteria a
plotted in Fig. 3, which is a normalized XY plane with a crac
situated to the left of the origin. In this plane, the dimensionle
coordinates are of the formX52pxs0

2/KI
2 , etc., whereKI is the

mode I stress intensity factor, andx is the standard Cartesia
coordinate. It can be seen that the yield locus of the alterna
von Mises yield condition is similar in size to the traditional vo
Mises yield criterion. However, the alternative von Mises yie
criterion seems to resemble the shape of the Tresca yield cond
more than the traditional von Mises yield condition.

To date, no analytical elastic-plastic solution of the mode
problem has been found. However, plastic stresses@2,4,5# have
been continued analytically across the prescribed elastic-pla
boundary that is shown in Fig. 3 for the Tresca yield conditio
The associated slip line nets found in these analyses are show
Fig 4. It is curious to note that along slipline DF a biaxial state
stress of magnitude 2k is determined. This state of stress corr
sponds to point M on the Tresca yield surface~Fig. 1!, which is
governed by an elliptic partial differential equation. One cou
infer by symmetry that a similar slip line, which is the reflectio
of DF, exists on the opposite side of the crack axis. Thus
analytical continuation of stresses across the leading edge o
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plastic zone suggests that a biaxial state of stress might be pr
in front of the crack tip for the elastic-plastic problem.

In the context of a perfectly plastic material under the Tre
yield condition, a stress field having a biaxial state of stressk
ahead of the crack and a uniaxial state of stress of magnitudk
along the crack faces is statically admissible. This would requi
stress discontinuity to form at the crack tip and continue to6`
along theY-axis, for a crack oriented along the negativeX-axis as
in Fig. 4. No concentrated fan of slip lines is admissible within t
Tresca yield condition in plane stress~the Appendix gives some
indication of why this is true!; otherwise, it would seem natural t
try to eliminate this stress discontinuity through an intervening
connecting these two regions of uniform stress. It will be sho
that the alternative von Mises allows a stress field to be develo
which has a biaxial state of stress in front of the crack tip

Fig. 1 The von Mises yield condition „elliptically shaped … with
inscribed Tresca yield condition. After †3‡.

Fig. 2 The alternative von Mises yield condition „parabolically
shaped … compared to the Tresca yield condition. After †3‡.
Journal of Applied Mechanics
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uniaxial state of stress adjacent to the crack faces, and a con
trated fan of characteristics in-between the other two regions.

The characteristics for the most commonly used perfectly p
tic model for plane stress are shown in Fig. 5, which was dev
oped in@1# for comparison with a power-law hardening materia
~Note the crack in@1# was oriented to the left rather than to th
right, as shown in Fig. 5.! The dashed line along OB of Fig. 5
indicates a stress discontinuity. The associated stress field is i
pendent of the radiusr from crack tip. Its variation with the polar
angle u, measured counterclockwise from OA, is provided
Fig. 6.

Analysis
A solution of a mode I perfectly plastic solution for plane stre

is found in this section using the alternative von Mises yield co

Fig. 3 Predicted elastic-plastic boundaries around a crack tip
for different yield criteria using the elastic stress field

Fig. 4 Slip lines across an elastic-plastic boundary under the
Tresca yield condition. After †2,4,5‡.
JANUARY 2005, Vol. 72 Õ 63
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Fig. 5 Characteristics for plane stress mode I crack under the von Mises yield condition
„elliptically shaped …. After †1‡.
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dition. The first step will be to solve the associated differen
equation generated by~2! for a stress field independent of th
radiusr for a body in equilibrium.

Solving ~2! for s2 gives

s252ak12A2ak~ak2s1!2s1 , where a511&. (3)

Note the branch of the multiple-valued function was chosen in~2!
to represent quadrant one of the principal stress plane for
solid-line segment of the yield surface of Fig. 2.

The following elementary transformations are used to relate
stresses in polar coordinates (r ,u) to the principal stresses in th
yield condition~3!

s15~s r1su!/21A~s r2su!214t ru
2 /2, (4)

s25~s r1su!/22A~s r2su!214t ru
2 /2. (5)

Introducing a stress function of the form

f5r 2f ~u! (6)
t

a

NUARY 2005
ial
e

the

the

allows for stresses which automatically satisfy the equilibriu
equations in the plane.

Further, the particular form of~6! defines a stress field, which i
independent of the coordinater , which can be deduced from th
relationships given below relatingf to stresses in polar coordi
nates

s r5
1

r 2

]2f

]u2 1
1

r

]f

]r
5 f 9~u!12 f ~u!, (7)

su5
]2f

]r 2 52 f ~u!, (8)

t ru52
]

]r S 1

r

]f

]u D52 f 8~u!. (9)

Upon substitution of~7!–~9! into ~4! and~5! and subsequently the
resulting expressions fors1 and s2 into ~3!, one finds that the
governing ordinary differential equation forf (u) is
f 9~u!14 f ~u!52ak12A2akH ak2F f 9~u!14 f ~u!

2
1

1

2
A~ f 9~u!!214~ f 8~u!!2G J . (10)
Applying the standard technique for reducing the order of an
dinary differential equation lacking the explicit appearance of
independent variable, i.e.,

f 8~u!5p, f 9~u!5p
dp

d f
, (11)

produces the expression

F 1

8ak S p
dp

d f
14 f 22akD 2

1
1

2
p

dp

d f
12 f 2akG2

5
1

4 F S p
dp

d f D
2

14p2G , (12)

after both sides have been squared repetitively in such a way
eliminate both radical signs appearing in~10!.

An additional substitution of the form

Q5
1
2 p212 f 2 (13)

further reduces the equation to

F 1

8ak S dQ

d f
22akD 2

1
1

2

dQ

d f
2akG2

5
1

4 F S dQ

d f D 2

28 f
dQ

d f
18QG .

(14)

Let us now introduce the following notation into~14!
or-
he

s to

q~ f !5
dQ~ f !

d f
5Q8~ f !. (15)

Upon expansion of the bracketed terms in~14!, the equation as-
sumes the form

f q~ f !2Q~ f !52
a2k2

8
1

3

16
q2~ f !2

1

128a2k2 q4~ f !. (16)

Fig. 6 Stress field for plane stress mode I crack under the von
Mises yield condition „elliptically shaped …. After †1‡.
Transactions of the ASME
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On the surface,~16! appears to be a formidable differential equ
tion to solve being of quartic degree. Typically, a first order d
ferential equation of degree higher than one requires as an i
mediate step a solution of an algebraic equation of the s
degree as that of the equation itself. However, in this case
left-hand side of~16! has the form of a Clairaut equation@6#,
which will simplify the solution process considerably. The ope
tional procedure to solve a Clairaut equation is to substitute
arbitrary constant for the first derivative appearing in the equat
and solve the expression for the dependent variable. The solu
of the differential equation in this case is the dependent varia
Q, where c is the constant of integration. Upon applying th
procedure to~16!, it becomes

f c2Q~ f !52
a2k2

8
1

3

16
c22

1

128a2k2 c4. (17)

Now reverting to the original definition forQ( f ), i.e., ~13!, one
finds from ~17! that

f c2
1

2
p222 f 252

a2k2

8
1

3

16
c22

1

128a2k2 c4. (18)

By substituting the definition ofp from ~11! into ~18!, the solution
to the original second order differential equation is reduced
quadrature, i.e.,

6u1
a

2
5E d f

Aa2k2/42
3
8 c21 c4/64a2k2 12c f24 f 2

,

(19)

wherea represents the second constant of integration. The i
gral in ~19! can be evaluated using either an integral table or us
a symbolic computer program with the result being an inve
trigonometric function off . Upon inversion of this elementar
function, one finds the explicit form of the general solution of~10!
as

f ~u!5
c

4
6S ak

4
2

c2

16akD sin~2u1a!. (20)

It can be shown thatf (u) of ~20! represents a class of solutions
~10!, which generate uniform states of stress.

Another possible type of solution of the original differenti
equation~10! is a singular solution. Singular solutions represe
envelopes of general solutions. However, they cannot be der
from the general solution by simply selecting particular values
the arbitrary constants. For Clairaut’s equation, a method of fi
ing singular solutions~if they exist! is described in@6# and will be
used here. In order to find the singular solution, one must first t
a derivative of the governing equation~16! with respect to the
independent variablef , i.e.,

Q9~ f !S f 2
3

8
q2

1

32a2k2 q3D50. (21)

This procedure sets up a specific relationship betweenq and f
related to the envelope of the general solution. Next the term
the parentheses in~21! is set equal to zero and the expressi
solved forq( f ). The only real-valued solution of this cubic alge
braic equation forq( f ) is

q~ f !52A3 A4a4k4f 22a6k622a2k2f

1
2a2k2

A3 A4a4k4f 22a6k622a2k2f
. (22)

When ~22! is substituted forq into the original differential equa-
tion and solved, a singular solution is obtained.

Upon substituting the definition ofQ( f ) into ~16!, one finds
that
Journal of Applied Mechanics
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p5
d f

du
56Aa2k2

4
2

3

8
q2~ f !1

q4~ f !

64a2k2 12q~ f ! f 24 f 2,

(23)

where q( f ) is given by ~22!. From ~23! one further infers by
separating variables and integrating that

6u1b

5E d f

Aa2k2/42
3
8 q2~ f !1 q4~ f !/64a2k2 12q~ f ! f 24 f 2

,

(24)

whereb is a constant of integration.
The implicit form of a singular solution of~10! is obtained from

~24!, provided the integral exists. However, evaluating the integ
analytically is difficult in its present form due to the complicate
expressionq( f ). Nevertheless, it can be accomplished by noti
a simple parametric representation of~22! exists in the form

f 5
ak

2
sinc5

ak

4i
~eic2e2 ic!,

q54ak sin
c

3
5

2ak

i
~eic/32e2 ic/3!. (25)

By substituting the complex representations of bothf andq from
~25! into ~24! produces a simplified form of the integral

6u1b5
1

2 E0

c ~11e2ic!dc

~12e2ic/31e4ic/3!3/2. (26)

The symbolic computer program Mathematica®~Wolfram Re-
search, Urbana, IL! was used to integrate~26! to yield

u1b5
3
4 ig~c!, where

g~c!522c i /31 ln~22e2ic/312A12e2ic/31e4ic/3!

1sinh21S 122e2ic/3

)
D 1sinh21 321/22 ln 3, and

(27)

c5sin21S 2 f s

ak D ,

where the ambiguous6 sign in front ofu in ~26! has been made
positive in anticipation of the application to follow.

Equation~27! represents a singular solutionf s of ~10! in im-
plicit form.1 The constantb in ~27! represents physically a rigid
body motion. Although the notation of~27! contains imaginary
numbers the result is actually real-valued.

From the general solution~20! and the singular solution~27! a
statically admissible stress field representing the mode I pl
stress problem for a perfectly plastic material will be found.

A solution will be sought having a uniaxial tensile state
stress along the crack faces of magnitude 2k, as indicated in Fig.
7. The boundary condition of zero traction (su50,t ru50) is sat-
isfied along the crack faces by choosing the negative sign i
cated in~20! and adjusting the arbitrary constants to be

c52k, a5p/2, → f OAB5k sin2 u, (28)

where the subscript onf indicates the sector over which this so
lution applies in Fig. 7.

1See Appendix B for an explicit form of the singular solution of~10!.
JANUARY 2005, Vol. 72 Õ 65
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Similarly, a biaxial state of tensile stress of magnitudeak ~point
M 8 of Fig. 2! is desired ahead of the crack, wherea is defined in
~3!. The following choice of the constantc in ~20! generates this
biaxial state of stress for region OCD of Fig. 7

c52ak→ f OCD5ak/2. (29)

Now an attempt will be made to connect the two uniform states
stress in regions OAB and OCD with a fan defined by the singu
solution ~27!. A requirement for equilibrium across boundari
OB and OC is thatf (u) and f 8(u) be continuous, i.e., four bound
ary conditions.

First, uOB and f OB are found numerically from the two simul
taneous equations generated by equatingp( f OBC) from ~23! to
f OAB8 (u) determined from~28!, together with f OAB(u)5 f OBC .
Next, the phase angleb of the fan follows by substituting the now
known values off OB anduOB into ~27!. Following this, the angle
uOC is determined from~27! by substituting the known value ofb
together with the value off OCD from ~29!. The results are sum
marized below

uOB557.2 deg, b5220.5 deg, uOC5155.5 deg. (30)

It should be pointed out that the system is over determined
one now needs to check that the fourth boundary condition
equilibrium is also satisfied. The fourth boundary condition
quires that the fan derivativep of ~23! be zero atuOC5155.5 deg
becausef OCD is constant throughout its domain. This is verifie
by substituting the value off OCD from ~29! into ~23!.

The stress fields associated with functionsf OAB , f OBC , and
f OCD by ~7!–~9! are plotted in Fig. 8. One notes that all stress
are continuous throughout the entire domain. In addition, ther
no compressive region anywhere in the field.

To the best of the author’s knowledge, the solutions of the
stresses have not been previously solved for the alternative
Mises yield condition. However, the characteristics related to

Fig. 7 Characteristics for plane stress mode I crack under the
alternative von Mises yield condition „parabolically shaped …

Fig. 8 Stress field for plane stress mode I crack under alter-
native von Mises yield condition „parabolically shaped …
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fan have previously appeared in the literature@7,8#, and as such
their derivation will not be repeated here. The curved characte
tics in the fan are of the form

r 5r 0 /sin3/2S 2g1p

3 D , 2p/2<g<p (31)

where r 0 is constant along a characteristic andg is a varying
parameter (du5dg).

This family of characteristics asymptotically approaches l
OC in Fig. 7 (g5p), as the stress field approaches the biax
stateak, which is an elliptic point on the yield surface. Bein
related to hyperbolic equations, there is also a second family
characteristics in the fan, which are radial lines. At the interfa
OB both families of characteristics have smooth transitions as
stress fields are continuous. Thus the characteristics in the uni
stress region OAB make angles of 57.2 deg and 122.8 deg
the crack line OA, as determined from~30! and ~31!.

Discussion
In the context of a perfectly plastic solid, a stress discontinu

represents physically the last remnant of an elastic region. Ind
the stress discontinuity observed in the perfectly plastic limit
the plane stress mode I power law solution@1# can be eliminated
under the conventional von Mises yield condition provided o
generalizes the problem to include linear elastic sectors in a
tion to perfectly plastic sectors, as in@9#. Thus the formation of a
stress discontinuity in the plastic region of a plane stress mo
crack problem under the von Mises yield condition depends
certain a priori assumptions about the neighboring regions.

References@9,10# address the more general mixed mode cra
problem, where the mode I problem is considered as a spe
case. In@9# the plane stress linear elastic/perfectly plastic mod
problem is examined both analytically and numerically usi
asymptotic methods and finite element analyses. For the analy
portion, a statically admissible solution was found which is ind
pendent of the radial distance from the crack tip. For validation
the analytical solution, a finite element analysis employi
Prandtl-Reuss flow theory was employed. The analytical and
merical results of@9# agree very well with one another near th
crack tip. No stress discontinuity was indicated in either analy
In contrast, a numerically determined stress distribution o
slightly different from the discontinuous stress field of@1# forms
as a power law material approaches the perfectly plastic s
under the von Mises yield condition@10#. A fully plastic state
without a stress discontinuity and without elastic regions w
found in @9# only for a pure mode II loading. The results of@9#
also concur with those of an earlier elastic-plastic finite elem
analysis in@11# for the pure mode I problem. That study involve
the development of independent finite element programs for b
linear elastic/perfectly plastic materials and linear elastic/pow
law hardening materials employing flow theory under the v
Mises yield condition.

The issue of completeness for the conventional plane stress
Mises yield condition in regard to the mode I crack problem w
addressed in@12#. The alternative von Mises yield condition doe
not have the same limitation as the traditional von Mises in t
regard. As such it admits the continuous stress field derived h
for the mode I crack problem within a perfectly plastic analys
The disadvantage of the using the alternative von Mises y
condition instead of the conventional is the significant increase
the degree of the governing ordinary or partial differential eq
tion and hence the difficulty of solving it analytically.

The solution presented in this paper for a semi-infinite len
crack is readily extended to the case of the finite length crack. O
need only position a second crack tip at point A of Fig. 7, intr
duce a second characteristic fan centered at A, and a second
ial stress region to the right. The stress field follows immediat
from the semi-infinite crack solution using symmetry. Concern
this extension, a rigid elastic region would need to be introdu
Transactions of the ASME



d

l

p

a

p

h
i
p

t

t
a

n

l

5.
a-

is

rm
n is

f

, a

,’’ J.

stic

las-

e I
t.

of

s in

b-

of
ech.

te

.

udy
stic
at point B of Fig. 7, with the rigid elastic/perfectly plastic boun
ary following two different curved characteristics to the left and
the right. Lacking a stress discontinuity, a kinematically adm
sible velocity field is readily found for this particular stress fie
A presentation of this velocity analysis will appear in a futu
publication. The author is unaware of the existence of a com
ible velocity field for the stress field plotted in Fig. 6.

Whether or not a power-law type material can be developed
the alternative von Mises yield condition is an open question
seems worthy of consideration in the future. The solution p
sented here would serve as a comparison as a limiting case
perfectly plastic material for a mode I crack problem.

It is curious to note that the stress field derived in this pa
resembles the Prandtl and Hill stress fields for plane strain~see,
e.g.,@2#!, more than the Hutchinson solution@1# for plane stress,
in that the fan lies between two regions of uniform stress, rat
than lying ahead of two uniform stress regions. This geome
change might have important implications regarding the stren
of the strain singularity in steady-state crack propagation pr
lems @13,14#.

Concerning elastic-plastic problems, the solution presented
is consistent with a state of stress with indeterminate princ
directions (sx5sy ,txy50) found ahead of the mode I crack ti
along the crack line as determined using Westergaard poten
~see, e.g.,@2#! for linear elastic materials. For a steadily movin
crack, an elliptic region of plastic stress was noted in front of
crack tip in @15#.

Appendix A
The technique used to solve the governing differential equa

~10! for the alternative von Mises yield condition in this paper c
also be used to solve analogous problems for the traditional
Mises yield condition and the Tresca yield condition in pla
stress.

For the von Mises, the equivalent of~10! is

3

4
$@ f 9~u!#214@ f 8~u!#2%53k22F f 9~u!14 f ~u!

2 G2

. (A1)

Note that the terms in the braces and brackets are exactly
same form as those appearing in~10!. Hence the substitution of Q
from ~13! will also simplify ~A1!. The result of this substitution is
another equation of the Clairaut type. A class of solutions rela
to uniform states of stress can be found from~A1! in much the
same way as~20! was found for the alternative von Mises yie
condition.

Concerning the singular solution of~A1!, the relationship analo-
gous to~22! is

q53 f . (A2)

Using ~A2! its singular solution follows as

f s
M56k cos~u1b!. (A3)
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Solution ~A3! generates the stress field of the fan OCD in Fig.
For the Tresca yield condition, the ordinary differential equ

tion for the parabolic region MN of the yield condition of Fig. 1

A@ f 9~u!#214@ f 8~u!#254k2@ f 9~u!14 f ~u!#. (A4)

Again the substitution of Q from~13! will reduce the equation to
the Clairaut type, and a simple general solution related to unifo
states of stress can be found. However, when a singular solutio
attempted, the result analogous to~22! is independent ofq, i.e.,

f s
T5k. (A5)

No fan of slip lines is generated byf s
T . Instead a biaxial state o

stress of magnitude 2k is determined from~A5!.

Appendix B
Subsequent to submitting this manuscript for publication

simple explicit form of the singular solution of~10! was obtained
as

fs~u!5
ak

4 F32sin2
2

3
~u1b!Gsin

2

3
~u1b!. (B1)
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The Coupled Thermoelastic
Transversely Isotropic Bimaterial:
Interface Crack Extension
A semi-infinite crack grows at a constant subcritical speed along the interface of rig
bonded, dissimilar transversely isotropic, coupled thermoelastic half-spaces. Shea
normal loads that move on the crack faces drive the process. A dynamic steady s
plane strain is considered. Robust asymptotic full-field solutions for the related proble
translating interface disturbances are first obtained. These lead to coupled singular
gral equations for the crack problem that are solved analytically. Expressions for
crack opening components and discontinuity in temperature between crack face
traction and temperature change ahead of the crack, and debonding energy rat
presented. These show that the critical crack speed is the minimum of the two Ra
speeds and, if it exists, the Stoneley speed. The case of zinc bonded to a thermal
rigid solid is examined, and calculations for interface temperature change and debon
energy rate given. Apart from any fracture criterion, these parameters show sensitiv
crack speed and to the extent which compressive crack face loading dominates
loading. Indeed, interface temperature change may decrease in magnitude with
speed when shear loading dominates.@DOI: 10.1115/1.1825435#
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1 Introduction
The interface crack in equilibrium has been considered@1–3#

for an isotropic bimaterial and asymptotic dynamic@4# and tran-
sient @5# studies also exist. The equilibrium interface crack in
anisotropic bimaterial@6–8#, and the dynamic case for an ortho
tropic or transversely isotropic bimaterial@9,10# have been con-
sidered. These treatments are isothermal, and so this article
sents a study of interface crack extension in a bimate
consisting of rigidly bonded, transversely isotropic, coupled th
moelastic half-spaces. A dynamic steady state of plane stra
assumed, in which a semi-infinite interface crack grows at a c
stant rate under the action of translating crack face loads.

In part I, general results for a disturbance moving on a tra
versely isotropic, coupled thermoelastic half-space are giv
These are used to obtain full-field solution expressions for tra
lation of a strip of displacement and temperature discontinu
along the interface of rigidly-bonded dissimilar half-spaces. T
translation speed is constant and subcritical, and a dynamic st
state of plane strain is examined. The findings of part I then fo
the basis for Part II—analysis of interface crack extension.

1.1 Basic Equations in the Half-Space. Consider a half-
space at rest at a uniform~absolute! temperatureT0 . It is trans-
versely isotropic, with Cartesian coordinates (x,y,z) defining the
plane (xz) and axis~y! of material symmetry. The half-space su
face is taken to bey50, and the half-space itself can be eith
y.0 or y,0. If a boundary disturbance induces a state of pla
strain with respect to (x,y), then, from results for anisotropi
elasticity @11–15# and coupled thermoelasticity@16,17#, the rel-
evant field variables are the (x,y)-components of displacemen
(ux ,uy), change in absolute temperatureu, and tractions
(sx ,sy ,sz ,sxy). The relevant material properties are elastic co

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, October
2003; final revision, May 28, 2004. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Professor Robert M. McMeeking, Jour
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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stants (c11,c12,c13,c22,c44), mass densityr, specific heat~at
constant strain! cv , thermal expansion coefficients (ax ,ay), and
thermal conductivity parameters (Kx ,Ky). These obey constraint
@13,16#

c11.uc13u, ~c111c13!c22.2c12
2 , c44.0 (1a)

~Kx ,Ky!.0, ~ax ,ay!.0, r.0, cv.0 (1b)

The plane strain disturbance on the surface is confined to a re
of fixed dimensions that translates in the positivex-direction with
constant subcritical speedv. A dynamic steady state ensues,
that it is convenient to translate the Cartesian system with
region. The independent variables are then (x,y), and time differ-
entiation in the inertial frame can be written as2v( ) ,x ; the op-
eration ( ),s denotess-differentiation.

It is convenient to introduce the Lame’ shear modulus symb
rotational wave speed, thermoelastic characteristic length and
erage conductivity

m5c44, v r5Am

r
, h5

Kx1Ky

2rcvv r
, ã5

1
3~2ax1ay! (2)

nondimensionalized disturbance speed

c5
v
v r

(3)

and, after@13#, dimensionless constants

a5
c22

c44
, b5

c11

c44
, m511

c12

c44
,

m3511
c13

c44
, g511ab2m2 (4)

Dimensionless constants

«5
T0

cv
~ ãv r !

2, Cs5
2Ks

Kx1Ky
(5a)

Gx5~b1m321!
ax

ã
1~m21!

ay

ã
, Gy52~m21!

ax

ã
1a

ay

ã
(5b)
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are also introduced. From@11–17# the governing equations in th
absence of body forces can then be written as

~b2c2!ux,xx1ux,yy1muy,xy2ãGxu ,x50 (6a)

mux,xy1~12c2!uy,xx1auy,yy2ãGyu ,y50 (6b)

h~Cxu ,xx1Cyu ,yy!1cFu1
«

ã
~Gxux,x1Gyuy,y!G

,x

50 (6c)

Similarly, the constitutive relations take the form

F sx

sy

sz

sxy

G5mF b m21 Gx 0

m21 a Gy 0

m321 m21 Gx 0

0 0 0 1

GF ux,x

uy,y

2ãu
ux,y1uy,x

G (7)

1.2 Transform Solution in Half-Space. A bilateral Laplace
transform and inverse can be defined as@18#

f̂ 5E
2`

`

f ~x!e2pxdx, f ~x!5
1

2p i E f̂ epxdp (8)

Transform variablep is imaginary in the first~transform! integral,
and the second~inversion! integration is taken over a Bromwic
contour in thep-plane. Application of the transform integral to~6!
in view of ~7! and the requirement that (ux ,uy ,u) be bounded as
Ax21y2→` gives the general transforms

pûx5ã( ~GxB
21kyqi

2!c ie
2pqi uyu (9a)

pûy52ã sgn~y!( ~kx1Gyqi
2!qic ie

2pqi uyu (9b)

û5a( T~qi !c ie
2pqi uyu (9c)

for yÞ0. Summation is over indexi 5(1,2,3) and thec i are co-
efficients to be determined by imposing conditions consistent w
the surface disturbance. The dimensionless term

T~q!5q41~D01A0
21B2!q21A0

2B2 (10)

and dimensionless parameters

AaA05Ab2c2, B5A12c2 (11a)

kx5~b2c2!Gy2mGx , ky5aGx2mGy (11b)

aD05~a21!~b21!2m2 (11c)

The anisotropy coefficientD050 in the isotropic limit. Dimen-
sionless quantitiesqi

2 are the three roots of

S Cx1Cyq
21

c

hpDT~q!1
c«

ahp
@Gx

2B21~kxGy1kyGx!q
21Gy

2q4#

(12)

Equation~12! and the cubic root formula@19# imply that the form
of qi may require inversion of~9! by numerical quadrature. There
fore, robust asymptotic expansions of the roots of~12!, ~9! and
corresponding stress transforms are used. Specifically, a trans
valid for uhpu!1 has an inverse valid forux/hu@1. Isotropic cal-
culations@17# show thath'O(1028) m. Expansions can then b
made for smallupu and only lowest-order terms kept. The roots
~12! become

~q1 ,q2!5
A2p

Ap
~A8,B8!, q35

1

p
A2p

h8
(13)

Lengthh8 and dimensionless terms (A8,B8) are defined by~2!–
~5! and
Journal of Applied Mechanics
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f

h85
aCy

a«c
h, A85V1v, B85V2v (14a)

2~V,v!5AD«1~A«6B!2, A8B85A«B (14b)

Aa«A«5Ab«2c2, a«D«5~a«21!~b«21!2m«
2 (14c)

These expressions feature

a«5a1«x , b«5b1«y , m«5m1A«x«y (15a)

m3«5m31«y , g«511a«b«2m«
2 (15b)

«s5«Gs
2 (15c)

The («x ,«y) are thermoelastic coupling constants@17# for trans-
verse isotropy. Like its isothermal counterpart in~11c!, anisotropy
coefficient D«50 in the isotropic limit, as does the anisotrop
factor D defined by~11b! and

D5GxGyB
22kxky , c2D5NxNyB

22MxM y (16a)

Ms5ks1GsB
2, Ns5ks1Gs (16b)

It can also be shown that (D,ks ,Ms ,Ns) are invariant under the
isothermal-thermoelastic transformation (a,b,m)→(a« ,b« ,m«).

1.3 Bounded Solutions: Material Characterization
Study of ~11a! and ~14! shows thatc56(1,Ab,Ab«) are branch
points of (B,B8), A0 and (A« ,A8), respectively, in thec-plane. In
light of ~2!–~5! (v r ,Abv r ,Ab«v r) are the rotational, isotherma
dilatational, and thermoelastic dilatational wave speeds in the
terial symmetry plane. Because@13# b«.b.1, terms (A0 ,A« ,B)
are purely real for all subsonic (0,v,v r) disturbance speeds
Terms (A8,B8) share the branch cuts of (A« ,B), respectively, but,
through their components~V,v!, exhibit others as well. Modifica-
tion @20# of a system for isothermal transverse isotropy@13# gives

Category 1: 2Aa«b«<g«<11a«b« ~1,b«,a«!

a«1b«<g«<11a«b« ~1,a«,b«!

2a«<g«<11a«
2 ~1,b«5a«!

Category 2: 11b«,g«,a«1b« , g«
224a«b«,0

Category 3: g«,11b« , g«
224a«b«,0

In the c-plane,V and v exhibit, respectively, for category 3 th
branch points

c56c0 , c05A12S a«A2D«2m«

a«21 D 2

(17a)

c56 i c̄0 , c̄05AS a«A2D«1m«

a«21 D 2

21 (17b)

Term v exhibits branch points

c56cc , cc5AFm«~6 !ia«AD«

a«21 G2

21 (18)

for category 1, and~17b! for category 2. These points collapse
the origin and (A8,B8)→(A« ,B) in the isotropic limit (D«50).
The nonreal branch points~17b! and~18! do not arise for positive
real disturbance speeds. Thus, for category 1 and 2 (A8,B8,V) are
given by ~14! and are positive-real for 0,ucu,1 on the
Re(c)-axis for subsonicv. However 0,c0,1 in ~17a!, so that
(A8,B8,V) for category 3 are all positive-real only forc0,ucu
,1, i.e., v is in the subsonic rangec0v r,v,v r . For v in the
range 0,v,c0v r , V remains positive-real for 0,ucu,c0 , but
~14a! is replaced by

A85V7 i v̄, B85V6 i v̄, v̄5A2D«2~A«2B!2 (19)
JANUARY 2005, Vol. 72 Õ 69
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for Im(c)506, 0,ucu,c0 . In light of all this and the fact that
V.(v,v̄)>0, Eq. ~9! is bounded asuyu→` for all subsonicv
when Re(A6p)>0 in thep-plane with, respectively, branch cu
Im(p)50, Re(p),0 and Im(p)50, Re(p).0.

1.4 Translating Interface Strip of Discontinuity. Now
consider two such half-spaces of dissimilar properties, rigi
bonded along interfacey50. This bimaterial is at rest at a com
mon uniform~absolute! temperatureT0 when an interface strip o
discontinuity in displacement and temperature appears and tr
lates in the positivex-direction with a constant subcritical spee
v. The strip is of infinite extent in thez-direction, but of fixed
width, and the discontinuities vary only with location across t
width. The situation is one of plane strain, and we assume th
dynamic steady state is achieved.

Therefore, the basic equations presented above hold for
half-space, with onlyT0 being the same in each set. In particul
~6! and ~7! govern, and (ux ,uy ,u) are bounded forAx21y2

→`. Now, however, interface conditions

ux12ux25Ux~x!, uy12uy25Uy~x!; u12u25Q~x!
(20a)

sxy12sxy25sy12sy25u1,y2u2,y50 (20b)

hold for y50. Subscripts~1,2! signify, respectively, half-space
(y.0,y,0), and discontinuity functions (Ux ,Uy ,Q)[0, x¹L,
where L denotes the strip region. The functions are continuo
except perhaps at isolated locations forxPL; (Ux ,Uy) in particu-
lar vanish continuously at the strip edges.

Transforms~9! are also valid for each half-space. The two c
efficient sets (c i1 ,c i2) are obtained by substitution of~9! and
their traction counterparts for each half-space into the transf
of ~20!. Use of asymptotic results~13!–~16! gives, for example,
the coefficients for half-space 1 (y.0) as

c115
1

S F a«

BD~A82B8!G
1
S 2XBpÛx1YB

A2p

Ap
pÛyD (21a)

c215
1

S F a«

BD~A82B8!G
1
S XApÛx1YA

A2p

Ap
pÛyD (21b)

c315
p2Ûx

Ah181Ah28

h18
3/2

a1

1

SF S «

ã D
2

ã1X121«1X21G
1

p2Ûy

Ah181Ah28

h18
3/2

a1

2

S

A2p

Ap
F S «

ã D
2

ã1Y122«1Y21G
1

pQ̂

Ah181Ah28

h18
3/2ã

a1
(21c)

In ~21! the dimensionless terms

Xs5
m2

m1
R2V1s12~a«A«V!2S1s1N2T1s (22a)

Ys5
m2

m1
R2U1s12~a«BV!2T1s1N2S1s (22b)

Xik5
m i

mk
RiKk14~a«A«V! i~BVNy!k1Ni Pk (22c)

Yik5
m i

mk
Ri~BGyV!k1~a«BV! i Pk1Ni~BNyV!k (22d)

S5
m1

m2
R1M21

m2

m1
R2M112N1N214~a«V!1~a«V!2~A«1B2

1A«2B1! (22e)
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Additional subscripts~1,2! are understood for dimensionles
quantities

U ~A,B!5GxB
22ky~A8,B8!2,

V~A,B!5~A8,B8!@kx2Gy~A8,B8!2# (23a)

S~A,B!5NxB
22M y~A8,B8!2,

T~A,B!5~A8,B8!@Mx2Ny~A8,B8!2# (23b)

that exhibit (A8,B8), and dimensionless terms

K5kyA«1GxB, P5M yA«1NxB (24a)

M5a«A«1B, N5a«A«1~12m«!B (24b)

R52a«c2A«1@a«
2A«

22~m«21!2#B (24c)

that exhibit (A« ,B). TermsR and S are factored forms of Ray-
leigh and Stoneley functions associated with the common pl
(xz) of material symmetry. Their forms are actually simpler th
isothermal isotropic results often used@21,22#. The factorizations
minimize dependence on the anisotropy factorD and~asymptotic!
cubic roots (A8,B8). In particular,~9! and ~21! show that these
terms appear only in expressions for the corresponding half-sp
i.e., the category of one half-space has limited effect on transf
solutions for the other. Moreover, even for category 3 case~19!,
the real-valued nature of strip speed dependence in transform
lutions is maintained because contributions corresponding
(c1 ,c2) for the given half-space are complex conjugates w
respect toc for that half-space. It can be shown that

R5a«b«2~m«21!2.0, R52Aa«~b«21!,0, R50
(25)

for v5(0,6v r ,6cRv r), respectively, where 0,cR,1. In light of
~2!, then, vR5cRv r is the thermoelastic Rayleigh speed in th
material symmetry plane. Similarly,

S5Aa«1D«11~Aa«11Ab«1!2Aa«2D«21~Aa«21Ab«2!2

3~Aa«1b«21Aa«2b«1!1~Aa«b«1m«21!1

3Fm1

m2
~Aa«b«112m«!1Aa«2b«21~Aa«b«112m«!2G

1~Aa«b«1m«21!2Fm2

m1
~Aa«b«112m«!2Aa«1b«1

1~Aa«b«112m«!1G (26a)

S5Aa«1~b«121!S m2

m1
R22

m1

m2
M212N2D

12~a«BV!2Ab«121Aa«1D«11b«121 (26b)

for v50 andv5v r1,v r2 , respectively. The corresponding resu
for v5v r2,v r1 follows from ~26b! upon interchange of sub
scripts~1,2!. It can be shown that~26a! is non-negative, but~26b!
and its counterpart are either both positive, or of different sign
the latter instance, a thermoelastic Stoneley speedvS exists, where
0,vS,min(vr1,vr2).

1.5 Full-Field Expressions. In light of ~9! and ~21! the
imaginaryp-axis can serve as the Bromwich contour in the inv
sion integral of~8!. Indeed, integration can be performed with
standard table@23#. As illustration, consider the displaceme
components (ux1 ,uy1) in half-spacey.0. For all subsonic, i.e.,
0,v,min(vr1,vr2), speeds for category 1 and 2 and for the su
sonic range (c0v r)1,v,min(vr1,vr2) for category 3,
Transactions of the ASME
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ux15
1

2pS S UV11
Ut1

v1
D E

L

A18yUx~ t !

t21A18
2y2

dt1
1

pS S Ut18

1
UV18

2v1
D E

L

tUy~ t !

t21A18
2y2

dt1
1

2pS S UV1

2
Ut1

v1
D E

L

B18yUx~ t !

t21B18
2y2

dt1
1

pS S Ut18

2
UV18

2v1
D E

L

tUy~ t !

t21B18
2y2

dt (27a)

uy15
1

pS S Vt18

2v1
2VV18 D E

L

tUx~ t !

t21A18
2y2

dt1
1

2pS S VV1

2
Vt1

v1
D E

L

A18yUy~ t !

t21A18
2y2

dt2
1

pS S Vt18

2v1

1VV18 D E
L

tUx~ t !

t21B18
2y2

dt1
1

2pS S VV1

1
Vt1

v1
D E

L

B18yUy~ t !

t21B18
2y2

dt (27b)

HereL signifies integration over the strip width and

t5t2x (28)

In the speed range 0,v,(c0v r)1 for category 3, however,

ux15
2Ut1

2pSv̄1
E

L
S t11

t11
2 1V1

2y2
2

t12

t12
2 1V1

2y2D Ux~ t !dt

1
UV1

2pSEL
S V1y

t11
2 1V1

2y2
1

V1y

t12
2 1V1

2y2D Ux~ t !dt

1
UV18

2pSv̄1
E

L
S V1y

t11
2 1V1

2y2
2

V1y

t12
2 1V1

2y2D Uy~ t !dt

1
Ut18

pS E
L
S t11

t11
2 1V1

2y2
1

t12

t12
2 1V1

2y2D Uy~ t !dt (29a)

uy15
VV18

2pSv̄1
E

L
S V1y

t11
2 1V1

2y2
2

V1y

t12
2 1V1

2y2D Ux~ t !dt

2
Vt18

pS EL
S t11

t11
2 1V1

2y2
1

t12

t12
2 1V1

2y2D Ux~ t !dt

1
Vt1

2pSv̄1
E

L
S t11

t11
2 1V1

2y2
2

t12

t12
2 1V1

2y2D Uy~ t !dt

1
VV1

2pSEL
S V1y

t11
2 1V1

2y2
1

V1y

t12
2 1V1

2y2D Uy~ t !dt (29b)

In both ~29a!, ~29b!,

t165t2x7v̄1y (30)

In ~27a! and ~29a! dimensionless quantities

Ut15V1M18
m2

m1
R21V1N18N21B1@a«

2A«
21c22~m«

21!2#1~a«A«V!2 (31a)
Journal of Applied Mechanics
UV154~a«BV!1~a«A«V!21N1N21M1

m2

m1
R2 (31b)

Ut18 5~a«BV!1N21N1~a«BV!2 (31c)

UV18 52V1N18~a«BV!21m«1B1

m2

m1
R21

1

2
B1@a«

2A«
21c22~m«

21!2#1N2 (31d)

In ~27b! and ~29b! dimensionless quantities

Vt15V1M18
m2

m1
R21V1N18N21A«1@a«

2A«
21c22~m«

21!2#1~a«BV!2 (32a)

VV154~a«A«V!1~a«BV!21N1N21M1

m2

m1
R2 (32b)

Vt18 5~a«A«V!1N21N1~a«A«V!2 (32c)

VV18 52V1N18~a«A«V!21m«1A«1

m2

m1
R21

1

2
A«1@a«

2A«
21c22~m«

21!2#1N2 (32d)

In addition to parameters in~24!, dimensionless terms (M18 ,N18)
appear in~31! and ~32! where, with additional subscript~1,2!
understood,

M 85a«A«2B, N85a«A«1~m«21!B (33)

The study of~27!–~33! shows that the anisotropy factorD1 in the
denominators of~21! cancels from field variable expressions.
can be shown that~27! and~29! are identical wheny50 because
the denominator terms (v1 ,v̄1) cancel out. They are also ident
cal whenc15c01. Then (v1 ,v̄1)50, but results are finite be
cause the factors of (1/v1,1/v̄1), respectively, vanish themselve
when (v1 ,v̄1)50. The functionS in ~27! and~29!, however, does
imply singular behavior atvS , if it exists. Therefore, the subcriti-
cal speed requirement for the translating interface strip should

0,v,min~v r1 ,v r2 ,vS! (34)

2.1 Interface Crack Problem. Consider two dissimilar
transversely isotropic, coupled thermoelastic half-spaces. In te
of Cartesian coordinates (x,y,z) they have interfacey50, and are
rigidly bonded over the portiony50, x.0. The interface (xz)
plane and its normal~y-direction! coincide with, respectively, the
plane and axis of material symmetry for both half-spaces. Th
are at rest at uniform~absolute! temperatureT0 when opposing
shear and normal forces~line loads in thez-direction! (Fx ,Fy) are
applied to the half-space surfaces in the separation zoney50, x
,0. These are translated in the positivex-direction with subcriti-
cal speedv, thereby inducing debonding. A dynamic steady st
of plane strain ensues, in which the interface crack also exte
with speedv, and the forces maintain a fixed distanceL from the
crack edge. It is convenient to translate the Cartesian system
the crack, so that (x,y)50 always locates its edge. Equation~6!
and ~7! hold for each half-space, and the interface conditions

sxy12sxy25sy12sy25u1,y2u2,y50 ~y50! (35a)

sxy152Fxd~x1L !, sy152Fyd~x1L !,

u1,y50 ~y50,x,0! (35b)

ux12ux25uy12uy25u12u250 ~y50,x.0! (35c)

whered is the Dirac function. The last condition in~35b! implies
negligible heat flux across crack faces. Comparison of~35! with
~20! shows that, if (Ux ,Uy) andQ are interpreted as, respectivel
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the crack opening and discontinuity in temperature between c
faces, and can be found such that~35b! is satisfied, then the part
results also serve as the interface crack solution.

2.2 Integral Equations. Setting y50 in counterparts for
the far-field results~27! and ~29! yields, upon substitution into
~35b!, coupled integral equations

Am1m2

S S 2D
dUy

dx
1

DA

p
~vp!E

2`

0 dUx

dt

dt

t2xD 52Fxd~x1L !

(36a)

Am1m2

S S D
dUx

dx
1

DB

p
~vp!E

2`

0 dUy

dt

dt

t2xD 52Fyd~x1L !

(36b)

1

Ah181Ah28

d

dx Ex

0 dt

Ap~ t2x!
S Q2

Tx

S

dUx

dx

1
2Ty

pS
~vp!E

2`

0 dUy

dt

dt

t2t D 50 (36c)

for x,0, where (vp) signifies Cauchy principal value integration
Dimensionless terms

DA52Am1

m2
R1~a«A«V!212Am2

m1
R2~a«A«V!1 (37a)

DB52Am1

m2
R1~a«BV!212Am2

m1
R2~a«BV!1 (37b)

D5Am1

m2
R1N22Am2

m1
R2N1 (37c)

appear in~36a!, ~36b!, while ~36c! exhibits dimensionless quant
ties

Tx5S «

ã D
2

X121S «

ã D
1

X21 (38a)

Ty5S «

ã D
2

Y122S «

ã D
1

Y21 (38b)

2.3 Solution. The weak coupling of unknowns (Ux ,Uy ,Q)
in ~36! allows ~36a!, ~36b! to be treated separately. Application o
singular integral equation techniques@24#, after @9#, gives the ei-
genvalue equation

DADB cos2 py1D2 sin2 py50 (39)

supported by the observation that (DA ,DB)>0 for 0,v
,min(vR1,vR2) and results

DADB2D25R1R2S, q5
D

ADADB

(40)

In light of ~40! and the discussion above,uqu,1 for 0,v
,min(vR1,vR2,vS). Then~39! gives dimensionless complex conju
gate eigenvalues

y652
1

2
6 i z, 2pz5 ln

12q

11q
(41)

and it is noted that (z,D) are of opposite sign. If, however,v lies
between the minimum and the minimum of the remaining t
speeds, thenuqu.1 and~39! gives

y656 i z̄, 2pz̄5 ln
q21

q11
(42)
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This imaginary result implies purely sinusoidal eigenfunctions
~36a!, ~36b!. Thus, in what follows, subcritical interface crac
extension is defined by

0,v,min~vR1 ,vR2 ,vS! (43)

It is noted that~43! is more restrictive than the part I conditio
~34!. It should also be noted that results for isothermal anisotro
@25# and isotropic thermoelasticity@26# indicate that (vR1 ,vR2)
,vS when the Stoneley speed exists. In view of~39!–~41!, the
analytical solutions to~36a!, ~36b! are

dUx

dx
5

ADB

pR1R2

1

x1L
A L

uxu
F̄

Am1m2

sinS f2z ln
L

uxu D
1

DFy

R1R2Am1m2

d~x1L ! (44a)

dUy

dx
5

ADA

pR1R2

1

x1L
A L

uxu
F̄

Am1m2

cosS f2z ln
L

uxu D
2

DFx

R1R2Am1m2

d~x1L ! (44b)

for x,0, where the amplitude and phase angle are

F̄5ADBFx
21DAFy

2, f5tan21ADB

DA

Fx

Fy
S 2

p

2
,f,

p

2 D
(45)

Equation~36c! gives an Abel integral equation that, in view o
~36a!, ~36b! and ~44!, yields

Q5
1

pR1R2S S Tx1
2D

DB
TyD ADB

x1L
A L

uxu
F̄

Am1m2

sinS f2z ln
L

uxu D
2F2Ty

DB
1

1

R1R2S S Tx1
2D

DB
TyD G Fy

Am1m2

d~x1L !1
C

Apuxu

(46)

Because its term shows weaker decay asuxu→`, we set the inte-
gration constantC[0. For the single isotropic material limit, ad
ditional terms in the asymptotic integral transforms developed
Part I allow stronger coupling of (Ux ,Uy ,Q) than that displayed
in ~36!. An exact solution for the isotropic limit case@27,28# gives
more complicated forms than~44! and~46!, but behavior indicates
that the stronger coupling has marginal effects, especially a
from the crack edge.

2.4 Interface Functions. The same procedure that give
~36! yields, upon substitution of~44a!, ~44b! and use of Cauchy
residue theory, the analytical results

sxy
0 5

F̄

pAR1R2S

ADA

x1L
AL

x
sinS f2z ln

L

x D (47a)

sy
05

F̄

pAR1R2S

ADB

x1L
AL

x
cosS f2z ln

L

x D (47b)

u05
21

pAR1R2S

Ah18h28

Ah181Ah28
S «2

ã2Ah28
Y121

«1

ã1Ah18
Y21D

3
F̄

Am1m2DB

1

x1L
AL

x
cosS f2z ln

L

x D (47c)

for y50, x.0. The superscript indicates that functions are va
for both half-spaces. The oscillatory behavior in~44!, ~46!, and
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~47! is typical for interface cracks@1–3#. In ~44b! and ~47b!, it
implies crack face interpenetration and a compressive norma
terface stress, unlessx is restricted by

2
p

2
,f2z ln

L

uxu
,

p

2
(48)

For example, when (z.0,Fx50), ~48! gives

e2p/2z,
uxu
L

,ep/2z (49)

Isothermal results@9,10# indicate thatuzu'O(1021). Thus, ~48!
shows that the aberrant behavior occurs either at great dista
~as a multiple ofL! from, or in small regions near~as a fraction of
L!, the moving crack edge. Moreover, certain field variable co
binations are free of oscillations:~44a!, ~44b! and ~47a!, ~47b!
give, respectively,

ADAS dUx

dx D 2

1DBS dUy

dx D 2

5
ADADB

pR1R2

F̄

Am1m2

A L

uxu
1

x1L
~x

,0,x1LÞ0! (50a)

ADB~sxy
0 !21DA~sy

0!25
ADADB

pAR1R2S

F̄

x1L
AL

x
~x.0!

(50b)

Similarly, derivation of the debonding energy rate~per unit length
of crack edge! in the manner of@29# yields the positive result

Ed5
v

pL

ADADB

AR1R2S

F̄2

Am1m2

(51)

Equation~51! shows that the upper limit in~43! produces an un-
bounded energy rate, whether that limit is a Rayleigh speed o
it exists, a Stoneley speed.

2.5 Illustration: Rigid-Elastic Bimaterial. Consider half-
space 2 (y,0) to be rigid, but capable of conducting heat. Th
~44! and ~46! for y50, x,0 can be written as

m1

s̄

dUx

dx
5

2

p S a«VAB

R D
1

f̄

11x/L
A L

uxu
sinS f2z ln

L

uxu D
2S N

RD
1

f yLd~x1L ! (52a)

m1

s̄

dUy

dx
5

2

p S a«VAA«

R D
1

f̄

11x/L
A L

uxu
cosS f2z ln

L

uxu D
1S N

RD
1

L f xd~x1L ! (52b)

Q

ū
5

2

p S «VNyAB

R D
1

f̄

11x/L
A L

uxu
sinS f2z ln

L

uxu D
2S «P

R D
1

f yLd~x1L ! (52c)

where~41! and ~43! give

2pz5 lnS 2a«VAA«B1N

2a«VAA«B2N
D

1

(53a)

f̄ 5AA« f y
21B fx

2, f5tan21A B

A«

f x

f y
S 2

p

2
,f,

p

2 D
(53b)

For y50, x.0 results~47! take the form
Journal of Applied Mechanics
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sxy
0

s̄
5

2

p S a«VAA«

AMR
D

1

f̄

11x/L
AL

x
sinS f2z ln

L

x D (54a)

sy
0

s̄
5

2

p S a«VAB

AMR
D

1

f̄

11x/L
AL

x
cosS f2z ln

L

x D (54b)

u0

ū
52

2

p S «VGyAB

AMR
D

1

f̄

11AS rcv

Ky
D

2

S aCy

a«

hv r D
1

3
1

11x/L
AL

x
cosS f2z ln

L

x
D (54c)

and debonding energy rate~51! becomes

Ed

Ē
5

4

p S a«VAc

AR4
D

1

2

AS A«B

MRD
1

f̄ 2 (55)

Use of dimensionless loading parameters

~ f x , f y!5
~Fx ,Fy!

AFx
21Fy

2
~ f x

21 f y
251! (56)

and, respectively, the stress, temperature and energy rate a
tudes

s̄5
1

L
AFx

21Fy
2, ū5

s̄

~mã!1
, Ē5

Ls̄2

A~mr!1

(57)

allow the right-hand sides of~54! and~55! to serve as dimension
less measures of interface traction and temperature and en
rate. These measures themselves depend on dimensionless
ables (c1 ,x/L,( f x , f y)), i.e., the crack speed, distance from cra
edge, and relative strength of normal and shear crack face load
These last two are not independent, so that either one can ch
terize relative strength, e.g.,f y50 signifies pure shear andf y
51 signifies pure compression~tensile loading of bimaterial!.

Equation~54c! shows that the thermal properties of the rig
half-space affect the interface temperature change. If the r
half-space is also thermally inert, then the denominator of
f̄ -term becomes unity. We now consider this case, with half-sp
1 (y.0) being the hexagonal material, zinc. Its properties
@30#

c115162.8 GPa, c22562.7 GPa, c12550.8 GPa,

c13536.2 GPa, c44538.5 GPa

r57140 kg/m3

cv5390 J/kg °C, Kx5Ky5124 W/m °C

ax55.818~1026!1/°C, ay515.35~1026!1/°C

at room temperature (T05294 K). These values give, in view o
~2!–~4! and ~15!, the dimensionless solution parameters

a51.6286, b54.2301, m52.3195,

m351.9403, g52.506

a«51.7203, b«54.3024, m«52.4019,

m3«52.0144, g«52.6354

c050.999, cR50.8833

Gx54.6018, Gy55.1181, «50.003485

and values

h51.9178~1028! m, v r52322 m/s
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As noted in part I,c0v r is a speed that arises for category
materials, but does not affect solution behavior on the interf
plane. The value ofc0 given here, moreover, puts the speed b
yond the subcritical range. The isothermal paramet
(a,b,m,m3 ,g) and their«-subscripted thermoelastic counterpa
are seen to be, in keeping with linear coupled thermoelasti
theory@16,17#, perturbations of each other. As noted at the outs
isothermal results@9,10# involved a smaller class of transverse
isotropic materials; specifically, only the category 1 class defi
in Part I.

For the present bimaterial, Table 1 gives the dimensionless
genvalue parameterz for subcritical values ofc1 . Values are seen
to be of O(1021) and to increase with crack speed. Similar b
havior arises for isothermal category I results@9,10#.

A criterion for which interface crack extension occurs is n
imposed in this study. However, some insight into solution beh
ior is possible by examining the dimensionless energy rateEd /Ē
for subcriticalc1 and f y in the range~0,1!. Calculations of~55! are
presented in Table 2, and show increases with both parame
That is, higher crack speeds are associated with higher en
rates, and energy rate increases as the compression compon
crack face loading dominates.

Similarly, data for the dimensionless change in interface te
perature~54c! is presented for subcriticalc1 and f y in the range
~0,1! at locationsx5(0.5L,L,2L) in, respectively, Tables 3–5. Al
entries are negative, indicating that interface temperature d
with interface crack extension. That the drop magnitude fo
given (c1 , f y) decreases withx is predicted by the form of S1C.
Tables 3 and 4 give magnitudes that, like Table 2 entries, incre
with crack speed and dominance by compressive loading. Tab
shows, however, that further from the crack edge, magnitude

Table 1 Eigenvalue parameter z versus dimensionless crack
speed c 1

c1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z 0.0913 0.093 0.096 0.1014 0.11 0.1234 0.1447 0.1826 0.2

Table 2 Dimensionless energy rate Ed ÕĒ versus dimension-
less crack speed c 1 and loading parameter f y

c1 f y50.1 f y50.3 f y50.7 f y50.9

0 0.0 0.0 0.0 0.0
0.1 0.0225 0.0241 0.0294 0.0337
0.2 0.0468 0.049 0.0605 0.0693
0.3 0.0723 0.076 0.0943 0.1098
0.4 0.101 0.1068 0.1345 0.1568
0.5 0.1362 0.1446 0.1864 0.2198
0.6 0.1848 0.1978 0.2633 0.3157
0.7 0.271 0.2943 0.4107 0.5037
0.8 0.2956 0.329 0.496 0.6296

Table 3 Dimensionless interface temperature change u0Õū at
xÄ0.5L versus dimensionless crack speed c 1 and loading pa-
rameter f y

c1 f y50.1 f y50.3 f y50.7 f y50.9

0 20.000486 20.001127 20.002382 20.002984
0.1 20.000489 20.00113 20.002385 20.002987
0.2 20.000495 20.001137 20.002395 20.002997
0.3 20.000505 20.00115 20.002413 20.003016
0.4 20.000524 20.001177 20.002452 20.003059
0.5 20.000547 20.001206 20.002489 20.003097
0.6 20.000591 20.001265 20.002574 20.003189
0.7 20.000677 20.001386 20.002753 20.003386
0.8 20.000928 20.00175 20.003318 20.004014
74 Õ Vol. 72, JANUARY 2005
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decrease with crack speed, especially when shear dominates
face loading. This represents a stronger coupling of speed
loading mode effects.

3 Comments
This article was a two-part study of dynamic interface cra

extension in an unbounded bimaterial formed from rigidly bond
dissimilar transversely isotropic, coupled thermoelastic ha
spaces. The half-spaces were initially at rest at a common unif
temperature, and crack extension was caused by the translati
normal and shear forces on the crack faces. A dynamic ste
state of plane strain was treated, in which forces and crack e
move at the same constant subcritical speed. The interface an
normal coincided with, respectively, the plane and axis of mate
symmetry, and crack face insulation was assumed.

Part I of the article presented full-field results for the relat
problem of a translating strip of discontinuity in interface di
placement and temperature. The use of robust asymptotic form
the corresponding integral transforms led to expressions that w
analytic to within single weighted integrals of the discontinu
functions. This feature was exploited in Part II to yield analytic
formulas for crack opening and discontinuity in crack face te
perature, interface traction and temperature change, and deb
ing energy rate. The formulas showed that the critical crack sp
is the minimum of the two Rayleigh speeds and if it exists, t
Stoneley speed.

For the special case of a rigid solid-zinc bimaterial, calculatio
for the problem eigenvalue parameter, nondimensionalized d
onding energy rate and change in interface temperature w
given. The eigenvalue parameter was seen to behave like its
thermal counterpart. The debonding energy rate increased
with crack speed and the degree to which crack face loadin
dominated by compression. Interface temperature was see
drop, and the drop magnitudes also increased with speed and
pression dominance near the crack edge. However, as dist
from the crack edge increased, drop magnitude could actu
decrease with speed, especially when shear loading is domin

88

Table 4 Dimensionless interface temperature change u0Õū at
xÄL versus dimensionless crack speed c 1 and loading param-
eter f y

c1 f y50.1 f y50.3 f y50.7 f y50.9

0 20.000172 20.000516 20.001204 20.001548
0.1 20.0001721 20.0005163 20.0012047 20.001549
0.2 20.0001726 20.0005178 20.0012082 20.001553
0.3 20.0001735 20.0005205 20.001245 20.001573
0.4 20.0001758 20.0005274 20.0012306 20.001582
0.5 20.0001776 20.0005328 20.001243 20.001598
0.6 20.0001824 20.0005472 20.001277 20.001642
0.7 20.0001929 20.000579 20.00135 20.001736
0.8 20.0002274 20.000682 20.001592 20.002047

Table 5 Dimensionless interface temperature change u0Õū at
xÄ2L versus dimensionless crack speed c 1 and loading pa-
rameter f y

c1 f y50.1 f y50.3 f y50.7 f y50.9

0 20.00004036 20.0002039 20.0005374 20.0007107
0.1 20.00003969 20.0002033 20.0005371 20.0007106
0.2 20.00003872 20.000203 20.0005482 20.0007121
0.3 20.00003699 20.000202 20.0005391 20.0007147
0.4 20.00003459 20.0002018 20.0005439 20.0007226
0.5 20.00002997 20.000199 20.0005455 20.0007273
0.6 20.00002328 20.0001351 20.0005541 20.0007427
0.7 20.00001109 20.0001948 20.0005746 20.0007772
0.8 20.00002133 20.0001946 20.0006465 20.0008926
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4 Future Efforts
Equations~44! and ~48! indicate that interface crack closur

could occur at large distances from the crack edge, thereby li
ing the applicability of the semi-infinite crack model. This featu
has been studied in the isothermal isotropic bimaterial for tr
sonic interface crack speeds, i.e., between the rotational and
tational values@4,31#. More recent@32# results for Mode I crack
extension in a single transversely isotropic thermoelastic mate
show that smooth crack closure without interpenetration can o
for subcritical crack speed. The general results@9,10# for interface
crack extension in the isothermal category 1 transversely isotr
bimaterial consider any constant crack speed. The res
@9,10,32# are currently serving as guides in the extension of
present analysis beyond the subcritical range and the cons
ation of crack closure.

The restriction~43! for subcritical crack speed was based on
on the fact that the Stoneley speed, if it exists, and both Rayle
speeds are subsonic. As noted above, studies of bimaterials fo
isothermal, anisotropic elastic@25# and isotropic thermoelastic
@26# cases indicate that the Stoneley speed exceeds both Ray
speeds. The isothermal and thermoelastic rotational wave sp
in the material symmetry plane were seen in part I to be identi
and data for zinc indicated that the two dilatational wave spe
are perturbations of one another. This suggests that the obs
tions of @25,26# generalize to the bimaterial considered he
Clearly, however, the aforementioned extension to supercrit
speeds should specifically consider the Stoneley–Rayleigh s
relation.
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Statistical Damage Mechanics—
Part I: Theory
Statistical damage mechanics in this work establishes the connection between da
random heterogeneous micromaterial and the system macroparameter. Renormali
group theory provides the bridge from the microscale to the macroscale. Delaunay
tices, which simulate and capture the role of the disordered microstructure in dam
process, substitute a polycrystal specimen assuming that microcracks are g
boundaries cracks. The macroparameters of the system, in the form of algebraic
tions, are obtained applying the Family–Vicsek scaling relation on simulation
data. @DOI: 10.1115/1.1825434#
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1 Introduction
Simple mathematical theory of the thermomechanical proces

based on the four constitutive equations for the stress,s̄ i j (X,t),
heat flux,q̄i j (X,t), internal energy and local entropy productio
h̄ i j (X,t) @1#. Above,X is the position of the point,t is present time
and the bar above the symbol indicates the macrosymbols.
‘‘principle of local action, according to which the response at aX
is determined if the conditions are known in an arbitrarily sm
neighborhood ofX, the motion outside being disregarded’’@1#.
Kellogg @2# also usedX to determine the ‘‘continuum particle.’
Most classical continuous models are based on the propert
locality. In @3,4# Kunin provides the connection between the no
local, weakly nonlocal models and quasicontinuum. In nonlo
continuum models used for damage mechanics@5# the position of
microcracks in the ‘‘representative volume’’ is irrelevant.

Materials, such as ceramics, are on macroscale homogen
ordered and isotropic in pristine state. On the microscale, the
ture of this ceramic is random heterogeneous@6#. The distribution
of the position and geometry of grains, i.e., number of edges
faces per cell, surfaces, interfaces, boundaries, microcracks
random variables. As the microcracks nucleate, enlarge, and
ter with each other, the random variables become different. T
the effect of random heterogeneous ‘‘continuum particles’’ m
be smaller as the microcracks grow.

But physics, thermodynamics, and mathematics provide, as
ways, the tools. The first tool is thermodynamics, which is emp
cally based science that requires no knowledge of microsc
interaction. The second tool is the statistical mechanics that
tablishes a connection between the microscopic and therm
namic description of a system’’@7#. Thus, statistical mechanic
models establish connection between macroparameters, su
the macroscale the components of generalized Hooke’s
C̄abgd, in the form s̄ab5C̄abgd(D̄) «̄gd , when D̄ is the mac-
rodamage parameter. The third tool is the fractal geometry.

2 From Continuum to Quantum Mechanics?
Apparently it is Boscovich~1763! who ‘‘assumed that, betwee

every two ultimate particles and along the line connecting the
forces act which are attractive for some distances and repu
for other’’ ~Timoshenko, S.P.,History of Strength of Materials,
Dover Publications, Inc., New York, p. 104!. A proper model is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, November
2003; final revision, May 28, 2004. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Professor Robert M. McMeeking, Jour
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California, Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
76 Õ Vol. 72, JANUARY 2005 Copyright ©
s is

,

nd

all

of
n-
cal

ous,
tex-

and
are

lus-
us,
st

al-
iri-
pic
es-
dy-

h as
aw,

m,
sive

dependent on the short-range intermolecular forces between
lecular particles and on the body forces of longer-range that
acting on the interior of the specimen@8#. Continuum models of
engineering cannot be used when the short-range intermolec
forces become longer-range forces, as the microcracks bec
macrocracks.

The model of this work can be used from continuous to m
lecular medium. But, in this work is restricted only to macrosc
and microscale. The macroscale matter is contiguous. The res
tion length of the microscale is,, defined as the length of the
grain-boundary. The microstructure of a polycrystal, such a
ramics, can be modeled by the lattice, i.e., a simplicial graph
which a Voronoi froth is perpendicular to the grain boundaries a
the Delaunay graph, dual graph to the Voronoi froth, is of hon
comb geometry~Fig. 1!. For the solid mechanics design the sca
ing process from microcracks to the macroparameters is m
needed.

3 Damage ‘‘Micromechanics’’
The task of ‘‘micromechanics’’~in ‘‘micromechanics’’ material

properties depend on macroscopic averages defects and not o
defects position in space! is to estimate the effective stiffness ten
sor of heterogeneous material. Mura@9#, Nemat-Nasser and Hor
@10#, and Krajcinovic@11# have the same task, i.e., to estima
overall properties by ‘‘micromechanics’’ models under some c
cumstances. But, ‘‘micromechanics’’ considered only the stati
cal homogeneity of the matter at the microscale. Hence, the o
all properties do not depend on the position of the microcrac
i.e., the process is ergodic. As microcrack density enlarges
interaction of two or more microcracks, their positions beco
more relevant. At threshold failure a large cluster of interact
microcracks become a macrocrack. Finally, the form of the fail
depends on the fractal or multifractal geometry and density of
macrocrack.

3.1 Damage Scalar Model. The first, two-dimensional and
time-independent, damage model@12,13# related the macrostress
s̄, and macrostrain,«̄, as

s̄5Ē0~12D̄ !«̄. (1)

In ~1! is the macrostress,Ē0 is the elastic modulus of pristine
state, andD̄ is the damage parameter. The bar over the param
signifies a macroparameter.

The brittle loose bundle model@14,15# is the simplest damage
model ~1!. The expression~1! can be obtained assuming that e
tant links share equally the tensile load,s̄, N is the number of all
links, n is the number of all broken links, andf r is the link rupture
strength. All N links have identical stiffnessk5K/N when K is
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ing,
l be
E

2005 by ASME Transactions of the ASME



a
i

i

t

n

v

a
t
l

an-
ten-

der
ces

sion
ny-

n

in
li-

d
e
at
the
ri-
akes
d to

een
n of
nce
pic

ory
for
ran-

rties.

dau
tic
es.

ting
the

ture,

ase
ee-
th.
the stiffness of the model in the pristine state. The random v
able is defined byp( f r)5( f max)

215const. The damage density
then

D̄5
n

N
. (2)

A different rate of damage variable is the quotient obtained
rate of unbroken bars divided by the number of the unbroken b
In this measure the damage rate is@16#

dD̄n5
dn

N2n
or D̄n5 lnS N

N2nD . (3)

The damage density in expression~1! can be written as

D̄5
Ē02Ē

Ē0
and D̄n5 ln

Ē0

Ē
, (4)

whereĒ5Ē0(12D̄) is the Young’s elastic modulus of the dam
aged specimen.

The force versus displacements curve is a parabola forp( f r)
5( f max)

21 when the displacement is controlled. The harden
and softening parts are mirror-same over the directrix. Hence,
softening part of the brittle loose bundle model cannot be trus

3.2 Damage Model Based on Fracture Mechanics.Budi-
ansky and O’Connell@17# proposed the first damage model bas
on the fracture mechanics. By assuming that the continuum
isotropic and homogeneous, damage is isotropic, cracks pe
shaped and damage density insignificant, and the damage pa
eter is

D̄5
1

V0
^a3&, (5)

wherea is the crack radius andV0 is the volume of the specimen
Krajcinovic @11# considered a single penny crack in effecti

properties of elastic, isotropic, homogeneous, and continu
specimen using fracture mechanics. The energy release rate,G, for
homogeneous and isotropic elastic solid is

G5J5
12n

2m
~K I

21K II
2 !1

n

2m
K III

2 . (6)

In ~6! J is the integral for homogeneous and isotropic elastic so
n andm is the Poisson’s ratio and shear modulus, andKm is the
vector of stress intensity factors whenm51,2,3. After some ten-
sor transformations~@11#, pp. 253–258!, the effective~average!
compliance,S̄i jmn , is

S̄i jmn5S̄i jmn
0 1S̄i jmn* . (7)

In ~7! S̄i jmn
0 is the compliance of a pristine specimen. The comp

ance that is attributable to the presence of a single penny sh
crack embedded in a homogeneous, isotropic and elastic ma
is S̄i jmn* . To facilitate the analytical and computational manipu

Fig. 1 Perfect two-dimensional honeycomb Voronoi and trian-
gular Delaunay lattices
Journal of Applied Mechanics
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tions of the effective stiffness and compliance tensors it is adv
tageous to introduce a set of six fourth order tensors. These
sors represent the irreducible integrity basis for all fourth or
tensor invariant to permutations of first and second pair of indi
defined by the symmetriesS̄i jmn[S̄j imn[S̄i jnm[S̄mni j . The dy-
adic products of a unit vectorn and the Kronecker delta function
that define the two components of these six tensors@4# are

I i jmn
5 5

1
2~ninmd jn1ninnd jm1njnmd in1njnnd im! and

I i jmn
6 5ninjnnnm . (8)

If the normal stress at the crack surface is tensile, the expres
for the compliance that is attributable to a single, planar, pen
shaped crack of radiusa has a very simple form

S̄i jmn
~a! 5

16

3V

12n

22n

1

2m
a3$2I i jmn

5 ~m!2nI i jmn
6 ~m!%, (9)

that is expressed in terms of the global~or specimen! coordinate
system@11#. The unit vectorm identifies the crack plane and ca
be expressed in the global coordinate system asm
5$cosf cosu,cosf sinu,sinf% in terms of trigonometric func-
tions of the Euler angles. Following the arguments
@10,11,18,19# where~9! is used as a Green’s function, the comp
ance of a solid containingN penny-shaped microcracks is

S̄i jmn* 5
16

3

12n

22n

1

2m E
a2

a1

a3q~a!da

3E
0

2pE
2p/2

p/2

F̄ i jmn~u,f!r~u,f!cosfdudf. (10)

where q(a) and r~u,f! are statistical distributions of size an
orientation andF̄ i jnm(u,f) is defined by the expression within th
curly bracket in~9!. This result is based on the assumptions th
all cracks are penny-shaped, the crack growth is self-similar,
principle of superposition holds and that the distributions of o
entation and size are independent. The set of restrictions m
this model close to be useless because the validity is confine
small damage density.

4 Statistical Damage Mechanics
Statistical mechanics establishes the theoretical bridge betw

the microscopic and macroscopic thermodynamics descriptio
a system. Also, ‘‘thermodynamics is an empirically based scie
that requires no knowledge of the microscopic and macrosco
interactions’’~Chaikin and Lubensky@7#!.

4.1 Mean-Field Theory. Lev Davidovic Landau’s works in
mathematics and physics are the foundation of mean-field the
and statistical mechanics. He provided the mathematical tools
the statistical mechanics to establish the connection between
dom heterogeneous microstructure and macroscopic prope
Statistical mechanics literature, such as Chandler@20#, Chaikin
and Lubensky@7#, Garrod @21#, Cardy @22#, Fujimoto @23#,
Kadanoff@24#, Chowdhury and Stauffer@25# etc., was forgotten in
solid mechanics research. The first mean-field model, by Lan
in 1937 ~see@21#!, is the phase transition from the ferromagne
phase to the paramagnetic phase as the temperature increas

4.1.1 Correlation Length. The quantityj(n) is the correla-
tion length, i.e., the upper bound of the distance over interac
microcracks. The correlation length is the distance over which
fluctuations of the microscopic degrees of freedom~geometry, dis-
tance, Euler angles, specimen dimension, random microtex
etc.! are significantly correlated with each other@22#. During the
damage process the fluctuations of the microaffinities incre
with the microcrack density. Thus, the number of degrees of fr
dom of strongly correlated microcracks is the correlation leng
JANUARY 2005, Vol. 72 Õ 77
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Fig. 2 Order Parameter. The second and first order chase transitions.
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The closer the phase transition, where the largest cluster of
microcracks drives the process, the more the correlation len
approaches the specimen characteristic size.

4.1.2 Order Parameter. Order parameters distinguish an o
dered from a disordered phase. Even more, the ‘‘order param
is a quantitative measure of the relevant ‘order’ in the syste
@25#. Finally, ‘‘the order parameter is the average,^f&, of an op-
erator,f, which is a function of the dynamical variable in th
system Hamiltonian’’~Chaikin and Lubensky@7#!. The phase tran-
sition can be of first or second order. The order of the ph
transition depends on the order parameter continuity.

During a brittle deformation of a specimen, underuniaxial ex-
tension inx direction, when the damage density is insignifica
and correlation length is inferior to the specimen lengthL, L. M.
Kachanov’s model in~1! can be accepted. For each value ofD̄,
the current effective secant stiffness modulus of the systemĒ
5Ē(D̄)5Ē0(12D̄). The order parameter,̂f&5^12D̄&, is a
time-independent scalar, which is sufficient for the model in t
paper. From~1! the relation between macrostrain and macrostr
is

s̄

Ē0«̄c

5^12D̄&
«̄

«̄c
or ŝ5^12D̄&«̂5^f&«̂, (11)

with «̄c being the macrostrain at the specimen failure.
From ~11! the order parameter,^f&, is zero when the strain«̂

5 «̄/ «̄c is unit. Vice versa, when the strain is zero,«̂50, the order
parameter,̂ f&, is unit. At both of these states the normaliz
macrostresss̄/Ē0 is zero. If ^f& reaches continuously the zer
value, the phase transition,«̂5 «̄/ «̄c51, is of thesecond order
@Fig. 2~a!#. If ^f& goes discontinuously from zero to a nonze
value at«̂5 «̄/ «̄c,1, the phase transition is of thefirst order @Fig.
2~b!#. Figures 2~a! and 2~b! refer to a 2D quasibrittle lattice.

4.2 Mean Field Theory: Critical Behavior. The impor-
tance and utility of mean field approach consist of the robustn
to the details underlying the interactions. The mean-field theor
critical behavior is based on two concepts.

1. Universalitydesignates that a problem belongs to a univ
sality class. Universality class is the set of all systems t
have same critical properties and fixed points~Kadanoff
@24#!.

2. Scaling refers to the power law relations that are observ
between various quantities~Kardar @26#!. The fragmenta-
tions, earthquakes~Gutenberg–Richter relation! and fracture
of quasibrittle materials~Weibull theory! indicate that the
system is invariant under the transformationr→lr , whenr
is position.
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These two concepts support the bridging between the microsc
and macroscopic parameters. This bridge is therenormalization
group theory, that is a transformation involving thinning of de
grees of freedom~coarse graining! coupled with a change in the
length scale@7,22,27,28#.

4.3 Thermodynamics of Griffith Cracks and Thermody-
namic Potentials. Experiments demonstrate that isolated sy
tems spontaneously tend to states that are known as equilib
states, defined by a ‘‘small’’ number ofsystemparameter@20#. The
specimen is in contact with heat reservoir to maintain the temp
ture atT̄5T̄o5const@29# during the damage process. If the sy
tem elongation,«̄ i j , is controlled, equilibrated thermodynam
states of the process are defined by the manifolds$s̄,D̄,T̄o%«̄ on
the macroscale. When the elongation,«̄ i j , increases, the macro
stress and macrodamage parameters increase as well, i.e
manifold is $s̄1ds̄,D̄1dD̄,T̄o%«̄ . This quasistatically damage
process can be partitioned in a sequence of many two-steps
erations@29#. The two steps are the following:

1. Separating reversibly two surfaces pulling against cohes
forces until two surfaces are not jointed. ‘‘By definition o
the quantity 2g as the reversible work of~isothermal! sepa-
ration per unit area, the contribution to the free energyF is
2g,’’ @29#.

2. Deforming elastically and quasistatically each element of
damaged specimen so that such elements have the s
equilibrated strain-state as that actually induced in the sp
men when the microcrack is, and the imposed displacemen
is d«̄.

In polycrystal specimen microcracks will nucleate and propag
either along the grain-boundaries or through the grain. In t
work, the resistance energy at the grain-boundary, 2ggbn,, is
smaller than in the bulk of the grain and the cracking is pur
intergranular.

The Gibbs’ potential,c̄, ~per unit volume!, defined as the Leg-
endre transformation of the Helmholtz free energy density,ȳ, @30#

c̄~ s̄,T̄,H̄ !5s̄: «̄2y~ «̄,T̄,H̄ !5s̄: «̄2ũ2T̄h̄. (12)

In ~12! T̄ is the absolute temperature,ũ is internal energy density
dũ5s̄mnd«̄mn , H̄ is the history recording parameter, andh̄ is
entropy. Complementary expressions for the average stress
strain ~at fixedH̄) are

s̄ i j 5
]ȳ~ «̄,T̄,H̄ !

]«̄ i j
and «̄ i j 5

]c̄~s̄,T̄,H̄ !

]s̄ i j
. (13)
Transactions of the ASME
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The inelastic~irreversible! changes of Gibbs’ potential~per unit
volume! occur during processes characterized by the chang
the recorded history.

The inelastic~irreversible! changes of two potentials that occu
during processes are characterized by the change of the reco
history. The change in the Gibbs’ energy density associated w
change of state~isothermal and load-controlled! is @29#

d i c̄5
1

V0 (a
f adqa5

1

V0 (a
R

La

@G~s,a!2R~, !#da~, !d,.

(14)

In ~14! da(,) is the ‘‘distance’’ that a point on the microcrac
front advanced during the transition between two neighbor
states andc̄[V0c̄. Since the entropy production rate is no
negative the integral in~14! is

E
c.f.

f ,̇ds[E
c.f.

~G2R!,̇ds[E
c.f.

A,̇ds>0. (15)

In ~15! ‘‘c.f.’’ stands for ‘‘crack front’’ and the integral with re-
spect to the arc lengths is carried over all extending parts of th
microcracking front@29#. Finally, analogously to the Griffith’s
theory,G is the energy release rate,R is the material resistance t
crack extension, andA is the thermodynamic affinity

A5G2R. (16)

The thermodynamic crack-extension ‘‘force’’ per unit length alo
the locus of all microcrack fronts,F̄ (N/m), is ~Rice @31#!

F̄5(
N

~Gi2Ri !. (17)

The part of the Gibbs’ free energy required for damage increas

diC̄5(
n

~Gi2Ri !dai>0. (18)

In ~18! N is number of microcracks,n number of microcracks tha
increased, anda the microcrack radius. This formulation can b
applied to continuum or discrete models but requires thermo
namic equilibrium.

5 Mean-Field Theory of Damage
Mean-field theory, at infinite and finite dimensions~see in

@7,20,21–25#!, provides a tool for considering many processes
phase transitions and at critical states. But, most of those mo
and procedures do not consider process in materials, which a
microscale random and heterogeneous, and on the macro
‘‘continuous.’’ Close to the phase transitions and critical stat
most continuous engineering materials, such as ceramics,
crete, rock, cementitious composites, etc., become discontin
on the macroscale. Thus, the material at pristine state an
threshold of failure is not the same.

Research in the statistical physics models is not freque
found in books and journals of engineering mechanics of cont
ous medium. Weibull’s publication in 1939 of the paper ‘‘A st
tistical theory of the strength of material’’@32# shows that the
threshold of failure scales with the size of the specimen. T
engineering work provides the foundation of the ‘‘weakness’’
material but was published, without any mention of the mean-fi
theory of Landau in 1937. The other shortcoming of that genre
engineering literature that will benefit by considering mean-fi
theory is fatigue. Behaviors of small fatigue flaws~of the size
from a fraction of millimeter to several millimeters! are still called
anomalous. What is ‘‘anomalous’’ is that the models of continuou
medium from fracture mechanics are used in fatigue models, e
though that material at microscale is heterogeneous@33# and
discontinuous.
Journal of Applied Mechanics
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5.1 Disordered Matter: Lattice Simulations. A damage
tolerant material, that has random heterogeneous microstruc
is modeled in a simple way by a lattice. On the microscale
geometry of a disordered material, either a polycrystal or an am
phous one, can be thought as a random-close-packed pa
structure where each particle is connected to the others. In a
eral sense, each particle can be an atom, a molecule or a
depending on the specific problem. By assuming to know
nature of the interactions, the matrix of Hamilton’s equations
such structure would be full and the simulations laborious. Ho
ever, the primacy of the ‘‘short-range order is very much in e
dence in the structure of amorphous solids’’~Zallen @34#! and
polycrystal material. Limiting the model to the short-range mak
large simulations become possible. The x-ray scattering data
amorphous metallic glass, amorphous silicon, amorphous m
and other materials demonstrate that short-range order prov
good models and useful data@34#. In this case each atom is con
nect only to few closer atoms.

In this paper a two-dimension lattice~or network! is used to
model the polycrystal material. The sites represent the g
masses and the bonds~links! connect each grain with six clos
sites. The link consists of a spring of given stiffness that bre
when the load reaches a random tensile threshold. The loa
imparted through rigid bars that are applied on the free surface
the lattice and are free to translate along given directions.
lattice is rectangular and the macro-strain is homogeneous. Irr
lar Wigner–Seitz cells can be used to the approximate the grai
fully dense polycrystalline ceramic on the microscale. To simul
the random heterogeneous geometry of real microstructure,
lattice must be irregular.

By a mechanical viewpoint, either finite elements or molecu
dynamics can be used to solve spring network, which is inde
minate and globally stable. The latter is used here.

In a displacement controlled monotonic loading, the macr
tress versus macrostrain curve resembles a smooth parabola
the microscale the model the stress versus strain curve is
toothed as shown in Fig. 3. The radial segments of the macros
versus macrostrain curve are linear elastic. The macroparam
manifold for the radial segments are,$(s̄ i1ds̄ i),D̄ i ,T̄o%«̄ i1d«̄ i

,
when the system elongation passes from«̄ i to «̄ i1 «̄ i 11 . The ver-

Fig. 3 Saw-toothed stress versus strain curve during the dam-
age process
JANUARY 2005, Vol. 72 Õ 79
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tical segments, in Fig. 3, are nonstationary and nonequilibrated
fact the ‘‘vertical’’ segments are not vertical at all.

In reality, microcracks formation and growth are dynamic p
cesses during which shock waves attenuate, interact and re
within the random material. Damping properties of materials
pend on the chemical composition, constitution, homogeneity
fects, damage, aging, solid-state transformations, state of inte
stress and stress imposed by service conditions~including envi-
ronmental conditions! @35# that are not known.

5.2 Phase Transitions. The mechanisms of damage evol
tion on the microscale are the nucleation, propagation, and c
tering of microcracks. As the density of microcracks evolves,
effective macrostiffness declines. The rate of damage that evo
depends on the primary mechanism of the damage. If the nu
ation is the primary mechanism of damage evolution, the rate
the damage evolution and the reduction of the effective mac
tiffness are slower. The rate of macrostiffness decline and dam
evolution is higher when the microcracks clustering is the prim
mechanism.

A faster decline of the macrostiffness becomes obvious w
the process is close to the critical state. Thus, by measuring
rate of the effective macrostiffness, at ‘‘pristine’’ and curre
states, one can estimate the residual strength and durability o
specimen. Since the damage grows as a stochastic process a
material is randomly heterogeneous on the microscale, the cri
state is a random variable. Consequently, residual strength
durability are also random variables. Accordingly, statistical da
age mechanics provide the only possible fundamental mode
the damage tolerance principles of airplane design@36#.

5.3 Phases. There are two phases during the process
damage accumulation from its pristine state to the failure of
specimen. The two phases, hardening and softening, are th
flections of the primary mechanism of damage growth.

Hardening Phase:

a. Damage density develops by microcracks nucleation at
weak links or spots. It is unlikely that the distance betwe
two or more microcracks is small. The amplifying intera
tion effect of microcracks is insignificant.

b. The specimen is statistically homogeneous and the dam
nucleation microcracks is the paramount mechanism of d
age rate increase. Close to the peak of the macrostress v
macrostrain, the propagation and clustering mechanisms
come dominant. The result is the large reduction of the
fective stiffness of the system.

c. The specimen is statistically homogeneous only in par
the hardening phases. This part of the hardening phases
be small. But, when the macrotraction vector is applied,
failure threshold depends on the rate of reduction of
effective system stiffness in that part of the macrostress
sus macrostrain curve.

Thus, ‘‘micromechanics’’ models, Section 3.2 in this paper, m
provide good data in the hardening phase. However this mo
cannot furnish any estimate of specimen failure.

During the hardening phase, including the peak, the form of
macrostress versus macrostrain curve does not depend on wh
the macrotraction or the conjugate macrodisplacement is app
to the specimen. The experimental data indicate that macropa
eters are fractals at the failure@4,37–42#.

Softening Phase:

a. The damage process in softening phase depends on the
cluster, formed at the peak of the macrostress versus m
rostrain curve, of the microcracks of correlation leng
j(D̄), that spans the specimen. This cluster is known
macrocrack or fault@40,42#.

b. Correlation length is a fractal and/or multifractal.
c. The specimen is random heterogeneous.
80 Õ Vol. 72, JANUARY 2005
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d. Macroparameters are fractal and/or multifractal.
e. The failure is of the avalanche class@41,43#.

When the macrotraction is applied to the specimen, failure h
pens at the peak of the macrostress versus macrostrain curve
the softening phase does not exist. Then, the process has onl
phase transition namely the failure whends̄50. This phase is
identical to the first phase transition when the conjugate ma
displacement is applied. For this case there are two phases,
before and after the peak. Thus, it is sufficient to study the proc
when the macrodisplacement is applied. Finally, when the tr
tion, s̄, is applied to the specimen, the failure at the peak i
first-order phase transition@Fig. 2~b!#. When the displacement,«̄,
is controlled, the failure is a second-order phase transition@Fig.
2~a!# and happens ats̄50.

5.4 Phase Transition. ‘‘Phase transition between two equ
librium phases of matter whose signature is a singularity or d
continuity in some observable quantity’’ is the phase transit
@7#. By considering a specimen loaded under uniaxial tension,
order parameter in~11! can be used:

^f&5
Ē

Ē0

5^12D̄& or ^f&5e2D̂ (19)

This order parameter denotes ‘‘a fluctuating variable the aver
value of which provides a signature of the order or broken sy
metry in the system’’@20#.

The Delaunay triangular lattice, used in this work, may furn
good data when the process approaches failure, but not as go
one would desire to predict reliably the failure. This is due to t
many approximations in the specific lattice model. Far from
softening phase, the correlation length approaches the spec
length, i.e. coherence lengthj(D̄)→Lb, and in reality the largest
cluster also grows through the grains. During the same part of
process, the damage increases by avalanches. The macrocra
creases by larger numbers of the microcracks and the affinitie
the microcracks in the rest of the specimen stagnate or bec
lesser~shielding and crack closure!.

At the threshold of failure, the order parameter^12D̄( «̄)& de-
pends on the damage tolerance of the material, the process
namics, the damping properties of the matter and the tempera
All these parameters should be embedded in the lattice mo
Hence, the lattice in this work cannot simulate correctly the p
of the process when the specimen secant effective stiffnes
close to zero,K̄* '0, and the order parameter^f&'0. In Fig. 2~a!
the order parameter curve terminates with dashed lin
Wannier considered a similar problem, in@23#, on two distinct
magnetizations.

5.5 Hardening Phase: Macro Parameters. The goal of
statistical mechanics is to estimate macroparameters, require
engineering, from microscopic descriptions of a system. Sca
concepts provide the tool for the goal. From Weibull to this d
tests determined that ‘‘power laws are fundamental constants
bust to the details of the underlying interactions’’@32#. In this
work a two-dimensional triangular lattice substitutes a dam
tolerant specimen, i.e., a ceramic in which the microcracks nu
ate and propagate along the grain-boundaries.

The simulation data provide the macro-behavior of four lattic
of sizeL5$23,47,95,191%. From@15#, the damage response of th
lattice is of the form

s̄5Ē0~12D̄ !«̄ or s̄5Ē0e2D̂«̄ (20)

whereD̄ and D̂ is the damage parameters. Thus, the relationD̄
versus «̄ fully describes the stochastic part of process. In t
process the order parameter,^12D̄( «̄)&, depends on the scaling
function, D̄( «̄). The damage parameter for the lattice is
Transactions of the ASME
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where n is the number of broken bonds from simulations. T
macrostress versus macrostrain curves,s̄ versus«̄, and the dam-
age versus macrostrain curves,D̄ versus«̄ are shown in Fig. 4
~curves in Fig. 4 are mean curves of a sample of 10 replicates
lattice size!. The collapse of simulation data in Fig. 5~b! is ob-
tained when relation~21! is D̄5(2e21.6)21nL22. The number of
broken bonds at the force peak,Np , is a fractal quantity~already
in @43#! and the curveNp versusL is a straight line in the log–log
plot. The exponent21.6 of the exponential in the latter expressio
equals the intercept of such straight line~plot not shown!. Markers
in Fig. 4 correspond to the values of damage at the peak of
curvess̄ versus«̄. The location of such peak points is differe
for each lattice.

In this paper, the Family–Vicsek scaling relations in@28# are
reinterpreted to make the damage curves collapse on a s
curve throughout the hardening regime. The relations are

D̄~ «̄,L !5La f S «̄

LgD and g5
a

b
(22)

wherea, g, b are, respectively, the scaling exponent ofD̄, the
scaling exponent of«̄ and the exponent of the power law that fi

Fig. 5 Simulation data in the hardening phase after the scaling
plied Mechanics
e

per

n

the
t

ngle

s

the data better at the origin. In lieu of the linearity of Fig. 5~b! in
the beginning,b51 andg5a. Thus, there is only one degree o
freedom,a, and~22! can be rewritten as

D̄~ «̄,L !5La f S «̄

LaD (23)

The data of the hardening phase, shown in Fig. 5 by dashed li
collapsed fora520.035 and the peak points clustered arou
( «̄/La,D̄/La)p5(0.0021,0.5) remarkably well for all lattice size
This is important in deducing the macroparameter and the m
rostress versus macrostrain relations from pristine state to fail
The scaling~23! is feasible because the damage at the peak
fractal quantity that plays the role of the saturation threshold
@28#. In the beginning the simulation data are close to a strai
line but deviate progressively at the peak. The simple analyt
formula for the damage parameter,

D̄5a«̄1b
«̄2

La
, (24)

captures the data simulation of the hardening phase~solid line in
Fig. 5!. The coefficientsa and b are deduced from simulations
The parameter,a, is the nucleation damage rate~Fig. 5, dashed–
dotted line! and b governs the rate of data deviation from th
straight line, i.e., the effect of the interaction of microcracks at
threshold of the transition. For the fitted model in Fig. 6, a set
parameters is a5]D̄/]«̄u05275 and b5La/2«̄p(]D̄/]«̄up

2]D̄/]«̄u0)5214,862.
The selection of the order parameter is correct if the macrod

age parameter,D̄( «̄) versus«̄, collapses on a single curve for a
sample averages of specimen sizes. This test of the selectio
the order parameter,^12D̄&, was passed as shown in Fig. 5.

5.6 Softening Phase: Macro Parameters. The requirement
of a non-negative entropy production rate, as the temperatur
positive, is

(
i

~Gi2Ri !,̇ i5Ā,G >0. (25)

In ~25! Ā5( i(Gi2Ri) is the affinity defined earlier that deter
mines the damage or thermodynamic force that drive the ev
tion ~link rupture!. For an increment of applied displacementD«̄,
the increment of length isD ,̄. As the affinity of a link reaches
zero, the link breaks. The smallest increment of damage is w
only one link breaks. The force that the broken link was carry
JANUARY 2005, Vol. 72 Õ 81
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is distributed to the other links such that the complementary w
and the minimum value of the complementary energy are sa
fied. The force of the dismembered link is distributed to the lin
of negative affinity, in accordance with equilibrium and comp
ibility conditions. At that point, defined by the applied macrod
placement,«̄x , the survival links carry the force of the broke
links and their affinities is (Ai1DAi),0. Thus, on microscale
there are only two processes:~1! max(Ai1DAi),0 and ~2!
max(Ai1DAi)>0. Process~1! dominates the hardening phase
the damage grows by one link at time. Process~2! dominates the
softening phase as the damage grows by two or more link at
time. The number of links at damage grows is the order of bur

Hemmer and Hansen in@44# ascertained that this evolution o
the process involves a sequence of bursts~avalanches! during
which a group of links fails in the simulation. They derived th
analytical expression for the distribution law for bursts and a
determined that the distribution of numbers of broken links dur
the simulation is a fractal.

At the threshold of failure, one may conclude that small nu
bers of links at the tip of the largest cluster carry the largest fo
However, the material of the cluster tip is heterogeneous. Ge
ally, the macroenergy release rate,G, drives the damage proces
and the material resistance,R, determines the geometry of th
clusters. The microaffinity intrinsically accounts for this diffe
ence by definition~25! and has a strong physical significance.
the large microaffinities,A⇒O, is concentrated at tip of the larg
est cluster similar to the ‘‘Barenblatt strip’’@45#. The affinities of
the links in the ‘‘singularity dominated zone’’@46# are large but
not as large as those in the ‘‘Barenblatt strip.’’ Therefore,
distribution of links affinities is a multifractal, because the
position in space and their strength of ‘‘Barenblatt strip,’’ ‘‘sing
larity dominated zone’’ and other zones, which is fractals. Th
bases of the softening process are the two discontinuous fi
namely the distributions of microtexture of the specimen and
distribution of link affinities.

These fields are in accord with the multifractal measures wh
‘‘knowledge of the fractal dimension of a set, is insufficient
characterize its geometry, and, all the more so, any physical
nomenon occurring on this set’’~Gouyet@47#!. Multifractal analy-
sis is the proper tool when links breakdown into a ‘‘collection
sets having different singularities’’~Hansen and Roux@43#!.

Following Gouyet@47# the ‘‘multifractal character is connecte
with the heterogeneous nature of the distribution.’’ The scal
law of ^M~R!&, where mass isM~R! and R is the radius of
sphere centered on the fractal atxi , is Rk. If all moments modu-
late like aŝ M(R)q&}^M(R)&q, for all q, the fractal distribution
is characterization by the sole exponentk, and the fractal distri-
bution is homogeneous. For heterogeneous fractals of broad

Fig. 6 Multifractal distribution of the qth moments of the mi-
croaffinity distribution
82 Õ Vol. 72, JANUARY 2005
ork
tis-
ks
t-

s-
n

s

the
sts.
f

e
lso
ng

-
ce.
er-

s

r-
In
-

he
n
-
s,
lds,

the

ere
o
he-

of

ng

dis-

tribution, P(M), of the masses the sole exponentk is not suffi-
cient. In this case the quantitiesf (a) andt(q) ‘‘characterize the
distributing heterogeneity’s of the measures known as multifra
measures’’@47#.

The entropy production rate in a heterogeneous~or discontinu-
ous! system is

L5
1

T (
i

~Gi2Ri !,̇ i5
1

T (
i

Ai ,̇ i5
1

T
Ā,̇̄ (26)

In relation ~26! Ā total affinity and ,̇̄ is the total rate of the
damage parameter

Ā5(
i

Ai5(
i

~Gi2Ri ! and ,̇̄5(
i

,̇ i . (27)

Since the absolute temperature,T, is non-negative the entropy
production rate will also be non-negative.

The statistical moments of the distribution of link affinities
the asymptotic neighborhood of the phase transition can be w
ten in the form@11#

Mk~L !5(
j

Aj
kn~Aj ,L !>E

0

1

Akn~Aj ,L !dA. (28)

In ~28! Aj is the normalized affinity carried by thejth link, while
n(Aj ,L) is the number of links conducting an affinityAj (2`
,Aj<0) in lattice of sizeL. Using the relation in~28! the prob-
lem of the determination of the distribution of affinity transmitte
by individual links of a lattice is reduced to the determination o
set of exponentsz(k). These exponents must be size-independ
to be useful in analyses. For a finitek the productn(Ak ,L)Ak is
very small for bothA→2` andA→0. For A52` and finiten
this product is obviously equal to zero. Moreover, the fraction
cutting linksn(Ak→0,L), which carry the affinities close to zero
is a minuscule part of the total affinity. Thus, the produ
n(Ak ,L)Ak peaks at an intermediate value of the affinityAi of
the normalized affinityi. All peaks become sharper with the in
crease of lattice sizeL. Assuming that the peak is very steep, t
sum in ~28! can be approximated by a single~dominant! term as

Mk'n~Ak ,L !Ak
k . (29)

Mathematically, the expression~29! can also be interpreted as a
estimate of the integral equation in~28! derived by using the
method of steepest descent~or the saddle point!. The approxima-
tion ~29! is consistent with the conjecture that each statistical m
ment of the current distribution in the lattice is supported by
different fractal subset of the backbone. The affinity,Ak , at which
the integrand of~28! peaks, is determined in a traditional way b
setting to zero its first derivative.

Employing the stratagem in@43# for the currents in the electri-
cal network, assume that local affinities,A, scale asA}La, and
that their support is a fractal object, as in the ‘‘Barenblatt’’ strip,
dimensionf, n(A)}L f . Thus, the moment~29! of orderq in the
softening phase is

M ~q!}L fLaq5Lx~q! when x~q!5aq1 f . (30)

Since the functionx(q) is not affine ina Hansen and Roux as
sumed ‘‘that instead of a single set of such currents, there ex
large number of such values ofa, and for each of them a corre
spondingf (a) dimension.’’ Thereupon, the functionx(q) is

x~q!5max
a

@aq1 f ~a!#. (31)

Thus, the exponentx can be computed for the selected functio
f (a). Using the extremum condition, the function in~31! leads to

f 8~a!52q. (32)
Transactions of the ASME
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Fig. 7 Scaling procedure of the data in the softening regime
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The condition~32! designates the value ofa that contributes
most importantly to the scaling of theqth moment. With this value
of a5a(q) the function in~31! is

x~q!5qa~q!1 f ~a~q!!. (33)

The derivative ofx function with respects toq is

dx~q!

dq
5a~q!1@q1 f 8~a~q!!#

da~q!

dq
. (34)

From ~32!, a(q) and f (q) are

a~q!5
dx~q!

dq
and f ~a~q!!5x~q!2qa~q!. (35)

Gouyet derived the same expression~35! for multinomial fractal
measures. Hence, knowing the functionx(q) in ~30! is equivalent
to the knowledge of~35!. By virtue of ~30!, since theqth moments
plot on straight lines in Fig. 6, the distribution of microaffinities
multifractal.

Relations~35! are similar to a Legendre transform. The para
eter q allows selecting subsetsEa of the setE, i.e., E5øaEa .
The two functionsf (a) and x(q) are related by the Legendr
transform in ~33!. The properties of the multifractal spectrum
f (a), are:

1. The determination of the scaling exponent of the momen
orderq takes one single set of links from~30! and is tangent
to the spectrum that has slope2q @43#.

2. The maximum off (a) corresponds to a uniform measure o
the support@47#. From ~33! the exponenta is maximum.

3. The Legendre transform allows one to pass from the eq
tion f 5 f (a) to a plane curve to the equationt5t(q), of
the same curve, by eliminationa betweenq5d f /da andt
5 f 2qa @47#.

The scaling~23! takes care only of the first part of the proces
In the softening regime the damage curves are, indeed, still s
tered@Fig. 7~a!#. It is possible to scale the data also in the softe
ing phase because of the existence of fractal sets. The new sc
is applied only to the data of the softening regime and new co
dinates,D̄s and «̄s are defined as

5 «̄s5
D«̄

La
5

«̄2 «̄p

La

D̄s5
DD̄

La
5

D̄

La
20.5

(36)
f Applied Mechanics
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-

,
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n
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with respect to a new frame of reference. In Fig. 7~a!, the origin of
the new coordinates is the point («̄p ,D̄p)5(0.0021,0.5), where
the peak points collapsed in Fig. 5.

There are some similarities between the crystal-growth p
nomena in@28# and the propagation/clustering mechanisms in
softening regime. Hence, a scaling similar to~23! is used. Since
the new set of data,D̄s versus«̄s , does not have a large curvatur
at the origin,b51 is assumed and the new scaling relation is

D̄s~ «̄s ,L !5LzgS «̄s

LzD . (37)

The result of~37! is shown in Fig. 7~b!, with z520.52. The data
collapse is evident and provides a useful piece of information
deducing the macroparameters and the threshold of failure.
analytical function for the damage parameter

D̄5LaD̄p1a1La«̄s1b1LaLz~12e2c1~ «̄s /Lz!! (38)

describes very well the softening data as shown in Fig. 8. T
three parametersa1 ,b1 ,c1 are determined from simulations bu

Fig. 8 Data in the softening regime after scaling
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they are not independent. After the scaling~37!, the softening data
maintain C1 continuity with the hardening data from~23! @Fig.
7~b!#. This provides the first condition

a11b1c15
]D̄

]«̄
U

«̄p

. (39)

At the end of the transition, characterized by a continuous sl
change, the softening data collapse on a straight line of slopa1

5]D̄/]«̄u failure. Hence, givena1 and ~39!, only one degree of
freedom is left in~38!. The pair$b1 ,c1% is chosen to optimize the
data fit. ~A nonlinear regression analysis is needed to this p
pose.! When the transition is complete at the saturation, the th
term in ~39! tends to the constantb1 . For the data in Fig. 8~b!, the
values area1515.80,b152.2, andc15100.

The usage of analytical expression~24! and ~39! allows the
estimates of the damage parameter in the entire range of the
age process and for any lattice size.

‘‘Fractal geometry is a mathematical tool dealing with compl
system that have no characteristic length scale’’@47#. One of those
complex systems is the specimen whose macroparameter cha
as the damage increases.

The macroproperties of systems in ‘‘micromechanics’’ mod
@9–12#, is based on theaveraging models, such as the self
consistent and differential methods, and Hashin–Shtrikman va
tional principle. However, the damage process is ergodic o
when the damage density is not at the residual strength and
ure. The model based on the statistical mechanics, thermodyn
ics, fractal and multifractal measure of random geometry can
used when the damage process is ergodic and not ergodic. M
over, the principle of local action, in the introduction of this pap
is a principle only when the affinity,A, is the measure of ‘‘gen-
eralized forces,’’ and the entropy production rate conjugate to
rate of the damage,DD̄. Finally, the order parameter,^12D̄&, is
the measure of the influence of the damage on the specimen

6 Conclusion and Summary
Progress in engineering technology and design depends o

research in physics, mathematics, materials sciences, testing
measurement models, and computational science. In recent
the goal of aeronautical and power plant engineering is to form
late methods based on damage tolerance principles, i.e., dura
of a system, whose performance is diminished by ‘‘multiple s
damage.’’

The first principle of aeronautical design is the structural a
worthiness. The ‘‘redundancy of the fail-safe structures is de
able to the extent that is economically feasible to provide str
tural safety’’ @36#. Structural characteristics, such as the dam
tolerance and durability, of aeronautical and all technology, can
be measured. Fundamental goal of the durability of a structur
its fatigue life@33,42#. For most of the total life of a fatigue crack
its length is of grain boundary size or smaller. However, micr
racks, as in this paper, grow much less than macrocracks.
appellationanomalousfor small fatigue cracks is not correct@33#.
Fatigue cracks are microcracks, or short cracks, most of the
and it is the fatigue analysis that is anomalous. A short crack,
material as being a random heterogeneous matter. ‘‘Micromec
ics’’ models see the material as statistical homogeneity and
process ergodic. As the largest affinity is always larger than
average affinity, the micromechanics model will always overp
dict the residual strength. The overstate prediction of struct
strength and durability is larger when the structure is larger.

To estimate the damage growth, needed for structural mai
nance and durability, one needs a model that conforms to
physical process and the material on the microscale. Most of
materials are continuous on the macroscale but random hete
neous on all other scales. The microscale geometry change
not insignificant as damage grows in a random heterogene
crystalline solid. As the microgeometry changes, fresh micr
84 Õ Vol. 72, JANUARY 2005
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racks nucleate, old microcracks grow and/or crystal deforms
rotates, and the set of number of degrees of freedom is very la
The solution of the large number of degrees of freedom prob
asks for statistical physics and fractal geometry.

Durability and residual strength are two parameters, which
fine the microcracks order and density at the specimen passa
the failure. The goal of the method in this paper, composed
solid mechanics, statistical physics and thermodynamics, is to
timate the durability and residual strength of systems from
planes to semiconductors. This method establishes the conne
between macroparameters and the random processes on all
using the renormalization group transformation. In this work m
roparameters are deduced from the microcracks and random
erogeneity of the material.
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Thermoelastic Fields in Boundary
Layers of Isotropic Laminates
An approximate approach to the calculation of displacements, strains, and stresses
edges and corners in symmetric rectangular layered plates of dissimilar isotropic m
rials under thermal load is presented. In the thickness direction the plate is discre
into an arbitrary number of sublayers/mathematical layers. A layerwise linear displa
ment field is formulated such that the terms according to classical laminate plate th
are upgraded with unknown in-plane functions and a linear interpolation scheme thro
the layer thickness in order to describe edge and corner perturbations. By virtue o
principle of minimum potential energy the governing coupled Euler–Lagrange differential
equations are derived, which in the case of free-edge effects allow a closed-form so
for the unknown inplane functions. Free-corner effects are investigated by combinin
displacement formulations of the two interacting free-edge effects. Hence, all state
ables in the plate are obtained in a closed-form manner. Boundary conditions of tra
free plate edges are satisfied in an integral sense. The present methodology is
applied and requires only reasonable computational expenses.@DOI: 10.1115/1.1827247#
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1 Introduction
The application of layered materials in the field of structu

mechanics requires adequate means of calculation for all s
variables, i.e., displacements, strains, and stresses. The most
mon analysis tool is the Classical Laminate Plate Theory~short:
CLPT, see, e.g.,@1#! which can be considered as an extension
Kirchhoff’s plate theory. CLPT is widely used but fails to predi
accurate results in the vicinity of edges and corners of laye
structures where due to the discontinuous change of mat
properties in the layer interfaces localized three-dimensional
singular interlaminar stress fields occur~so-called free-edge ef
fects @2–49# and free-corner effects@50–56#! that may lead to
interlaminar failure modes like, e.g., delaminations. Free-edge
fects in composite laminates have a good tradition in scien
research throughout more than 30 years. Numerical, closed-
and experimental approaches employing a broad variety of m
odologies are reported. In the following we give a short selec
review concerning scientific developments on free-edge effec

Early numerical works employing the finite difference meth
were reported by Pipes/Pagano@2# and Altus et al.@3#, wherein
the work @2# must be especially appreciated as a pioneering c
tribution which triggered countless other investigations in
years to come: Note, that the free-edge effect is often referre
as ‘‘Pipes–Pagano-problem.’’ Standard displacement based fi
element methods were employed by Wang/Crossman@4#, Raju/
Crews @5#, Whitcomb et al.@6#, or Wu @7#. Due to the singular
stress concentrations at the free-edge interface point, mesh re
ments around the singularity center were applied. Especially
justed element formulations were employed by, e.g., Spilker/C
@8#, Wang/Yuan@9#, Robbins/Reddy@10#, Gaudenzi et al.@11#, or
Mannini/Gaudenzi@12#. Other numerical approaches like, e.g., t
boundary element method or the scaled boundary finite elem
method for the investigation of free-edge stress concentrat
were also reported~Davi @13#, Lindemann/Becker@14#!. Purely
numerical investigations of singular stress concentration probl

1!To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the Applied Mechanics Division, November 2, 20
final revision, June 17, 2004. Associate Editor: D. A. Kouris. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of App
Mechanics, Department of Mechanical and Environmental Engineering, Unive
of California - Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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usually require high computational effort, hence approximate a
lytic methods which capture free-edge and free-corner effects
equately are of particular interest and practical importance, e
cially since until today there is no exact elasticity solution of t
free-edge problem available. In 1967, Hayashi@15# published an
approximate closed-form analytical study concerning interlami
shear stress concentrations in crossply laminates. Considerati
equilibrium requirements between the anisotropic laminate lay
led to simple trigonometric hyperbolic functions for the interlam
nar shear stress distributions. To the best of the authors’ kno
edge, Hayashi’s work is an early publication available on fre
edge stress concentration phenomena. A quite similar early s
based on simple equilibrium formulations was published
Puppo/Evensen@16#. Pagano@17# used a single layer theory em
ploying the kinematic assumptions of Mindlin’s plate theory wi
an additional linear thickness term and calculated interlami
normal stresses in the symmetry plane of crossply lamina
Pipes/Pagano@18# derived an approximate elasticity solution fo
angle-ply laminates under uniaxial extension by expanding
displacements as Fourier-series. Tang@19# and Tang/Levy@20# as
well as Hsu/Herakovich@21# employed perturbation technique
Pagano@22,23# proposed a variational model based on inpla
stress assumptions for the stress analysis in arbitrary comp
laminates and outlined a specialization of his general theory to
free-edge problem. Kassapoglou/Lagace@24# introduced the so-
called force balance method which is based on assumptions
the inplane stresses in the form of exponential inplane terms
polynomials through the thickness, with a subsequent applica
of the principle of minimum complementary energy. It is wor
noting that due to its simplicity yet astonishing accuracy t
method has been adapted and refined by a good number o
thors. A single layer theory approach with polynomial thickne
terms was utilized by Krishna Murty/Hari Kumar@25#. Rose/
Herakovich@26# presented a refined version of the force balan
method upgraded by additional stress functions which explic
take into account the mismatches of the material properties
adjacent dissimilar laminate layers. Yin@27# investigated lami-
nates with arbitrary layup under uniaxial extension, bending,
torsion and employed Lekhnitskii’s stress functions and the p
ciple of minimum complementary potential for the description
free-edge stress fields. Becker@28,29# employed single layer
higher order displacement based theories for symmetric cros
and angle-ply layups and formulated trigonometric thickne
warping terms especially adapted to the considered free-edge
ations. Zhu/Lam@30# used a Rayleigh–Ritz formulation in con
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junction with a layerwise displacement field in the form of pro
ucts of in-plane and thickness terms. Tahani/Nosier@31# used
layerwise linear displacement formulations and a variational p
ciple for free-edge effects in pure crossply layups. The asympt
analysis of the state variables in the vicinity of singular free-ed
interface points has also been the topic of thorough investigat
and is relevant until this very day. A selection of works is giv
with, e.g., Ting/Chou@32#, Wang/Choi@33,34#, Zwiers et al.@35#,
Delale @36#, Bar-Yoseph/Avrashi@37#, Ding/Kumosa @38#, Gu/
Belytschko@39#, Kim/Im @40#, Chaudhuri/Xie@41# or Chue/Liu
@42#. Finally, experimental studies on free-edge effects are als
interest. Let us cite the works of, e.g., Pipes/Daniel@43#, Whitney/
Browning @44#, Herakovich et al.@45#, or Herakovich@46,47#.
The interested reader may also refer to exhaustive review pa
available on free-edge stress concentration problems, see,
Herakovich@46#, Kant/Swaminathan@48#, or the present author
@49#.

Compared to the amount of available investigations on fr
edge effects, the number of works that are concerned with f
corner effects is considerably lower. Becker et al.@50# presented
an expanded version of the force-balance method for the inv
gation of rectangular corners in crossply plates under unifo
thermal load. Dimitrov et al.@51,52# investigated the orders of th
occurring stress singularities for a good number of free-cor
geometries and laminate layups by employing a variational
mulation with a subsequent finite element boundary discretizat
A similar numerical approach was presented by Labossiere/D
@53# for the three-dimensional asymptotic study of free corners
bimaterial joints consisting of isotropic materials. Mittelsted
Becker@54# considered crossply laminates under thermal load
presented a simple higher order displacement approach based
single layer theory employing trigonometric thickness warp
terms. In 2003 and 2004, the same authors@55,56# expanded the
method presented in@50# on angle-ply laminates and arbitrar
nonorthotropic layups.

In all it can be concluded that there is an obvious lack
knowledge about what exactly happens in the vicinity of fr
laminate corners. Hence, in the present paper we develop a
placement based approach for free-corner effects in therm
loaded symmetric layered plates consisting of isotropic lay
The plate is supposed to include rectangular corners and is su
vided into an arbitrary number of mathematical layers through
thickness. The applied layerwise displacement formulation c
sists of CLPT terms combined with special perturbation terms
employs a linear thickness interpolation scheme between the
terfaces of the mathematical layers in which unknown displa
ment functions with respect to the inplane coordinates are defi
As the thickness distribution of the displacements is assume
priori, the actual three-dimensional problem is reduced to a t
dimensional one. The unknown interface in-plane functions
determined by employing the principle of minimum potential e
ergy. The resultant governing Euler-Lagrange differential eq
tions allow a closed-form solution since due to some simplify
assumptions we are able to uncouple the problem with respe
the two inplane coordinates. The boundary conditions of trac
free plate edges are fulfilled in an average sense by utilizing
integral formulation. The method requires only reasonable co
putational resources, can be run on every standard personal
puter employing standard programming languages and enable
important insight into the underlying mechanics of free-corn
effects in isotropic laminates which to the best of the autho
knowledge has not been done before.

The use of displacement based layerwise theories for the c
putation of displacements and stresses in layered structures
broad variety of analysis purposes has been reported in a g
number of publications, whereas these higher order theories
been mostly applied to problems of bending, free vibration,
buckling of layered plates or shells. Excellent review works
available@57–61#. In general, the strategy of such layerwise the
Journal of Applied Mechanics
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ries is to simplify the three-dimensional theory of elasticity to
two-dimensional problem by postulating a displacement field
the form of a priori assumed displacement shapes with respe
the thickness coordinate whereas the in-plane displacement f
tions remain unknown and are the objectives of the actual c
putations. The governing equations are then usually derived
application of variational principles. The advantage of variatio
ally consistent theories is that such formulations naturally lead
adequate finite element formulations in a straightforward way
numerical evaluations of the given theory. This is, however,
the objective of the present paper. The displacement formulat
require at least C0-continuity. The application of layerwise theo
ries has a good tradition for more than the last three decades a
works of Whitney@62#, Mau @63#, Srinivas@64#, and Sun/Whitney
@65# show. A frequent employment of layerwise theories for lam
nated structures can be detected since the 1980s. Selecting
publications found in the open literature, it is noted that the e
ployed layerwise theories do not only differ with respect to t
utilized displacement formulations but can also be subdivided
cording to the applied requirements of continuity for the inte
laminar stresses in the layer interfaces, the neglect or cons
ation of interlaminar normal stresses and the treatment of
transverse displacements. Since the number of publications
cerning layerwise higher order theories for laminated structure
impressingly high, the following overview is a selective one.
1987, Reddy@66# introduced a general higher order theory f
plane layered structures allowing for arbitrary approximatio
with respect to the thickness direction. From the general exp
sions included therein, many of the known higher order theo
can be derived as special cases, which is also true for the pre
method. Theories which apply linear thickness terms for the d
placements and which are of special interest within the scop
the present contribution were applied by a good number of
searchers. Di Sciuva@67# investigated bending, buckling, and fre
vibration of layered plates. Murakami@68# assumed layerwise lin-
ear displacement shapes in conjunction with a global appro
applying Mindlin kinematics. The shear stresses were assume
quadratic functions. The governing equations were derived by
plication of Reissner’s variational functional. Reddy/Savoia@69#
investigated the buckling and postbuckling behavior of laye
cylindrical shells. In 1993, Nosier et al.@70# studied the dynamic
behavior of crossply laminates. Wisniewski/Schrefler@71# used a
layerwise linear approach in conjunction with Tschebyschew
Taylor polynomials of arbitrary order for the description of th
mechanical behavior of composite beams. Reddy/Starnes@72#
studied the buckling behavior of layered cylindrical shells w
discrete stiffeners. Cho/Parmerter@73,74# used a combination of a
global cubic displacement variation through the laminate thi
ness and a layerwise linear approach for the investigation of s
metric und unsymmetric lamination schemes. In 1994, He@75#
applied a layerwise linear approach in conjunction with a glo
cubic equivalent single layer formulation. Liu et al.@76# em-
ployed layerwise linear displacement shapes in conjunction w
Legendre polynomials. Chattopadhyay/Gu@77# investigated the
buckling behavior of cylindrical shells with delaminations. Kam
Jan@78# numerically investigated the first ply failure of laminate
with arbitrary layup by developing an eight noded finite eleme
Di/Rothert@79# in 1995 applied a global cubic displacement var
tion through the entire laminate thickness in conjunction with
linear layerwise displacement formulation and investigated cy
drical shells with arbitrary layups. Khatri/Asnani@80# conducted
dynamic analyses of conical crossply shells with elastic and
coelastic layers. Ossadzow et al.@81# employed layerwise linear
displacement shapes with global trigonometric functions. In 19
He/Zhang@82# investigated the bending of simply supported re
angular unsymmetric angle-ply plates. Kassegne/Reddy@83# ap-
plied a linear layerwise approach for the buckling and vibrat
analysis of discretely stiffened cylindrical shells. For the inves
gation of laminated plates under thermal and/or mechanical lo
JANUARY 2005, Vol. 72 Õ 87
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Fig. 1 Exemplary layered plate, discretization scheme, nomenclature
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Ali et al. @84# used a global cubic and layerwise linear displac
ment approach for the in-plane displacements whereas the t
verse displacement was assumed to be of a global parabolic f
In 2000, Cho/Averill @85# used linear layerwise approaches f
arbitrary lamination schemes and developed a corresponding fi
element formulation.

A further study of the literature on layerwise higher order the
ries shows that a good number of the applied theories neglect
dependence of the transverse displacement component on
thickness coordinate. Furthermore, in some of the investiga
theories the interlaminar normal stress is also neglected. As
as we consider problems like, e.g., the bending, vibration,
buckling of layered plates or shells, these might be adequate
plifications. However, these typical assumptions are impro
when stress concentration phenomena like free-edge and
corner effects in composite laminates are to be considered. He
for the purposes of the present paper we must find a la
wise displacement formulation that involves a fully thre
dimensional displacement field and a fully engaged stress te
yet which allows closed-form computations with reasonable ef
and accuracy.

2 Analysis Approach

2.1 Prerequisites. Consider a rectangular layered pla
~Fig. 1! with total thicknessd, in-plane dimensions 2l 1 and 2l 2
and symmetric lamination scheme@m1 ,m2 , . . . ,mn/2#S consisting
of n physical isotropic plies with the materialsm1 , m2 , . . . ,mn/2
under a uniform thermal loadDT. Let us subdivide each physica
layer into an arbitrary number of mathematical layers, resulting
an overall number ofnL mathematical plies in the entire plate. Th
orthonormal reference axesx1 , x2 , x3 are situated in the laminat
middle plane~which is also the plane of symmetry!, with x3 being
the thickness direction. The mathematical layer~k! with the thick-
nessd(k)5x3(k)2x3(k21) is bounded by the lower interface~k!
with the thickness coordinatex35x3(k21) and the upper interface
(k11) atx35x3(k) . The volume of the plate is denoted asV, the
layer ~k! has the volumeV(k).

2.2 Constitutive CLPT Plate Behavior. The constitutive
law for a layered plate according to CLPT can be written as
lows @1#:
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S NI
MI D5FA= B=

B= D=
G S «I 0

kI 0D resp.S N11

N22

N12

M11

M22

M12

D
53

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

4 S
«11

0

«22
0

g12
0

k11
0

k22
0

k12
0

D . (1)

The quantitiesNab and Mab ~a,b51,2! are normal/shear force
and bending/twisting moments per length unit. The quantities«aa

0

and g12
0 are the in-plane normal/shear strains. Plate curvatu

torsions are denoted askaa
0 andk12

0 . A superscripted ‘‘0’’ denotes
quantities according to CLPT. The componentsAop , Bop , and
Dop of the constitutive matrix in Eq.~1! read ~with o, p51, 2,
and 6!:

@Aop ,Bop ,Dop#5E
d
Qop@1,x3 ,x3

2#dx3 , (2)

or in the special case of layerwise constant material proper
with jm

(k)5x3(k)
m 2x3(k21)

m :

@Aop ,Bop ,Dop#5(
r 51

r 5n

Qop
~r !Fj1

~r ! ,
1

2
j2

~r ! ,
1

3
j3

~r !G . (3)

Herein, theQop
(k) are the reduced stiffness components. They c

be derived from three-dimensional Hooke’s law by imposing
plane state of stress. The resultant layerwise CLPT normal

shear stressessaa
0(k) and s12

0(k) are calculated assI 0(k)
5Q

=

(k)(«I 0

1x3kI 02DTaI t
0(k)), or:
Transactions of the ASME
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S s11
0~k!

s22
0~k!

s12
0~k!

D 5F Q11
~k! Q12

~k! Q16
~k!

Q12
~k! Q22

~k! Q26
~k!

Q16
~k! Q26

~k! Q66
~k!
G F S «11

0

«22
0

g12
0
D 1x3S k11

0

k22
0

k12
0
D

2DTS a11t
~k!

a22t
~k!

a12t
~k!
D G , (4)

where in the case of isotropic layer material the stiffnessesQa6
(k)

are vanishing. The stiffnessesQop
(k) are interrelated to the commo

engineering constants—Young’s modulusE(k), Poisson’s ratio
n (k), and shear modulusG(k)—as:

Qaa
~k!5

E~k!

12n~k!2 , Q12
~k!5

n~k!E~k!

12n~k!2 , Qa6
~k!50, Q66

~k!5G~k!.

(5)

The thermal forcesNab
T and momentsMab

T read:

@NI ,MI #5E
d
DTQ

=
aI t@1,x3#dx3 . (6)

SinceQa6
(k)50, aaat

(k) 5a t
(k) , anda12t

(k)50 hold for isotropic mate-
rials, we obtainN12

T 50. The nonvanishing normal forces are ide
tical and read:

Naa
T 5NT5DT(

r 51

r 5n

d~r !E~r !a t
~r !

11n~r !

12n~r !2 . (7)

Furthermore, the matrix componentsAa6 in Eq. ~1! result in zero
values and the relationA115A22 holds. Due to the given symme
try all momentsMab

T vanish and for the coupling terms in Eq.~1!
Bop50 holds. Hence, no plate curvatureskaa

0 or torsionsk12
0

occur and Eq.~1! finally reduces to:

S NT

NTD5FA11 A12

A12 A11
G S «11

0

«22
0 D . (8)

The remaining matrix componentsA11 andA12 read:

@A11,A12#5(
r 51

r 5n
E~r !d~r !

12n~r !2 @1,n~r !#. (9)

The resultant inplane strains«aa
0 are identical and can be calcu

lated from Eq.~8! as:

«aa
0 5«05

Nt

A111A12
. (10)

The resultant in-plane normal stressessaa
0(k) are also identical and

with Eq. ~4! result as:

saa
0~k!5

E~k!

12n~k!
~«02a t

~k!DT!. (11)

No in-plane shear stressess12
0(k) occur in the present situation. Th

layerwise inplane CLPT displacements can be calculated by i
gration of the inplane strain«0:

ua
0~k!5E

0

xa

«0dx̂a . (12)

The transverse displacementu3
0(k) results from layerwise integra

tion of the transverse normal strain«33
0(k) :

u3
0~k!5E

0

x3

«33
0~k!dx̂3 . (13)
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Herein,«33
0(k) can be calculated from the assumption that the

terlaminar normal stresss33
(k) vanishes in the inner laminate re

gions which with three-dimensional Hooke’s law leads to:

«33
0~k!5

2n~k!

12n~k!
~a t

~k!DT2«0!1a t
~k!DT. (14)

2.3 Linear Layerwise Displacement Approach. The
physical layers of the plate are discretized intonL mathematical
plies. Let us postulate a layerwise C1-continuous displacemen
field for each mathematical layer~k!:

ua
~k!5ua

0~k!1ua
1~k! , (15a)

u3
~k!5u3

0~k!1u3
11~k!1u3

12~k! . (15b)

The layerwise termsu1
1(k) , u2

1(k) , u3
11(k) , andu3

12(k) are defined as:

ua
1~k!5Ua

~k!~xa!c1
~k!~x3!1Ua

~k11!~xa!c2
~k!~x3!, (16a)

u3
1a~k!5U3a

~k!~xa!c1
~k!~x3!1U3a

~k11!~xa!c2
~k!~x3!. (16b)

Herein, we have introduced additional unknown displacem
functionsU1

(k)(x1), U2
(k)(x2), U31

(k)(x1), U32
(k)(x2) in the kth inter-

face andU1
(k11)(x1), U2

(k11)(x2), U31
(k11)(x1), U32

(k11)(x2) in the
interface (k11). This formulation takes free-edge perturbatio
of displacements and stresses into account and is suppose
blend into CLPT in the inner laminate regions whereU1

(k)→0 and
U2

(k)→0 as well asU31
(k)→0 andU32

(k)→0 must hold. The interface
functions are interpolated by linear Lagrangian interpolation fu
tions c1

(k)(x3) andc2
(k)(x3):

c1
~k!~x3!5c~k!~x3~k!2x3!, (17a)

c2
~k!~x3!5c~k!~x32x3~k21!!, (17b)

with c (k)5(x3(k)2x3(k21))
21. Note, thatc1

(k)(x3) and c2
(k)(x3)

have the properties c1
(k)(x3(k21))51, c1

(k)(x3(k))50 and
c2

(k)(x3(k21))50, c2
(k)(x3(k))51 which makes the displacemen

formulation C0-continuous across layer interfaces. Also note th
by virtue of the a priori assumed linear thickness shape of all th
displacement components the actual three-dimensional proble
reduced to a two-dimensional one, i.e., we have to so
for 4(nL11) unknown interface functionsU1

(k)(x1), U2
(k)(x2),

U31
(k)(x1), andU32

(k)(x2). Assuming geometrical linearity, we ma
use the well-known kinematical relation between the displa
ments and the components of the linearized strain tensor,
normal and shear strains« i i

(k) andg i j
(k) ~i, j 51, 2, and 3!:

«aa
~k!5ua,a

~k! 5«aa
0 1Ua,a

~k! c1
~k!1Ua,a

~k11!c2
~k! , (18a)

«33
~k!5u3,3

~k!5«33
0~k!1~U31

~k!1U32
~k!!c1,3

~k!1~U31
~k11!1U32

~k11!!c2,3
~k! ,
(18b)

ga3
~k!5u3,a

~k!1ua,3
~k!5Ua

~k!c1,3
~k!1Ua

~k11!c2,3
~k!1U3a,a

~k! c1
~k!

1U3a,a
~k11!c2

~k! , (18c)

g12
~k!5u2,1

~k!1u1,2
~k!50. (18d)

A subscripted index behind a comma denotes a derivative w
respect toxi , i.e., ( . . . ),i5]/]xi . Note that in the present situa
tion no inplane shear strainsg12

(k) occur. Considering physical lin-
earity, generalized Hooke’s law applies which for a thermoela
material in thekth layer readssI (k)5C= (k)(«I (k)2aI t

(k)DT) in a con-
tracted vector-matrix notation, or:
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S s11
~k!

s22
~k!

s33
~k!

s23
~k!

s13
~k!

s12
~k!

D 53
c11

~k! c12
~k! c13

~k! 0 0 0

c12
~k! c22

~k! c23
~k! 0 0 0

c13
~k! c23

~k! c33
~k! 0 0 0

0 0 0 c44
~k! 0 0

0 0 0 0 c55
~k! 0

0 0 0 0 0 c66
~k!

4 F S
«11

~k!

«22
~k!

«33
~k!

g23
~k!

g13
~k!

g12
~k!

D
2S a t

~k!DT

a t
~k!DT

a t
~k!DT
0
0
0

D G . (19)

The components of the symmetric stiffness matrixC= (k) can be
expressed in terms of the engineering constants in the isotr
case as:

c11
~k!5c22

~k!5c33
~k!5c1

~k!5
~12n~k!!E~k!

~11n~k!!~122n~k!!
, (20a)

c12
~k!5c13

~k!5c23
~k!5c2

~k!5
n~k!E~k!

~11n~k!!~122n~k!!
, (20b)

c44
~k!5c55

~k!5c66
~k!5c3

~k!5G~k!. (20c)

Using Eq.~18!, the stress field in thekth layer reads with Eqs.~19!
and ~20!:

s11
~k!5c1

~k!~U1,1
~k!c1

~k!1U1,1
~k11!c2

~k!!1c2
~k!~U2,2

~k!c1
~k!1U2,2

~k11!c2
~k!!

1c2
~k!@~U31

~k!1U32
~k!!c1,3

~k!1~U31
~k11!1U32

~k11!!c2,3
~k!#1s11

0~k! ,

(21a)

s22
~k!5c2

~k!~U1,1
~k!c1

~k!1U1,1
~k11!c2

~k!!1c1
~k!~U2,2

~k!c1
~k!1U2,2

~k11!c2
~k!!

1c2
~k!@~U31

~k!1U32
~k!!c1,3

~k!1~U31
~k11!1U32

~k11!!c2,3
~k!#1s22

0~k! ,

(21b)

s33
~k!5c2

~k!~U1,1
~k!c1

~k!1U1,1
~k11!c2

~k!!1c2
~k!~U2,2

~k!c1
~k!1U2,2

~k11!c2
~k!!

1c1
~k!@~U31

~k!1U32
~k!!c1,3

~k!1~U31
~k11!1U32

~k11!!c2,3
~k!#, (21c)

s23
~k!5c3

~k!~U2
~k!c1,3

~k!1U2
~k11!c2,3

~k!1U32,2
~k! c1

~k!1U32,2
~k11!c2

~k!!,
(21d)

s13
~k!5c3

~k!~U1
~k!c1,3

~k!1U1
~k11!c2,3

~k!1U31,1
~k! c1

~k!1U31,1
~k11!c2

~k!!,
(21e)
i

e
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s12
~k!50. (21f)

Note that while the resultant transverse strains«33
(k) , g23

(k) , andg13
(k)

are discontinuous across layer interfaces, there is the theore
possibility for the interlaminar stressess i3

(k) of becoming at least
approximately continuous and thus fulfilling equilibrium also
the layer interfaces with an increasing degree of refinement of
computational model. This will be the subject of a convergen
study later on.

2.4 Variational Statement, Decomposition of the Problem.
Due to the chosen form of the displacement approach the th
dimensional conditions of equilibrium with neglected volum
forces

s i1,1
~k! 1s i2,2

~k! 1s i3,3
~k! 50 (22)

cannot be fulfilled identically. However, we may resort to a we
form, i.e., let us use a variational statement such that we requ
minimum of the total potential energy of the plate:

P5 (
r 51

r 5nL S 1

2 E E E
V~r !

«I ~r !T
C= ~r !«I ~r !dV~r !

2E E E
V~r !

sI ~r !T
aI t

~r !DT~r !dV~r !

1
1

2 E E E
V~r !

aI t
~r !T

DT~r !C= ~r !aI t
~r !DT~r !dV~r !D 5Min.

(23)

As the third integral term only contains constant terms and t
vanishes throughout all subsequent variation processes we
omit it in the further course of this work. An integral concernin
the volumeV(k) of one mathematical layer can be decompos
into an integral through the layer thickness and an integral w
respect to the areaA054l 1l 2 of the middle plane of the plate, i.e

E E E
V~k!

dV~k!5E E
A0
E

x3~k21!

x3~k!

dx3dA0. (24)

As we have a priori assumed the thickness distributions of
displacement components, the integrandF (k) of the functional that
is subject to the minimization process in Eq.~23! is only depen-
dent on the interface functionsU1

(k)(x1), U2
(k)(x2), U31

(k)(x1),
U32

(k)(x2) and their first order derivatives. Hence, we may rewr
Eq. ~23! in the following form:
P5 (
r 51

r 5nL E E
A0
E

x3~r 21!

x3~r !

F ~r !~U1
~r ! ,U1,1

~r ! ,U2
~r ! ,U2,2

~r ! ,U31
~r ! ,U31,1

~r ! ,U32
~r ! ,U32,2

~r ! !dx3dA05Min. (25)
not
he
e we
the

e
the
Note that the variational statement Eq.~23!, respectively, Eq.~25!
leads to a set of governing coupled differential equations
U1

(k)(x1), U2
(k)(x2), U31

(k)(x1), U32
(k)(x2) that cannot be solved in a

closed-form analytical manner but requires numerical evaluat
However, previous investigations~see, e.g.,@54,55#! on free-
corner problems have shown that for the present class of lay
plates it is sufficient in an approximate sense to consider the
interacting free-edge effects separately and to combine these
for

on.

red
two
later

on into a free-corner solution. Note, however, that this does
necessarily hold for other kinds of laminate layups. For t
present analysis this means that as a decomposition measur
formulate two separate displacement fields that correspond to
involved free-edge effects alongside thex1 axis and parallel to the
x2 coordinate. This will allow for a closed-form solution of th
given thermoelastic free-corner problem. Let us first refer to
free-edge problem parallel to thex1 axis. We may achieve an
Transactions of the ASME
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appropriate displacement formulation for this situation by lett
x1→0 in Eqs. ~15! and ~16!, which corresponds toU1

(k)5U31
(k)

50 and thusu1
1(k)5u3

11(k)50. The remaining layerwise displace
ment field then reads:

u1
~k!5u1

0~k! , (26a)

u2
~k!5u2

0~k!1u2
1~k! , (26b)

u3
~k!5u3

0~k!1u3
12~k! . (26c)

This describes the free-edge problem of a thermally loaded la
nated strip which is long in thex1 direction. The according strain
and stresses for this situation can be gained by lettingU1

(k)

5U1,1
(k)5U31

(k)5U31,1
(k) 50 in Eqs. ~18! and ~21!. As the only re-

maining higher order functions areU2
(k) andU32

(k) and their deriva-
tives U2,2

(k) and U32,2
(k) , the corresponding variational statement r

duces to:

P5 (
r 51

r 5nL E E
A0
E

x3~r 21!

x3~r !

F ~r !~U2
~r ! ,U2,2

~r ! ,U32
~r ! ,U32,2

~r ! !dx3dA05Min.

(27)

It is convenient to introduce some abbreviations for the thickn
integrals~with b, g, d51, 2!:

@Hb
~k! ,Hbg

~k! ,Hbt
~k!#5E

x3~k21!

x3~k!

sbb
0~k!@1,cg

~k! ,a t
~k!DT~k!#dx3 ,

(28a)

@ I ig1
~k! ,I ig2

~k! #5E
x3~k21!

x3~k!

ci
~k!a t

~k!DT~k!@cg
~k! ,cg,3

~k!#dx3 , (28b)

@Jig1
~k! ,Jig2

~k! #5E
x3~k21!

x3~k!

ci
~k!@cg

~k! ,cg,3
~k!#dx3 , (28c)

@Kigd1
~k! ,Kigd2

~k! ,Kigd3
~k! #

5E
x3~k21!

x3~k!

ci
~k!@cg

~k!cd
~k! ,cg

~k!cd,3
~k! ,cg,3

~k!cd,3
~k!#dx3 ,

(28d)

@Lig1
~k! ,Lig2

~k! #5E
x3~k21!

x3~k!

ci
~k!«33

0~k!@cg
~k! ,cg,3

~k!#dx3 . (28e)

Using Eqs.~18! and~21!, the integrandF (k) of the functional Eq.
~27! with Eq. ~28! reads:

F ~k!5
1

2
«0~H1

~k!1H2
~k!!2~H1t

~k!1H2t
~k!!

1S 1

2
H21

~k!2I 111
~k! 22I 211

~k! 1
1

2
«0~J211

~k! 1J111
~k! !1

1

2
L211

~k! DU2,2
~k!

1S 1

2
H22

~k!2I 121
~k! 22I 221

~k! 1
1

2
«0~J221

~k! 1J121
~k! !1

1

2
L221

~k! DU2,2
~k11!

1S 2I 112
~k! 22I 212

~k! 1«0J212
~k! 1

1

2
L112

~k! DU32
~k!

1S 2I 122
~k! 22I 222

~k! 1«0J222
~k! 1

1

2
L122

~k! DU32
~k11!1~K3112

~k! U32,2
~k!

1K3212
~k! U32,2

~k11!!U2
~k!1~K3122

~k! U32,2
~k! 1K3222

~k! U32,2
~k11!!U2

~k11!

1~K2112
~k! U32

~k!1K2122
~k! U32

~k11!!U2,2
~k!1~K2212

~k! U32
~k!

1K2222
~k! U32

~k11!!U2,2
~k11!1

1

2
K3113

~k! U2
~k!2

1K3123
~k! U2

~k!U2
~k11!
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1
1

2
K3223

~k! U2
~k11!2

1
1

2
K1111

~k! U2,2
~k!2

1K1121
~k! U2,2

~k!U2,2
~k11!

1
1

2
K1221

~k! U2,2
~k11!2

1
1

2
K1113

~k! U32
~k!2

1K1123
~k! U32

~k!U32
~k11!

1
1

2
K1223

~k! U32
~k11!2

1
1

2
K3111

~k! U32,2
~k!2

1K3121
~k! U32,2

~k! U32,2
~k11!

1
1

2
K3221

~k! U32,2
~k11!2

. (29)

2.5 Governing Equations and Their Solution. We seek
that array of functionsU2

(k) , U2,2
(k) , U32

(k) , andU32,2
(k) which mini-

mizes the total potential energy of the plate. According to
calculus of variation, the following two governing Euler-Lagran
equations must be satisfied:

]

]U2
~k! S (

r 51

r 5nL

F ~r !D 2
d

dx2
F ]

]U2,2
~k! S (

r 51

r 5nL

F ~r !D G50, (30a)

]

]U32
~k! S (

r 51

r 5nL

F ~r !D 2
d

dx2
F ]

]U32,2
~k! S (

r 51

r 5nL

F ~r !D G50, (30b)

with d/d( . . . ) and]/]~ . . . ! for derivatives. Performance of th
variations~30! with respect to each interface leads to the follo
ing nL11 sets of coupled ordinary linear differential equations

~K3122
~k21!2K2212

~k21!!U32,2
~k21!1~K3222

~k21!2K2222
~k21!1K3112

~k! 2K2112
~k! !U32,2

~k!

1~K3212
~k! 2K2122

~k! !U32,2
~k11!1K3123

~k21!U2
~k21!

1~K3223
~k21!1K3113

~k! !U2
~k!1K3123

~k! U2
~k11!2K1121

~k21!U2,22
~k21!

2~K1221
~k21!1K1111

~k! !U2,22
~k! 2K1121

~k! U2,22
~k11!50, (31a)

~K2122
~k21!2K3212

~k21!!U2,2
~k21!1~K2222

~k21!2K3222
~k21!1K2112

~k! 2K3112
~k! !U2,2

~k!

1~K2212
~k! 2K3122

~k! !U2,2
~k11!1K1123

~k21!U32
~k21!

1~K1223
~k21!1K1113

~k! !U32
~k!1K1123

~k! U32
~k11!2K3121

~k21!U32,22
~k21!

2~K3221
~k21!1K3111

~k! !U32,22
~k! 2K3121

~k! U32,22
~k11!

5I 112
~k! 12I 212

~k! 1I 122
~k21!12I 222

~k21!2
1

2
@2«0~J222

~k21!1J212
~k! !

1~L122
~k21!1L112

~k! !#. (31b)

It is convenient to introduce a vector-matrix notation for Eq.~31!
with the vectors UI 25@U2

(k)#PR(nL11)31 and UI 325@U32
(k)#

PR(nL11)31 including the functionsU2
(k) and U32

(k) and their
derivatives:

K= 1UI 21K= 2UI 2,221K= 3UI 32,250I , (32a)

K= 4UI 321K= 5UI 32,221K= 6UI 2,25FI . (32b)

The constant quadratic coefficient matricesK= m5@Kpqm#
PR(nL11)3(nL11) ~with m51,2,3, . . . ,6 and p,q51,2,3 . . .nL
11) can be found in detail in Appendix 1. The vectorFI
PR(nL11)31 contains the nonhomogeneous right-hand sides
Eq. ~31b!, 0IPR(nL11)31 is a zero vector. A solution of Eq.~32! is
possible by introducing some new notations forU2

(k) andU32
(k) :

UI 15~UI 11 UI 12!
T5~UI 2,2 UI 32!

T, (33a)

UI 25~UI 21 UI 22!
T5~UI 2 UI 32,2!

T. (33b)

Note thatUI 115UI 21,2 andUI 225UI 12,2. Using these notations, afte
some algebra the governing Eqs.~32! can be rewritten as:

UI 1,222K= 1K= 2UI 15K= 1F, (34a)
JANUARY 2005, Vol. 72 Õ 91
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UI 25K= 1
21UI 1,2. (34b)

The quantitiesK= 1PR2(nL11)32(nL11), K= 2PR2(nL11)32(nL11), and
FIPR2(nL11)31 read:

K= 15S 2K= 2
21K= 1 2K= 2

21K= 3

0= E=
D ,

K= 25S E= 0=

2K= 5
21K= 6 2K= 5

21K= 4
D , F%I S 0I

K= 5
21FI D , (35)

whereinE= 5@dpq#PR(nL11)3(nL11) is the unity matrix withdpq

being the Kronecker symbol, 0=PR(nL11)3(nL11) is a zero matrix.
A solution for the homogeneous Eq.~34a!, i.e., for UI 1,222K= 3UI 1

50I with K= 35K= 1K= 2 , can be shown to be a system of hyperbo
functions:

UI 15G=C= 1bI 11G=S= 1bI 2 . (36)

The quantitiesC= 1PR2(nL11)32(nL11) and S= 1PR2(nL11)32(nL11)

are diagonal matrices of the formC= 15@dst cosh(lsx2)# and S= 1
5@dst sinh(lsx2)# with s,t51,2,3, . . . ,2(nL11). Therein, the
quantities ls are the roots of the 2(nL11) eigenvaluesl1

2,
l2

2, . . . ,l (2nL12)
2 of K= 3 , the matrixG=5@gst#PR2(nL11)32(nL11)

includes the corresponding eigenvectors ofK= 3 . The vectorsbI 1

5@b1s#PR2(nL11)31 and bI 25@b2s#PR2(nL11)31 contain free
constants. Using Eq.~34b! gives the homogeneous solution fo
UI 2 :

UI 25F= S= 1bI 11F= C= 1bI 2 , (37)

with F= 5@wst#PR2(nL11)32(nL11) being defined asF= 5K= 1
21G=L=

and L= 5@dstls#PR2(nL11)32(nL11). Utilizing Eqs. ~36! and ~37!
for the unknown interface functionsU2

(k) and U32
(k) and their de-

rivatives according to Eq.~33! leads to the following homoge
neous solution of Eq.~32!:

U2
~k!5 (

r 51

r 52~nL11!

b1rwkr sinh~l rx2!

1 (
r 51

r 52~nL11!

b2rwkr cosh~l rx2!, (38a)

U2,2
~k!5 (

r 51

r 52~nL11!

b1rgkr cosh~l rx2!1 (
r 51

r 52~nL11!

b2rgkr sinh~l rx2!,

(38b)

U32
~k!5 (

r 51

r 52~nL11!

b1rg k̄r cosh~l rx2!1 (
r 51

r 52~nL11!

b2rg k̄r sinh~l rx2!,

(38c)

U32,2
~k! 5 (

r 51

r 52~nL11!

b1rw k̄r sinh~l rx2!

1 (
r 51

r 52~nL11!

b2rw k̄r cosh~l rx2!, (38d)

with k̄5k1nL11. As the nonhomogeneous right-hand side of E
~34a! is a constant quantity and an appropriate approach fo
particular solution would be in the form of polynomial terms,
particular solution of Eq.~34a! and thus of Eq.~32! corresponds
to rigid body motions and strain states. As the displacement s
tion Eqs.~12! and~13! according to CLPT already fully account
for these states, the introduced CLPT terms correspond to
particular solution. Hence, the formulation Eq.~38! for U2

(k) and
U32

(k) and their derivatives is complete and unique.
92 Õ Vol. 72, JANUARY 2005
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Due to the symmetry of the given situation it is convenient
restrict our investigations to one quarter of the plate contain
two free edges merging into a rectangular corner, e.g., enclose
the interval 0<x1< l 1 , 0<x2< l 2 , 2d/2<x3<d/2, and fulfill the
boundary conditions of traction free plate edges for this quar
piece. The remaining parts of the plate can be adequately ta
account of by consideration of the symmetry of the given sit
tion. Since u2

(k) must be an odd function ofx2 , U2
(k)(x2)

52U2
(k)(2x2) must hold as well which is achieved by neglectin

the corresponding cosh functions in Eq.~38!. Accordingly, u3
(k)

and hence alsoU32
(k) must be an even function ofx2 which leads to

the neglect of the corresponding sinh terms in Eq.~38!. Summing
up, the solutions in Eq.~38! are reduced to:

U2
~k!5 (

r 51

r 52~nL11!

b1rwkr sinh~l rx2!, (39a)

U2,2
~k!5 (

r 51

r 52~nL11!

b1rgkr cosh~l rx2!, (39b)

U32
~k!5 (

r 51

r 52~nL11!

b1rg k̄r cosh~l rx2!, (39c)

U32,2
~k! 5 (

r 51

r 52~nL11!

b1rw k̄r sinh~l rx2!. (39d)

Finally we have to find a solution for the free-edge effect occ
ring parallel to thex2 axis. Letting x2→0 leads toU2

(k)5U32
(k)

50 and henceu2
1(k)5u3

12(k)50. Analogous to the free-edge prob
lem along thex1 axis, the variational statement of the prese
free-edge problem leads to a set of governing equations for
unknown functionsU1

(k) andU31
(k) and subsequently an eigenvalu

problem that can be solved like the presented free-edge prob
parallel to thex1 axis. Note that due to the isotropic layer mater
properties the present situation is insensitive to a coordinate tr
formation regarding the right corner angle, hence all occurr
eigenvalues and eigenvectors are identical for both free-e
problems. The solution for the remaining displacement functio
U1

(k) and U31
(k) and their derivatives in thekth interface can be

written similar to Eq.~39!:

U1
~k!5 (

r 51

r 52~nL11!

c1rwkr sinh~l rx1!, (40a)

U1,1
~k!5 (

r 51

r 52~nL11!

c1rgkr cosh~l rx1!, (40b)

U31
~k!5 (

r 51

r 52~nL11!

c1rg k̄r cosh~l rx1!, (40c)

U31,1
~k! 5 (

r 51

r 52~nL11!

c1rw k̄r sinh~l rx1!. (40d)

The quantitiesc1s are free constants.

2.6 Stress Field and Boundary Conditions. Using the so-
lutions ~39! and ~40!, the stress field~21! in the kth layer for the
coupled problem formulation reads:

s11
~k!5s11

0~k!1 (
r 51

r 52~nL11!

@c1r~c1
~k!c1r

~k!1c2
~k!c2r

~k!!cosh~l rx1!

1b1rc2
~k!~c1r

~k!1c2r
~k!!cosh~l rx2!#, (41a)
Transactions of the ASME
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s22
~k!5s22

0~k!1 (
r 51

r 52~nL11!

@c1rc2
~k!~c1r

~k!1c2r
~k!!cosh~l rx1!

1b1r~c1
~k!c1r

~k!1c2
~k!c2r

~k!!cosh~l rx2!#, (41b)

s33
~k!5 (

r 51

r 52~nL11!

~c2
~k!c1r

~k!1c1
~k!c2r

~k!!@c1r cosh~l rx1!

1b1r cosh~l rx2!#, (41c)

s23
~k!5c3

~k! (
r 51

r 52~nL11!

b1rc3r
~k! sinh~l rx2!, (41d)

s13
~k!5c3

~k! (
r 51

r 52~nL11!

c1rc3r
~k! sinh~l rx1!, (41e)

s12
~k!50, (41f)

wherein

c1s
~k!5c1

~k!gks1c2
~k!g~k11!s , (42a)

c2s
~k!5c1,3

~k!g~k1nL11!s1c2,3
~k!g~k1nL12!s , (42b)

c3s
~k!5c1

~k!w~k1nL11!s1c2
~k!w~k1nL12!s1c1,3

~k!wks1c2,3
~k!w~k11!s .

(42c)

These stresses have to fulfill the conditions of traction-free p
edges:

saa
~k!~xa5 l a!50, (43a)

sa3
~k!~xa5 l a!50. (43b)

An identical fulfillment of Eq.~43! is not possible with the chose
form of a layerwise approach. However, an integrated form w
respect to the plate interfaces using the same interpolation f
tions c1

(k) andc2
(k) as for the stresses can be utilized which lea

to 4(nL11) equations for the 4(nL11) free constantsb1s and
c1s :

E
0

l 2E
x3~k22!

x3~k21!

s11
~k21!~x15 l 1 ,x2 ,x3!c2

~k21!dx2dx3

1E
0

l 2E
x3~k21!

x3~k!

s11
~k!~x15 l 1 ,x2 ,x3!c1

~k!dx2dx350, (44a)

E
0

l 1E
x3~k22!

x3~k21!

s22
~k21!~x1 ,x25 l 2 ,x3!c2

~k21!dx1dx3

1E
0

l 1E
x3~k21!

x3~k!

s22
~k!~x1 ,x25 l 2 ,x3!c1

~k!dx1dx350, (44b)

E
0

l 2E
x3~k22!

x3~k21!

s13
~k21!~x15 l 1 ,x2 ,x3!c2

~k21!dx2dx3

1E
0

l 2E
x3~k21!

x3~k!

s13
~k!~x15 l 1 ,x2 ,x3!c1

~k!dx2dx350, (44c)

E
0

l 1E
x3~k22!

x3~k21!

s23
~k21!~x1 ,x25 l 2 ,x3!c2

~k21!dx1dx3

1E
0

l 1E
x3~k21!

x3~k!

s23
~k!~x1 ,x25 l 2 ,x3!c1

~k!dx1dx350. (44d)

This eventually yields an ordinary system of 4(nL11) linear
equations for the free constantsb1s andc1s :
Journal of Applied Mechanics
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nc-
ds

(
r 51

r 52~nL11!

b1rB1r
~k!1 (

r 51

r 52~nL11!

c1rC1r
~k!5D1

~k! , (45a)

(
r 51

r 52~nL11!

b1rB2r
~k!1 (

r 51

r 52~nL11!

c1rC2r
~k!5D2

~k! , (45b)

(
r 51

r 52~nL11!

b1rB3r
~k!50, (45c)

(
r 51

r 52~nL11!

c1rC3r
~k!50. (45d)

The coefficientsB1s
(k) , B2s

(k) , B3s
(k) , C1s

(k) , C2s
(k) , C3s

(k) and the right-
hand termsD1

(k) , D2
(k) are given in detail in Appendix 2. With

that, the development of the higher order layerwise theory
completed.

3 Results and Discussion

3.1 Convergence Study. It is of basic interest to study the
behavior of the present analysis method with varying degree
discretization refinement of the computational model. For the s
of simplicity let us investigate a four-layered symmetric bima
rial plate with material 1 in the facings and material 2 in the inn
two layers. Let us assume that the physical layers are identic
subdivided intom51/4nL mathematical layers whereas we w
investigate the development of the solution form53, m56, m
59, andm512. Let us assume aluminum as material 1 with t
elastic properties:

E1571,000 MPa, n150.34, a t
152431026 K21,

(46)

whereas material 2 is supposed to be nickel:

E25210,000 MPa, n250.31, a t
251331026 K21.

(47)

The individual physical layers of the@Al,Ni #S plate are assumed
to have a thickness of 0.5 mm each which leads to a total p
thickness ofd52.0 mm. A similar layered plate under uniform
thermal load has been considered by Becker et al.@50#. The load
case is a uniform temperature drop ofDT52100 K. CLPT pre-
dicts the nonvanishing in-plane stresses as

s11
0~1!5s11

0~4!5s22
0~1!5s22

0~4!587.43 MPa, (48a)

s11
0~2!5s11

0~3!5s22
0~2!5s22

0~3!5287.43 MPa. (48b)

The in-plane dimensions of the computational model are se
l 15 l 252d54.0 mm. For evaluation purposes from now on let
refer to an orthonormal corner coordinate systemx̄1 , x̄2 , x̄3 ~see
Fig. 2!. Figure 3 depicts the resultant distribution of the interlam
nar normal stresss33 through the thickness at the corner tipx̄1
50, x̄250, 2d/2< x̄3<d/2 for m53, m56, m59, andm512.
We did not calculate mean values ofs33 at one interface coordi-
natex̄3 but have depicted both stress values of the respective
adjacent mathematical layers to gain an estimate of the con
gence of the presented method with respect to the developme
continuous interlaminar stresses in the mathematical interfaces
could be expected, the quality of the stress results increases

Fig. 2 Corner coordinate system x̄ 1 , x̄ 2 , x̄ 3
JANUARY 2005, Vol. 72 Õ 93
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Fig. 3 Convergence study, s33 through the thickness Àd Õ2Ï x̄ 3Ïd Õ2 at the corner tip x̄ 1Ä0,
x̄ 2Ä0 for mÄ3 „upper left portion …, mÄ6 „upper right portion …, mÄ9 „lower left portion …, m
Ä12 „lower right portion …, x̄ 3 in mm, all stresses in MPa
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higher values ofm. In regions that are not dominated by singul
influences, i.e., some distance away from the interfaces betw
two dissimilar physical layers atx̄356d/4, convergence of the
stress distributions is rapid and almost continuous stresses in
mathematical interfaces are achieved. Close to the physical i
faces between the aluminum and nickel layers, however, no
vergence of the solution can be observed as with higher value
m positive stress values are encountered that seem to incr
without bound. This is a common effect when applying discre
ing methods in the vicinity of physical interfaces between dissi
lar plate layers at free edges and corners and hints of a dis
corner stress singularity as the comparison ofs33 at x̄150, x̄2

50, x̄35d/4 for varyingm ~see Table 1 where the mean values
the two according interface valuess33

Tip5s33( x̄150,x̄250,x̄3

5d/4) of the adjacent mathematical layers are given! also shows.
Furthermore, in the regions close to the physical interfaces
continuity properties ofs33 remain somewhat poor for allm. Also
note that the fulfillment of the boundary condition of traction fr
plate surfaces, i.e., heres33( x̄150,x̄250,x̄356d/2)50, is sig-
nificantly improved with increasing values ofm ~see also Table 1
where the numerical values ofs33

Bot5s33( x̄150,x̄250,x̄3

52d/2) at the bottom surface of the plate are given!. This is all
the more satisfactory as the fulfillment of this boundary condit
is not part of the formulation of the layerwise theory, hence th
results also render the presented method reliable with plaus
results. The differencesDs33

Tip andDs33
Bot between two stress val

ues s33
Tip and s33

Bot for two sequent values ofm, i.e., Ds33
Tip
ANUARY 2005
r
een

the
ter-
on-
s of
ease
iz-
i-

inct

of

the

e

on
se
ible

5s33
Tip(m)2s33

Tip(m21) and Ds33
Bot5s33

Bot(m)2s33
Bot(m21), are

also given in Table 1. It is noted that the convergence rate is h
for lower values ofm and decreases with higherm.

The analytical method exhibits excellent convergence prop
ties for the intralaminar CLPT stresses, accordingly Fig. 4, up
left portion, shows the distribution ofs11( x̄15 l 1 ,x̄25 l 2 ,2d/2
< x̄3<d/2) in the center of the plate form53 only. Deviations
between the analytical results and the CLPT predictions of ab
1% are found for this stage of discretization.

Figure 4, upper right portion, shows the distribution ofs33
along the plate edgex̄250 in the range 0< x̄1< l 1/2 at the thick-
ness coordinatex̄35d/4, i.e., directly at the interface between th
upper aluminum ply and the nickel layer, for the discretizatio
m53, m56, m59, and m512. Sinces33 is dominated by a
singularity along the entire structural line 0< x̄1< l 1 directly at the
interface atx̄35d/4, no convergence of the stress results can
observed. With increasing values ofm, higher stress values ar
found in the entire considered range. Note that the differen
between the results of two sequent discretization stagesm seem to
be more pronounced in the closer corner regions which hints
distinct corner singularity that will most probably exhibit chara
teristics different from the occurring edge singularities.

Figure 4, lower left portion, depicts the classical free-edge
fect situation ofs33 at x̄25 l 2 in the range 0< x̄1< l 1/2 at x̄3
5d/4. Along this structural line,s33 is dominated by a singularity
only at the edge pointx̄150, x̄25 l 2 , x̄35d/4. It is observed that
6.29
7

9

Table 1 Convergence study, s33Äs33
Tip at x̄ 1Ä0, x̄ 2Ä0 in the physical interface x̄ 3Äd Õ4 and

s33Äs33
Bot at x̄ 1Ä0, x̄ 2Ä0 at the bottom of the plate x̄ 3ÄÀd Õ2 for several discretization stages

m, differences between sequent discretization degrees, all stresses in MPa

m 3 4 5 6 7 8 9 10 11 12

s33
Tip 182.51 201.50 217.36 230.89 242.70 253.18 262.60 271.17 279.02 28

Ds33
Tip

¯ 18.99 15.86 13.53 11.81 10.48 9.42 8.57 7.85 7.2

s33
Bot 215.20 24.91 25.07 23.05 22.32 21.63 21.19 20.85 20.61 20.42

Ds33
Bot

¯ 10.29 20.16 2.02 0.73 0.69 0.44 0.34 0.24 0.1
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Fig. 4 Convergence study, s11 through the thickness Àd Õ2Ï x̄ 3Ïd Õ2 at the plate center point
x̄ 1Ä l 1 , x̄ 2Ä l 2 „upper left portion …, s33 at x̄ 2Ä0, x̄ 3Äd Õ4 in the range 0 Ï x̄ 1Ï l 1Õ2 „upper right
portion …, s33 at x̄ 2Ä l 2 , x̄ 3Äd Õ4 in the range 0 Ï x̄ 1Ï l 1Õ2 „lower left portion …, s13 at x̄ 2Ä0, x̄ 3
Äd Õ4 in the range 0 Ï x̄ 1Ï l 1Õ2 „lower right portion …, x̄ 1 and x̄ 3 in mm, all stresses in MPa
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the stress results for all applied discretization schemes in the
tire investigated range agree well with the obvious exception
the close edge region where again no convergence of the resu
found. Since this is a common observation with free-edge effe
in layered plates this result is not unexpected.

Figure 4, lower right portion, shows the interlaminar she
stresss13 at x̄250 in the range 0< x̄1< l 1/2 at x̄35d/4. Sinces13
is not dominated by singular influences for this class of pl
layups, the peak values ofs13 some distance from the plate edg
show convergent behavior, as between the discretization st
m59 andm512 only small deviations are observed. However
must be noted that the fulfillment of the boundary conditions@Eq.
~43b!# is only approximately achieved at this location. Howev
we will present results fors13 later on where a satisfying fulfill-
ment of Eq.~43b! is shown.

For the investigation of basic characteristics of thermoela
free-corner problems, a discretization degree of at leastm56 is
recommended. However, if there is interest in very accurate
sults, a value ofm512 mathematical layers per physical p
should be applied, which in all corresponds tonL548 mathemati-
cal layers in the present four-plied plate. As the convergence s
has shown, this degree of refinement of the computational m
ied Mechanics
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is a reasonable compromise between the spent computationa
~note that one analysis at this degree of discretization takes se
seconds on a standard personal computer! and the achieved accu
racy of the analysis results. The valuem512 will also be applied
in all subsequent computations.

3.2 Thermoelastic Stress Fields in a Bimaterial Plate. Let
us further refer to the@Al,Ni #S plate withDT52100 K and first
investigate the intralaminar normal stresss11 in the plate middle
planex̄350 in the range 0< x̄1< l 1 , 0< x̄2< l 2 as it is depicted in
Fig. 5~a!. Results for the second occurring in-plane normal str
s22 are not given since these can be achieved from the results
s11 by switching the axesx̄1 , x̄2 . The in-plane normal stresss11
exhibits significant gradients with respect tox̄1 and x̄2 in the
vicinity of both free plate edges and fulfills the given bounda
condition Eq.~43a! reasonably well whereas some disruption
found in the closer corner region. In the inner plate regions CL
holds true. Thus, the present stress localization problem is s
that the in-plane stresses are rendered more harmless in com
son to their CLPT values.

Furthermore, let us investigate the distribution of the interlam
nar shear stresss13 in the interval 0< x̄1< l 1 , 0< x̄2< l 2 at x̄3
Fig. 5 „a… s11 at x̄ 3Ä0 in the range 0 Ï x̄ 1Ï l 1 , 0Ï x̄ 2Ï l 2 , „b… s13 at x̄ 3Ä3Õ16d in the range
0Ï x̄ 1Ï l 1 , 0Ï x̄ 2Ï l 2 , and x̄ 1 and x̄ 2 in mm, all stresses in MPa
JANUARY 2005, Vol. 72 Õ 95
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Fig. 6 „a…–„i… s33 at several locations x̄ 3 in the range 0 Ï x̄ 1Ï l 1 , 0Ï x̄ 2Ï l 2 , „a… s33 at x̄ 3Ä0, „b… s33 at x̄ 3Äd Õ16, „c… s33
at x̄ 3Äd Õ8, „d… s33 at x̄ 3Ä3d Õ16, „e… s33 at x̄ 3Äd Õ4, „f… s33 at x̄ 3Ä5d Õ16, „g… s33 at x̄ 3Ä3d Õ8, „h… s33 at x̄ 3Ä7d Õ16, „i… s33
at x̄ 3Äd Õ2, x̄ 1 and x̄ 2 in mm, all stresses in MPa
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53/16d ~Fig. 5~b!!. Due to the same symmetry reasons as fors11

ands22, results for the second occurring interlaminar shear str
s23 are not given. It is found thats13 fulfills the boundary condi-
tion of traction-free plate edges~43b! in a convincing manner~a
value ofs13520.21 MPa is encountered atx̄150) and rises to a
positive peak value at some distance from the free plate e
before falling to zero values in the inner plate regions. Note t
as s13 is coupled with the inplane normal stresss11 by three-
dimensional equilibrium~22! and since the gradients11,1 is non-
vanishing ~Fig. 5~a!!, the occurrence of nonconstant inplan
stressess11 is mainly responsible for the occurrence of interlam
nar corner stress concentrations ofs13. Similar reasoning will
also hold true for the relationship betweens22 ands23. Since the
encountered peak value ofs13 at the present location is abou
half of the inplane normal stressess11

0 ands22
0 according to CLPT

and the peak value atx̄35d/4 is even higher~see Fig. 4~d!!,
it is appropriate to talk about a serious stress concentra
phenomenon.

In the course of the convergence study it was revealed tha
occurring interlaminar normal stressess33 exhibit very high peak
values in the vicinity of the free laminate corner and also alo
the free plate edges which characterizes the encountered free
effects and especially the free-corner effect as possibly crit
stress concentration phenomena. Thus it is justified to discus
occurring distributions ofs33 at some more length. Figures 6~a!–
6~i! display the distributions ofs33 in the interval 0< x̄1< l 1 , 0
<x̄2<l2 at several thickness locationsx̄3 from the plate middle
plane atx̄350 upward to the free plate surface atx̄35d/2, namely
between every third mathematical layer. In addition, Fig. 7 sho
a thickness plot of the mean values ofs33 at the corner tip
Vol. 72, JANUARY 2005
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x̄15 x̄250 in all interfaces between the mathematical layers in
interval 0< x̄3<d/2. Table 2 shows a relative comparison betwe
the encountered corner stressess33 at x̄15 x̄250 and the CLPT
in-plane normal stresss11

0(1) . As the shear stress gradientss13,1
and s23,2 are nonvanishing~see also Figs. 4~d! and 5~b!!, the
interlaminar normal stresss33 has to arise due to three
dimensional equilibrium~22!. Figures 6~a!–6~i! show that the en-
countered free-corner effect in essence consists of the super
tion of the two corresponding free-edge effects that culminate
distinct stress peaks at the corner tip atx̄15 x̄250. This is encoun-
tered at all locationsx̄3 . Note that below the physical interface a
x̄35d/4 in the nickel layer, the encountered free-edge effects

Fig. 7 Interlaminar normal stress s33 through the thickness
0Ï x̄ 3Ïd Õ2 at the corner tip x̄ 1Ä0, x̄ 2Ä0, x̄ 3 in mm, all stresses
in MPa
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Table 2 Mean values of s33 at the corner tip x̄ 1Ä0, x̄ 2Ä0 at several locations x̄ 3 , comparison
with in-plane CLPT stresses, x̄ 3 in mm, all stresses in MPa

x̄3 0.000 0.042 0.083 0.125 0.167 0.208 0.250 0.292 0.3
s33

Tip 246.52 247.22 249.34 253.00 258.37 265.82 275.70 289.22 306

s33
Tip

s11
0 ~m1!

2.82 2.83 2.85 2.89 2.96 3.04 3.15 3.31 3.50

x̄3 0.375 0.417 0.458 0.500 0.542 0.583 0.625 0.667 0.7
s33

Tip 334.31 367.37 455.81 286.29 24.55 4.24223.43 225.07 227.88

s33
Tip

s11
0 ~m1!

3.82 4.20 5.21 3.27 0.28 0.05 20.27 20.29 20.32

x̄3 0.750 0.792 0.833 0.875 0.917 0.958 1.000
s33

Tip 226.16 222.83 217.86 212.03 26.28 22.18 20.42

s33
Tip

s11
0 ~m1!

20.30 20.26 20.20 20.14 20.07 20.02 0.00
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possibly critical with high tensile stresses at the plate edges
are well above the stress values of CLPT. However, also note
the arising free-corner effects exhibit stress peaks at the corne
that amount to approximately double values of the involved fr
edge effects and thus make the immediate vicinity of the f
corner tip in the interval 0< x̄3<d/4 the most critical location
with respect to the initiation of delamination. The encounte
stress distributions above the physical interface atx̄35d/4 are in
contrast to those previously discussed. Here,s33 reaches some
positive peak values some distance from both free plate ed
before falling to compressive edge and corner values. All enco
tered absolute values ofs33 are well below those in the range
< x̄3<d/4 as can also be concluded from Fig. 7 and Table
Figure 6~i! shows that the boundary condition of traction fr
plate surfaces is met with reasonable accuracy. The encoun
stress values atx̄35d/2 are negligible in comparison to thos
found at all other locationsx̄3 .

Becker et al.@50# investigated the free-corner effect in the
mally loaded cross-ply plates and calculated stresses for the l
@Ni,Al #S under a uniform thermal load ofDT5100 K with the
geometry data identical to those previously discussed. Figu
shows a comparison of the present method and the approac
described in@50# which consists of a variational principle and
layerwise stress shape assumption for the in-plane stresses
form of exponential functions with unknown decaying rate. T
finite element results reported in@50# are also depicted in Fig. 8
Results are generated at the thickness coordinatex̄35d/5 in the
range 0< x̄1< l 1 , x̄250. A reasonable agreement between bo
methods is found which lends credibility to the present approa
Furthermore, the present analysis compares well with the num
cal results as given in@50#. The deviations between the prese
results and those from Becker et al. probably stem from the

Fig. 8 Comparison of the present method with the results of
Becker et al., s13 and s33 at x̄ 2Ä0, x̄ 3Äd Õ5 in the range 0 Ï x̄ 1
Ï l 1 , x̄ 1 in mm, all stresses in MPa
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that in @50# a coarse finite element mesh was employed wher
the presently applied discretization scheme with 12 sublayers
physical layer means a quite high discretizational effort. Furth
more, the closed-form analysis performed in@50# is based on very
simple stress shapes the choice of which is somewhat arbitrar
that it may be concluded that the presently applied displacem
based approach probably yields results of higher accuracy. H
ever, the overall qualitative agreement between@50# and the
present approach is quite satisfying and thus renders the pres
displacement based approach a trustworthy method.

4 Summary
We have presented a layerwise displacement based approa

the determination of displacements, strains, and stresses in
vicinity of free edges and corners of symmetric plates of isotro
layers under uniform thermal load. After the assumption of a l
ear interpolation scheme between introduced interface funct
that only depend on the in-plane coordinates, the application
the principle of minimum elastic potential of the plate leads to
Euler-Lagrange differential equations that govern the interf
functions. These equations allow a closed-form solution due
some simplifying considerations in the displacement formulatio
and the nature of the encountered free-corner effect. In con
sion, it can be stated that the occurring corner and edge pertu
tions are an utmost localized phenomenon and are found to
bounded to a small edge region. Especially, the occurrence
interlaminar normal stressess33 in the near field of the free plate
corner is a highly critical stress concentration problem and sho
be considered with care whenever layered structural elements
involved under thermal influence.

Nomenclature
Subscripts

~k! 5 layer/interface index
( . . . ),i 5 partial derivative with respect toxi

a, b, g, d 5 1, 2
i, j 5 1, 2, 3

o, p 5 1, 2, 6
m 5 1, 2, 3, . . . ,6

p, q 5 1,2,3, . . . ,nL11
s, t 5 1,2,3, . . . ,2(nL11)

r 5 summation index
m 5 auxiliary subscript
k̄ 5 k1nL11, auxiliary subscript

Superscripts

~k! 5 layer/interface superscript
0 5 quantity according to classical laminate plate theory

~CLPT!
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s

s
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t-
r 5 summation superscript
m 5 auxiliary superscript

Coordinates

x1 , x2 , x3 5 orthonormal reference axes, inplane coordi-
natesx1 , x2 , and thickness coordinatex3

x̄1 , x̄2 , x̄3 5 orthonormal corner coordinate system

Basic Quantities

d, V, A0 5 total laminate thickness/volume/
area of laminate middle plane

2l 1 , 2l 2 5 in-plane laminate dimensions
n, nL 5 total number of physical layers/

mathematical layers
m 5 number of mathematical layers

per physical layer
d(k), V(k) 5 thickness/volume of layer~k!

x3(k21) , x3(k) 5 thickness coordinates of lower/
upper interface (k)/(k11) of
layer ~k!

DT 5 uniform thermal load
E(k), n (k) 5 layerwise Young’s modulus/

Poisson’s ratio
G(k), a t

(k)
5 layerwise shear modulus/

coefficient of thermal expansion
c11

(k) , c22
(k) , c33

(k) , c12
(k) ,

c13
(k) , c23

(k) , c44
(k) , c55

(k) , c66
(k)

5 layerwise three-dimensional stiff-
ness components

c1
(k) , c2

(k) , c3
(k)

5 layerwise auxiliary three-
dimensional stiffness components

m1 , m2 , . . . ,mn/2 5 isotropic materials of layers
1,2,3, . . . ,n/2 in a symmetric
n-plied laminate

d/d( . . . ), ]/]~ . . . ! 5 standard/partial derivative
dpq 5 Kronecker symbol

Quantities According to CLPT

Nab , Mab 5 normal/shear forces and bending/twisting
moments

«aa
0 , g12

0
5 normal/shear strains

«0 5 normal strain of the isotropic plate
kaa

0 , k12
0

5 plate curvatures/torsion
Aop , Bop , Dop 5 membrane/coupling/plate stiffnesses

Qop
(k)

5 layerwise reduced stiffness components
saa

0(k) , s12
0(k)

5 layerwise normal/shear stresses
aabt

(k)
5 layerwise coefficients of thermal expansion

Nab
T , Mab

T
5 thermal forces/moments

NT 5 thermal normal force
ua

0(k) , u3
0(k)

5 layerwise inplane/transverse displacement
«33

0(k)
5 layerwise transverse normal strain

jm
(k)

5 layerwise auxiliary geometric quantity

Vectors and Matrices

( . . . ) 5 vector, one-dimensional array
( . . . )= 5 matrix, two-dimensional array

NI , MI PR331 5 arrays of normal/shear forces and
bending/twisting moments

«I 0, kI 0PR331 5 arrays of CLPT normal/shear
strains and plate curvatures/
torsion

aI t
0(k)PR331 5 array of layerwise CLPT coeffi-

cients of thermal expansion
aI t

(k)PR631 5 array of layerwise three-
dimensional coefficients of ther-
mal expansion
98 Õ Vol. 72, JANUARY 2005
sI 0(k)PR331 5 array of layerwise CLPT normal/
shear stresses

sI (k), «I (k)PR631 5 arrays of layerwise three-
dimensional normal/shear stresse
and strains

UI aPR(nL11)31 5 vectors of displacement functions
Ua

(k)

UI 3aPR(nL11)31 5 vectors of displacement functions
U3a

(k)

FI PR(nL11)31 5 vector of effective forces
0IPR(nL11)31 5 zero vector

bI a , cI aPR2(nL11)31 5 arrays of free constants
UĪ abPR(nL11)31 5 auxiliary displacement vectors
UĪ aPR2(nL11)31 5 auxiliary displacement vectors

FĪ PR2(nL11)31 5 auxiliary effective force vector
A= , B= , D= PR333 5 matrices of CLPT laminate

membrane/coupling/plate stiff-
nesses

Q
=

(k)PR333
5 matrix of layerwise reduced stiff-

nesses
C= (k)PR636 5 matrix of layerwise three-

dimensional stiffnesses
K= mPR(nL11)3(nL11) 5 quadratic coefficient matrices

E= PR(nL11)3(nL11) 5 unity matrix
0=PR(nL11)3(nL11) 5 zero matrix

C= 1PR2(nL11)32(nL11) 5 diagonal matrix containing hyper-
bolic cosines

S= 1PR2(nL11)32(nL11) 5 diagonal matrix containing hyper-
bolic sines

K= iPR2(nL11)32(nL11) 5 auxiliary stiffness matrices
G=PR2(nL11)32(nL11)

5 matrix of eigenvectors ofK= 3

F= , L= PR2(nL11)32(nL11) 5 auxiliary matrices

Quantities According to the Three-Dimensional Layerwise
Linear Theory Approach

s i i
(k) , s i j

(k)
5 layerwise normal/shear stresses

ua
(k) , u3

(k) 5 layerwise inplane/transverse displace
ments

« i i
(k) , g i j

(k) 5 layerwise normal/shear strains
ua

1(k) , u3
1a(k) 5 layerwise inplane/transverse higher

order displacement terms
Ua

(k) , U3a
(k) 5 displacement functions in interface

~k!
Ua

(k11) , U3a
(k11) 5 displacement functions in interface

(k11)
ca

(k) 5 layerwise linear Lagrangian interpo-
lation functions

P 5 total potential energy of the laminate
F (k) 5 layerwise integrand of the energy

functional
Hb

(k) , Hbg
(k) , Hbt

(k) ,
I ig1

(k) , I ig2
(k) , Jig1

(k) , Jig2
(k) ,

Kigd1
(k) , Kigd2

(k) , Kigd3
(k) ,

Lig1
(k) , Lig2

(k) 5 layerwise stress and stiffness result-
ants

Kpqm 5 components ofK= m
gst , wst 5 components ofG= /F=

ls 5 roots of the 2(nL11) eigenvalues
l1

2, l2
2, . . . ,l (2nL12)

2 of K=̄ 3

bas , cas 5 free constants, components ofbI a and
cI a

Bis
(k) , Cis

(k) 5 coefficients in equation system resul
ing from boundary conditions
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Da

(k) 5 right-hand side terms in equation
system resulting from boundary con
ditions

s33
tip 5 s33 in the interface between two

physical layers at the free corner tip
s33

bot 5 s33 at the bottom of the laminate at
the free corner tip
Journal of Applied Mechanics
Ds33
tip , Ds33

bot 5 differences between values of
s33

tip/s33
bot for two sequent values ofm

c (k), c is
(k) , j is

(k) 5 auxiliary quantities

Appendix 1
The coefficient matricesK= m read:
K= m5@Kpqm#5S K11m K12m 0 0 ¯ 0 0

K21m K22m K23m 0 ¯ 0 0

0 K32m K33m K34m ¯ 0 0

0 0 K43m K44m ¯ 0 0

] ] ] ] � ] ]

0 0 0 0 ¯ KnLnLm KnL~nL11!m

0 0 0 0 ¯ K ~nL11!nLm K ~nL11!~nL11!m

D . (49)
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Their nonvanishing components withp5@q21,q,q11# can be
written as:

Kpq15@K3123
~q21! ,~K3223

~q21!1K3113
~q! !,K3123

~q! #, (50a)

Kpq252@K1121
~q21! ,~K1221

~q21!1K1111
~q! !,K1121

~q! #, (50b)

Kpq35@~K3212
~q21!2K2122

~q21!!,~K3222
~q21!2K2222

~q21!1K3112
~q!

2K2112
~q! !,~K3122

~q! 2K2212
~q! !#, (50c)

Kpq45@K1123
~q21! ,~K1223

~q21!1K1113
~q! !,K1123

~q! #, (50d)

Kpq552@K3121
~q21! ,~K3221

~q21!1K3111
~q! !,K3121

~q! #, (50e)

Kpq65@~K2212
~q21!2K3122

~q21!!,~K2222
~q21!2K3222

~q21!1K2112
~q!

2K3112
~q! !,~K2122

~q! 2K3212
~q! !#. (50f)

Appendix 2

The coefficientsB1s
(k) , B2s

(k) , B3s
(k) , C1s

(k) , C2s
(k) , C3s

(k) and the
right-hand termsD1

(k) , D2
(k) of the equation system~45! read:

B1s
~k!5ls

21 sinh~lsl 2!j1s
~k! , (51a)

B2s
~k!5 l 1 cosh~lsl 2!j2s

~k! , (51b)

B3s
~k!5 l 1 sinh~lsl 2!j3s

~k! , (51c)

C1s
~k!5 l 2 cosh~lsl 1!j2s

~k! , (51d)

C2s
~k!5ls

21 sinh~lsl 1!j1s
~k! , (51e)

C3s
~k!5 l 2 sinh~lsl 1!j3s

~k! , (51f)

D1
~k!52 l 2~H12

~k21!1H11
~k!!, (51g)

D2
~k!52 l 1~H22

~k21!1H21
~k!!, (51h)

where
j1s
~k!5@K2121

~k21!g~k21!s1~K2221
~k21!1K2111

~k! !gks1K2121
~k! g~k11!s

1K2212
~k21!g~k1nL!s1~K2222

~k21!1K2112
~k! !g~k1nL11!s

1K2122
~k! g~k1nL12!s#, (52a)

j2s
~k!5@K1121

~k21!g~k21!s1~K1221
~k21!1K1111

~k! !gks1K1121
~k! g~k11!s

1K2212
~k21!g~k1nL!s1~K2222

~k21!1K2112
~k! !g~k1nL11!s

1K2122
~k! g~k1nL12!s#, (52b)

j3s
~k!5@K3121

~k21!w~k1nL!s1~K3221
~k21!1K3111

~k! !w~k1nL11!s

1K3121
~k! w~k1nL12!s1K3212

~k21!w~k21!s1~K3222
~k21!1K3112

~k! !wks

1K3122
~k! w~k11!s#. (52c)
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Solutions for the Inclined
Borehole in a Porothermoelastic
Transversely Isotropic Medium
A porothermoelastic solution of the general problem of the inclined borehole in a tr
versely isotropic porous material is presented herein and compared with the isot
porothermoelastic solution. The governing equations are outlined for the case of ge
anisotropy and specialized for a transversely isotropic poroelastic material under no
drostatic and nonisothermal in situ conditions. A superposition scheme is employ
obtain the analytical solutions within the isotropic and transversely isotropic poro
chanics theory. The borehole generator is assumed to coincide with the material a
symmetry, in the case of transverse isotropy, yet subjected to a three-dimensional s
stress. A systematic analysis has been carried out to evaluate the effect of the anis
of the poromechanical material parameters as well as the thermal material propertie
stress and pore pressure distributions and the potential impact on the overall stabil
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Introduction
A great deal of attention has been focused on coupled ther

mechanical behavior of fluid-saturated porous media. Over
years, the theoretical developments in this area have matured
a simple extension of Biot’s isotropic poroelastic theory@1–6# to
a more general approach which can handle the coupling a
with the material anisotropy@7#. Applications for these are found
in diverse areas such as deep drilling and excavation, modelin
nuclear waste disposal facilities@8#, and extraction of geotherma
energy@9#. With the complex mechanisms that come into pla
identification of various driving forces and the interaction betwe
them presents a challenge in predicting an appropriate behavi
depth.

Following the work of Biot @1,2#, considerable research ha
been carried out in the mechanics of fluid-saturated porous me
Fundamental aspects of Biot’s theory of poroelasticity have b
reformulated and presented in various forms@10–12#. Extension
of this theory to incorporate thermal effects for the isotropic c
has been addressed by several authors@3–6#. Consequently, solu-
tions to boundary and initial value problems have been develo
under various scenarios which demonstrate the effect of the t
mohydromechanical coupling on the response@13–18#.

At the same time, Biot’s theory has been extended to acco
for material anisotropy@2,11#. The extension introduced variou
material constants which were identified and recast with strai
forward physical interpretations@19,20#. Subsequently, analytica
solutions for fundamental problems such as Mandel’s prob
@21#, the borehole problem, and the cylinder problem@22# have
been extended for the transversely isotropic case. It was fo
that analysis of the transversely isotropic poroelastic proble
showed unpredicted results when compared to their elastic c
terparts@21,22#. In addition to the time dependency of the flo
and deformation fields, the anisotropic material coefficients p
an important role in the calculation of the in-plane stresses. Th

1Now at Shell International Exploration and Production, Houston, TX 77025.
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accepted until four months after final publication in the paper itself in the AS
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is existing literature that addresses the thermal effects in an
tropic media, though the treatment in many cases is limited
coupled thermoelasticity@23–25#. A comprehensive treatmen
of the anisotropic porothermoelasticity has been addressed
Katsube@7#.

In general, geoactivities are usually carried out in formatio
that can be broadly classified as transversely isotropic due to
simple natural deposition of sedimentary rocks which has
curred over a geological time scale. The deposition processes
to development of formations with similar material properti
across a cross section but with different characteristics in the
rection perpendicular to it. In this paper, a porothermoelastic
lution for an inclined borehole in a transversely isotropic mediu
is presented. Governing equations are developed first for gen
anisotropy and then specialized for the transversely isotropic
isotropic cases. The resulting system of equations is used to ob
the analytical solution for an infinitely long borehole where it
assumed that the borehole generator coincides with the mat
axis of symmetry.

General Formulations
Upon load application, the mechanical response of a flu

saturated porous system is characterized by coupled diffusi
deformation attributed to the interdependence of change in p
volume and the pore fluid pressure. With the introduction
boundary temperatures, i.e., a nonisothermal state, both the
fluid and pore volume are subject to differential expansion
contraction, resulting in additional coupling associated with
temperature change. The magnitude of the relative chang
stress, pore pressure, and temperature is coupled and describ
constitutive relations weighted by material coefficients. In th
section, a full set of governing equations is developed for
general anisotropic case.

Constitutive Equations. The constitutive equations for linea
porothermoelasticity are expressed as@5,6#

s i j 5Mi jkl ekl2a i j p2b i j
s T (1a)

z5p/M1a i j e i j 2bs fT (1b)

Equations~1a! and ~1b! are written using a tension positive con
vention. The above equations relate the response of the dyn
variables,s i j ~total stress tensor!, p ~pore pressure!, andT ~tem-
perature!, to the kinematic quantities,e i j ~solid strain tensor! and
z ~variation of fluid content!. The connection between the dy
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namic and kinematic quantities is characterized by the mate
constants,Mi jkl ~drained elastic modulus tensor!, a i j ~Biot’s ef-
fective stress coefficient tensor!, M ~Biot’s modulus!, b i j

s ~thermic
coefficient tensor related to the solid skeleton!, andbs f ~thermic
coefficient related to the pore fluid!. The thermic coefficient ten-
sor,b i j

s , provides a measure of the stress induced due to chan
temperature. It is related to the thermal expansion coefficients
the drained elastic modulus tensors as follows@26,27#:

b i j
s 5Mi jkl akl

s (2)

wherea i j
s is the linear expansion coefficient tensor of the so

skeleton. The thermic coefficient,bs f, on the other hand, is asso
ciated with the pore fluid and provides a measure of the p
pressure induced due to a change in temperature. It is relate
the thermal expansion coefficients of the solid–fluid system,
porosity to the medium, and the Biot’s effective stress coeffici
tensor, and is given as@28,29#

bs f5a i j a i j
s 1~a f2akk

s !f (3)

in which a f is the volumetric expansion coefficient for the po
fluid, andf is the porosity. Note that in writing Eqs.~1!–~3!, the
thermal expansion coefficients of the bulk drained material
that of the solid skeleton are assumed to be equal. The ab
equations give the complete anisotropic stress–strain respon
a porothermoelastic material. For the most general anisotr
case, the behavior is described using 35 constants (21Mi jkl ’s,
6 a i j ’s, 1 M , 6 b i j

s ’s, and 1bs f) @30#.

Mass Balance. Under isothermal coditions, Darcy’s law
where the fluid flux is proposional to the pressure gradient, is w
known @6#. For solid–fluid constituent porous system, where
fluid sources or sinks exist, the fluid mass balance equatio
written as

]z

]t
1qi ,i50 (4)

whereq is the specific discharge vector. Under nonisothermal c
ditions fluid transport within the system can be caused by a
dient in both the pore fluid pressure as well as temperature
generalized expression for the specific discharge,q, is given as
@15#

qi52k i j p, j1G i j
q T, j (5)

in which k i j is the anisotropic mobility coefficient tensor andG i j
q

is the coefficient tensor which relates the flux to the tempera
gradient. The first term on the right-hand side in Eq.~5! corre-
sponds to the fluid transport caused by theDarcy effect and the
second term on the right-hand side corresponds to the fluid
generated as a result of theSoreteffect. The term associated wit
the Soreteffect is ignored in this analysis, and Eq.~5! results in
the well-known Darcy’s law. The anisotropic mobility coefficie
tensor,k i j , is related to the intrinsic permeability tensor,ki j , and
the pore fluid viscosity,m, by k i j 5ki j /m.

Momentum Balance. Momentum balance yields the equilib
rium equations which are given by

s i j , j50 (6)

Again, Eq. ~6! has been written, in terms of the total stress a
proach, while ignoring any body and inertial forces.

Energy Balance. Within a continuum model, both the matri
and the pore fluid are assumed to occupy the same point in s
and therefore one should introduce two temperatures to chara
ize the thermal state of the system. However, existing studies
thermomechanical behavior of porous media employ a comm
temperature for both the constituents of the porous system b
on the assumption of instantaneous local temperature equilib
@3,4,15,16,31#. In other words, it is assumed that the heat transp
Journal of Applied Mechanics
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between the matrix and the pore fluid at the local level is mu
faster than the overall heat diffusion process. Neglecting the
ternal energy change due to viscous dissipation and compres
the energy balance equation is given as

rCv

]T

]t
52hi ,i2~rCvqi !T,i (7)

whererCv is the heat capacity of the solid–fluid mixture andh is
the heat flux. In Eq.~7! the first term on the right-hand side co
responds to heat transport by conduction, whereas the second
represents the heat transport by convection. In addition, it is
sumed that the porous material bears a low permeability and
the heat diffusion occurs much faster than the fluid diffusio
which indirectly results in the assumption of a smallPecletnum-
ber. Under these circumstances, the term corresponding to con
tion can be dropped from~7!, resulting in a linearized form of the
energy balance given by

rCv

]T

]t
1hi ,i50 (8)

Clearly, Eq.~8! is uncoupled from the pore pressure field.
The ‘‘bulk heat capacity,’’rCv , can be related to individua

heat capacities of the solid and fluid constituents by@3,15#

rCv5~12f!rsCv
s1fr fCv

f (9)

in which the superscriptss and f refer to the solid and fluid,
respectively.

Analogous to the fluid mass transport, the heat flux in the m
general case can be caused by gradients in pressure and tem
ture. A generalized equation for the heat flux is given by@15#

hi52l i j T, j1G i j
h p, j (10)

wherel i j is the effective thermal conductivity of the solid–flui
system, andG i j

h is the coefficient tensor associated with the he
flux caused by the pressure gradient. The first term on the ri
hand side in Eq.~10! is the heat flux caused by theFourier effect,
whereas the second term gives the heat flux resulting from
Dufour effect. TheDufour effect is ignored in this analysis, thu
giving the governing equation for the heat flux also known
Fourier’s law.

As in Eq. ~9! the ‘‘effective thermal conductivity’’ can also be
obtained from the thermal conductivities of the solid and flu
constituents as a weighted average using the porosity, and is g
as @3,15#

l i j 5~12f!l i j
s 1fl i j

f (11)

wherel i j
s andl i j

f are the thermal conductivities of the solid an
fluid constituents, respectively.

The above set of Eqs.~1!–~11! represents the porothermoelast
system in the general anisotropic form. These are specialized
transversely isotropic material in the next section.

Transversely Isotropic Material
A transversely isotropic material is characterized by same pr

erties in one plane and different properties in the direction nor
to this plane. For the transversely isotropic material it is assum
that thez axis coincides with the axis of elastic symmetry. Th
transversely isotropic poroelastic material is characterized b
material constants@19,20#. These are given asE, E8, n, n8, G8, a,
a8, andM, where the unprimed variables are material coefficie
in the isotropic plane and the primed variables are material c
ficients in the transverse direction. In the above,E is the drained
elastic modulus,n is the drained Poisson’s ratio,G is the shear
modulus,a is the Biot’s effective stress coefficient, andM is the
JANUARY 2005, Vol. 72 Õ 103
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three additional thermic constants,bs, bs8, bs f are required to
account for the differential volume change of the solid skele
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and pore fluid due to temperature changes. Hence, constitu
relations for the transversely isotropic material under no
isothermal conditions are given as follows:
5
sxx

syy

szz

txy

tyz

tzx

p

6 53
M̄11 M̄12 M̄13 0 0 0 2aM

M̄12 M̄11 M̄13 0 0 0 2aM

M̄13 M̄13 M̄33 0 0 0 2a8M

0 0 0 G 0 0 0

0 0 0 0 G8 0 0

0 0 0 0 0 G8 0

2aM 2aM 2a8M 0 0 0 M

4 5
exx

eyy

ezz

gxy

gyz

gzx

z

6 23
b̄s

b̄s

b̄s8

0
0
0

Mbs f

4 T (12)
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where

M̄115M111a2M ; M̄125M121a2M (13a)

M̄135M131aa8M ; M̄335M331a82M (13b)

b̄s5bs1aMbs f; b̄s85bs81a8Mbs f (13c)

In the above, the coefficients of the drained elastic modulus te
can be related to the material constantsE, E8, n, n8, and G8
chosen to represent the transversely isotropic materials by the
lowing relations@20–22#:

M115
E~E82En82!

~11n!~E82E8n22En82!
;

M125
E~E8n1En82!

~11n!~E82E8n22En82!
(14a)

M135
EE8n8

~E82E8n22En82!
; M335

E82~12n!

~E82E8n22En82!
(14b)

In addition, it has been shown that, with the assumption of
croisotropy and microhomogeneity the coefficientsa anda8 can
be related to components of the drained elastic tensor@19,20#.
These relations are given as

a512
M111M121M13

3Ks
(15a)

a8512
2M131M33

3Ks
(15b)

whereKs is the grain bulk modulus of the solid constituent. Sim

larly, using Eqs.~2! and~3!, expressions forbs, bs8, andbs f are
obtained as follows:

bs5~M111M12!a
s1M13a

s8 (16a)

bs852M13a
s1M33a

s8 (16b)

bs f52aas1a8as81~a f22as2as8!f (16c)

whereas andas8 are coefficients of linear expansion of the so
skeleton in the isotropic plane and transverse directions, res
tively. In addition, the transversely isotropic material is charac
ized by different thermal conductivities~l,l8! and mobility coef-
ficients ~k,k8! in the isotropic plane and transverse directions.
line with the aforementioned discussion, governing equations
a three-dimensional case can be derived.
sor
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However, many problems in geomechanics are characterize
geometries in which boundary conditions do not change along
direction of their generators. Under such circumstances, a ge
alized plane strain idealization can be used which allows extra
lation of solutions developed in two-dimensional geometries t
general three-dimensional case@32,33#.

It is assumed that thez direction is infinitely long and that
boundary conditions are invariant along that direction. Hence
generalized plane strain condition, as discussed above, man
itself, resulting in all stress components, pore pressure, and
perature beingz independent. Naturally, both heat and fluid flu
components in thez direction vanish and all diffusion phenomen
occur in thex–y plane which is isotropic. It would therefore b
useful to derive governing equations for a plane (x–y) case which
will be utilized in obtaining analytical solutions~two-
dimensional! and subsequently extended to the three-dimensio
case under the assumption of a generalized plane strain cond

Combination of the equilibrium equations with the constituti
relations yields the Navier-type equations which are given
follows:

1
2~M112M12!ui , j j 1

1
2~M111M12!uj , j i 5ap,i1bsT,i ~ i , j 51,2!

(17)

where ui denotes the solid displacement. Note that the tw
dimensional form of the equilibrium equations has been used
derive the above equation.

Combining the energy balance relation with Fourier’s la
yields the heat diffusion equation

]T

]t
2ch¹2T50 (18)

wherech5l/rCv is the heat diffusivity in the isotropic plane.
Diffusion equations for the pore fluid are obtained combini

the fluid mass balance relations with Darcy’s law. These can
expressed in terms of the pore pressure,p, and the variation of the
fluid contentz, and are given as

]p

]t
2kM¹2p52aM

]e

]t
1bs fM

]T

]t
(19a)

]z

]t
2cf@¹2z1 c̄¹2T#50 (19b)

where e5exx1eyy and c̄ are, respectively, the fluid diffusivity
and a coupling constant in accordance with

cf5
kMM11

~M111a2M !
(20a)
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c̄5
abs2M11b

s f

M11
(20b)

In addition, the pore pressure diffusion equation@Eq. 19~a!# can
be simplified assuming an irrotational displacement field an
semi-infinite domain, and is expressed as

]p

]t
2cf¹

2p5ch f

]T

]t
(21)

wherech f is a coupling constant given by

ch f5
cf

k S bs f2
abs

M11
D (22)

Notice that although governing equations are written here
their two-dimensional forms@Eqs. ~17!–~22!#, their coefficients
are still dependent on the material elastic properties in the tr
verse direction. However, since the heat and fluid flux in thz
direction vanish under a generalized plane strain idealization,
respective conductivities~k8 andl8! are redundant.

The Navier-type equations~17!, heat diffusion equation~18!,
and the pore pressure diffusion equation in an irrotational
placement field, Eq.~21!, constitute a set of complete equatio
which can be solved to obtain solutions at the stress level. Cle
the heat diffusion equation is uncoupled from the fluid diffusi
and deformation fields and can be solved independently to y
expressions for the temperature distribution. These expression
the temperature field are then used in the pore pressure diffu
equation@Eq. ~21!# to obtain expressions for the pore pressu
which can in turn be used within the Navier-type equations@Eq.
~17!# to obtain solutions for the stress field.

Isotropic Material
Under the special case where the material is isotropic, the

terial is identified by two elastic constants,G andn, two poroelas-
tic constants,a andM, and two thermic coefficients,bs andbs f.
It can be shown that the constitutive equations reduce to

s i j 52Ge i j 1
2Gn

122n
ed i j 2apd i j 2bsTd i j (23a)

p5M ~z2ae1bs fT! (23b)

bs5
2G~11n!

~122n!
as (23c)

bs f53aas1~a f23as!f (23d)

The other governing equations are given as
Heat Diffusion

]T

]t
2ch¹2T50 (24)

Fluid Diffusion

]p

]t
2kM¹2p52aM

]e

]t
1bs fM

]T

]t
(25a)

]z

]t
2cf@¹2z1 c̄¹2T#50 (25b)

Under the assumptions of an irrotational displacement field
semi-infinite domain, the pore pressure diffusion equation@Eq.
25~a!# reduces to

]p

]t
2cf¹

2p5ch f

]T

]t
(26)

Navier Equations
Journal of Applied Mechanics
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Gui , j j 1
Gn

122n
uj , j i 5ap,i1bsT,i (27)

andcf , ch f , and c̄ reduce to their isotropic counterparts and a
given by

cf5
2Gk~12n!~nu2n!

a2~122n!2~12nu!
(28a)

ch f5
cf

k S bs f2aas
~11n!

~12n! D (28b)

c̄5S aas
~11n!

~12n!
2bs fD (28c)

Inclined Borehole Problem
It is assumed that an infinitely long borehole is drilled perpe

dicular to the isotropic plane of a transversely isotropic poroe
tic formation. The borehole is inclined and its axis deviated fro
the in situ stress orientation. A schematic of the inclined boreh
is shown in Fig. 1~a!. The formation, described using a Cartesi
coordinate systemx8y8z8, is characterized by in situ stressesSx8 ,
Sy8 , andSz8 , virgin pore pressurep0 , and formation temperature
T0 . The borehole deviation is measured by two angleswz andwy ,
which are the inclination and azimuth angles, respectively. A lo
coordinate system is chosen to represent the borehole in which
z axis is assumed to coincide with the borehole axis. The far-fi
in situ stresses in thex8y8z8 coordinate system are transformed
the localxyz coordinate system via a transformation matrix@32#.
In the local coordinate system, the borehole is subject to norma
well as shear components of stress given asSx , Sy , Sz , Sxy , Sxz ,
andSyz , as shown in Fig. 1~b!.

The boundary conditions of the problem can be imposed at
far field, r→`

sxx52Sx ; syy52Sy ; szz52Sz ; (29a)

txy52Sxy ; tyz52Syz ; txz52Sxz ; (29b)

p5p0 ; T5T0 (29c)

and at the borehole wall,r 5R

s rr 52pwH~ t !; t ru5t rz50; (30a)

p5pwH~ t !; T5TwH~ t ! (30b)

wherepw is the wellbore pressure,Tw is the wellbore fluid tem-
perature, andH(t) is the Heaviside unit step function.

Owing to linearity of the problem, the solution is obtained em
ploying a superposition of three subproblems@32#. Of these, the
first problem is a modified plane strain problem which accou
for the in-plane normal and shear stresses and the pore pre
and temperature perturbations. This problem shows full coup
of the fluid and heat diffusion processes with the deformation. T
other two problems, which are described as the uniaxial prob
and the anti-plane problem@33#, are purely elastic since they d
not trigger fluid or heat diffusion.

The boundary conditions in the decomposition scheme
given as follows:

Problem 1:
At far field (r→`)

sxx52Sx ; syy52Sy ; txy52Sxy (31a)

szz52n8~Sx1Sy!2~a822n8a!p02~bs822n8bs!T0
(31b)

tyz5txz50 (31c)

p5p0 ; T5T0 (31d)

At the borehole wall (r 5R)
JANUARY 2005, Vol. 72 Õ 105
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s rr 52pwH~ t !; p5pwH~ t !; T5TwH~ t ! (31e)

Problem 2:
At far field (r→`)

szz52Sz1@n8~Sx1Sy!1~a822n8a!p01~bs822n8bs!T0#
(32a)

sxx5syy5txy5tyz5txz5p5T50 (32b)

At borehole wall (r 5R)

s rr 5t ru5t rz5p5T50 (32c)

Problem 3:
At far field (r→`)

sxx5syy5szz5txy5p5T50 (33a)

txy52Sxy ; tyz52Syz (33b)

At the borehole wall (r 5R)

s rr 5t ru5t rz5p5T50 (33c)

Fig. 1 „a… Schematic of an inclined borehole; „b… Far-field
stresses in the xyz coordinate system
106 Õ Vol. 72, JANUARY 2005
In addition, the solution for the modified plane strain problem
obtained by a decomposition of the boundary conditions into th
contributing loading modes@32#. Of these, mode 1 accounts fo
the hydrostatic part of the boundary stresses, mode 2 account
both the pore pressure and temperature perturbations, and mo
takes into account the deviant part of the boundary stresses.
modes 2 and 3 are time dependent, in that mode 2 is characte
by coupling between the pore fluid and heat diffusion proces
Although mode 3 shows characteristics of full poroelastic co
pling it is still not affected by temperature perturbations. T
boundary conditions at the borehole wall are as follows:

Mode 1:

s rr
~1!5P02pw ; s ru

~1!50; p~1!50; T~1!50; (34a)

Mode 2:

s rr
~2!50; s ru

~2!50; p~2!5~pw2p0!; T~2!5~Tw2T0!
(34b)

Mode 3:

s rr
~3!52S0 cos 2~u2u r !; s ru

~3!5S0 sin 2~u2u r !;

p~3!50; T~3!50 (34c)

whereu r is given by

u r5
1
2 tan21@2Sxy /~Sx1Sy!# (35)

The complete solution for the inclined borehole problem is o
tained by a superposition and is given in the Appendix.

Numerical Examples
The solutions developed in the previous section are applie

assess the effect of the anisotropic parameters on the stres
pore pressure distribution in the vicinity of the borehole. T
borehole orientation is given by two angles as shown in Fig. 1~a!
which are the azimuth,wy530 deg, and the inclinationwz560
deg. Comparisons with the corresponding isotropic poroth
moelastic and the isotropic poroelastic cases are made to high
the anisotropy effects on the results obtained.

A borehole of radius 0.1 m is assumed to be drilled in t
formation characterized by in situ stress and pore pressure g
ents given as:Sx8525 kPa/m, Sy8522 kPa/m, Sz8529 kPa/m,
p059.8 kPa/m. A section at a depth of 1000 m is analyzed wh
the formation temperature is assumed to beT05125°C. The bore-
hole is assumed to be filled with a fluid maintained at a cons
pressure given bypw512.0 MPa. The material properties used
the analysis are given in Table 1.

The degree of anisotropy of material parameters is modeled

selecting appropriate values for the ratiosE/E8, n/n8, andas/as8.
Numerical results are presented in Figs. 2–17, in which nega
values of stresses are presented indicating that compressio
denoted positive.

Effect of Temperature. The effect of temperature on the por
pressure and stress distributions is examined for the transve

Table 1 Material parameters

Parameter Units Value

Elastic modulus (E) GPa 9.474
Poisson’s ratio~n! ¯ 0.24
Grain bulk modulus (Ks) GPa 27.5
Biot’s modulus (M ) GPa 8.875
Permeability (k) md 5.031025

Fluid viscosity~m! MPa•s 1029

Heat diffusivity•(ch) m2/day 0.138 24
Linear expansion coefficient~solid skeleton,as) /°C 6.031026

Volumetric expansion coefficient~fluid, as) /°C 3.031024

Porosity~f! ¯ 0.14
Transactions of the ASME
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isotropic material and compared with the isotropic case. Only
anisotropy of thermic coefficients is modeled by fixing ratios

E/E851 andn/n851 and varyingas/as8. The difference between
the wellbore fluid and the formation temperature,DT, is varied
whereDT5Tw2T0 . All the results shown in this regard are for
short time interval, i.e.,t50.001 day. Figures 2 and 3 show th
pore pressure and the effective radial stress distributions, res
tively, as a function of the radial distance along theu590 deg
direction. Figure 2 shows that the temperature perturbation
duces a higher pore pressure close the to borehole wall for
cases whereDT is positive or when the wellbore fluid is at

Fig. 2 Pore pressure varying with r ÕR along uÄ90 deg at
tÄ0.001 day for different values of DT

Fig. 3 Effective radial stress varying with r ÕR along uÄ90 deg
at tÄ0.001 day for different values of DT
Journal of Applied Mechanics
the
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in-
the

higher temperature than the formation. On the other hand, a n
tive value ofDT results in a reduction of the pore pressure. Als
both effects are more pronounced for the transversely isotro
case. The induced pore pressure~positive or negative! leads to a
modification of the effective radial stresses. As presented in Fig
the effective radial stresses are tensile when the wellbore flui
at a higher temperature than the formation with the tensile m
nitude being higher in the transversely isotropic material. In
case of a lower wellbore fluid temperature, the effective rad
stresses are compressive in nature. Again, the compressive
nitude is higher for the transversely isotropic case. Figure 4 sh
the effective tangential stress as a function of the radial dista
along theu50 deg direction. As seen from Fig. 4, higher effectiv
tangential stresses are observed when the wellbore fluid h
higher temperature. With a lower wellbore fluid temperature,
effective tangential stresses are reduced. This is also seen cl
in Fig. 5, which presents the variation of the effective tangen
stresses around the borehole atr /R51. Figure 5 has been gene
ated using the data given by Li et al.@34# and is given in Table 2.
However, as seen from Fig. 5, a lower wellbore fluid temperat
leads to significant lowering of the effective tangential stress
the transversely isotropic case.

Effect of Anisotropy of Thermic Coefficients. To evaluate
the effect of the anisotropic nature of the thermic coefficients
the stress and pore pressure distributions, we fix the ratios

E/E851 andn/n851 and varyas/as8. In other words, we assum

that material anisotropy is only because of a differentas8 value in
the transverse direction. Notice that the above choice results

in the variation of values for the thermic coefficientsbs, bs8, and
bs f with all other material coefficients (Mi jkl ’s, a, anda8! assum-
ing their values as in the isotropic case. Data given in Table 1
used for the analysis. The temperature difference between
wellbore fluid and the formation is assumed to beDT550°C.
Again, results are shown for a short time interval, i.e.,t50.001
day.

Figures 6 and 7 show the pore pressure profile as a functio
the radial distance along theu590 deg direction. In Fig. 6 results

are shown for lower thermic coefficient ratiosas/as850.1, 0.5
along with the corresponding isotropic porothermoelastic and

Fig. 4 Effective tangential stress varying with r ÕR along uÄ90
deg at tÄ0.001 day for different values of DT
JANUARY 2005, Vol. 72 Õ 107
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roelastic cases. On the other hand, Fig. 7 show results corresp

ing to higher values of thermic coefficient ratios, i.e.,as/as8

52.0, 5.0. First, the pore pressure profile in the poroelastic c
exhibits the well-known Mandel–Cryer effect. In addition, all th
porothermoelastic cases show an increased value of the pore
sure close to the region near the borehole wall.

Figures 8 and 9 show, respectively, the effective radial and
gential stress profiles for the two lower values of the therm

coefficient ratios, i.e.,as/as850.1, 0.5. Tensile effective radia
stresses are observed in the vicinity of the borehole which
natural consequence of the high induced pore pressure as
cussed above. Again, as observed in the earlier cases, the te
magnitude of the stress is more predominant for the case

lower as/as8 ratio. In contrast, loweras/as8 ratios result in more
compressive tangential stresses as can be seen from Fig. 9.
ever, at a short distance inside the formation, the effective tan
tial stresses are lowered, which may be again attributed to
effect of the induced pore pressure. The aforementioned obse

tions can be directly linked to the effect of theas/as8 ratios on

values ofbs, bs8, andbs f. A simple calculation shows that, fo

Fig. 5 Effective tangential stress around the wellbore at r ÕR
Ä1 for different values of DT and asÕas8. Curves generated
using data given by Li et al., 1998 „Table 2 ….

Table 2 Material parameters „Li et al., 1998 …

Parameter Units Value

Shear modulus (G) GPa 8.88
Poisson’s ratio~n! ¯ 0.189
Undrained poisson’s ratio (nu) ¯ 0.314
Skempton’s coefficient (B) GPa 0.596
Permeability (k) md 5.031025

Fluid viscosity~m! MPa•s 1029

Heat diffusivity•(ch) m2/s 1.631026

Volumetric expansion coefficient
~solid skeleton,as)

/°C 18.031026

Volumetric expansion coefficient
~fluid, as)

/°C 3.031024

Porosity~f! ¯ 0.14
Wellbore fluid pressure MPa 13.5
108 Õ Vol. 72, JANUARY 2005
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lower values of theas/as8 ratio (as/as8,1.0), the thermic coef-

ficients bs, bs8, and bs f assume higher values. As a result,
higher magnitude of the pore pressure is induced and the
stresses are more compressive.

Next, we present results in the form of stress clouds to illustr
the shear failure potential. The ‘‘stress clouds’’ represent the am
gamation of the effective radial, tangential, and shear stresses
sented in theAJ22Sp space, whereAJ2 is the mean shear stres
given by

Fig. 6 Pore pressure varying with r ÕR along uÄ90 deg at
tÄ0.001 day

Fig. 7 Pore pressure varying with r ÕR along uÄ90 deg at
tÄ0.001 day
Transactions of the ASME
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1
6@~s rr 2suu!21~suu2szz!

21~szz2s rr !
2#1s ru

2 1s rz
2

1suz
2 (36)

andSp is the mean effective stress given by

Sp52
s rr 1suu1szz

3
2p (37)

The stress cloud is obtained by evaluating pairs of (Sp ,AJ2) by
varying the angle around the borehole,u for a fixed radial distance

Fig. 8 Effective radial stress varying with r ÕR along uÄ90 deg
at tÄ0.001 day

Fig. 9 Effective tangential stress varying with r ÕR along uÄ90
deg at tÄ0.001 day
Journal of Applied Mechanics
and time @32#. The stress cloud concept is used in conjuncti
with the Drucker–Prager criterion for a shear failure analysis. T
Drucker–Prager criterion can be expressed as

AJ253ASp1D (38)

whereA andD are positive material constants. Values ofA50.1
andD514 MPa are chosen to represent the failure envelope.

Figure 10 shows the stress clouds at the borehole wall,

r /R51.0. It is seen that, for a loweras/as8 ratio, the stress cloud
moves to the right and higher, pushing it outside the failure en
lope. At the borehole wall, the effective radial stresses are alw
zero. However, there is an increase in the effective tangen

stress and the effective axial stress for the loweras/as8 ratio. This
results in a higher difference between the stresses which ca
the mean shear stress,AJ2, to increase. With higher effective tan
gential and axial stresses, the mean effective stress,Sp , is natu-
rally higher. Hence, the stress cloud moves higher and to the r

for the loweras/as8 ratio. Figure 11 shows the stress clouds a
fractional distance inside the formation given byr /R51.1. The
relative magnitudes of the stresses are still quite different for

lower as/as8 ratio, resulting in a cloud which is partially outsid
the failure envelope. Again, Figs. 10 and 11 show that hig
thermal expansion coefficients in the transverse direction lead
higher shear failure potential. Also shown in Fig. 12 are the va
tions of the effective tangential stresses as a function of the a
around the borehole,u, at the borehole wall. The tangential stre

is more compressive for lower values of theas/as8 ratio. A higher
wellbore pressure would thus be required to produce tensile zo
indicating that a higher thermal coefficient in the transverse dir
tion results in decreasing the fracturing failure potential.

Time-Dependent Effects. It is interesting to show the behav
ior of stresses and pore pressure as time progresses. In
13–15 we show their variation with radial distance, along t
u590 deg direction for three time intervals,t50.001, 0.01, and
0.1 day. Also, results are shown for two values of the therm

expansion coefficient ratios, i.e.,as/as850.1 and 1.0. It is seen
from Fig. 13 that the magnitude of the induced pore press

Fig. 10 Stress clouds at r ÕRÄ1 and tÄ0.001 day
JANUARY 2005, Vol. 72 Õ 109



a

m

,
m

o
t

oef-
pro-

ere
se

r

dial
progressively decreases with time. In addition, the location of
maximum pore pressure gradually moves into the formation
away from the borehole wall. The magnitude of the pore press

for the loweras/as8 is, however, always higher. It is seen fro
Fig. 14 that with the passage of time effective radial stresses in
vicinity of the borehole change from tensile to compressive
nature as a result of the diffusion process. Correspondingly
time progresses the effective tangential stresses become
compressive, as can be seen from Fig. 15. It may be expected
as the induced pore pressure front progresses into the formati
results in lowering the effective stresses, indicating that the po
tial shear failure zone gradually shifts into the formation.

Fig. 11 Stress clouds at r ÕRÄ1 and tÄ0.001 day

Fig. 12 Effective tangential stress varying with u at r ÕRÄ1 and
tÄ0.001 day
110 Õ Vol. 72, JANUARY 2005
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Combined Anisotropic Effects. The combined effect of the
anisotropy of elastic parameters and the thermal expansion c
ficient ratios is analyzed in Figs. 16–18. The pore pressure

files for four sets of values of theE/E8, n/n8 andas/as8 ratios are
shown in Fig. 16. It can be seen that for the two curves wh
E/E852, n/n852, the pore pressure induced is higher for the ca

when as/as850.1 as compared to that for theas/as850.5. In
contrast, whenE/E850.5, n/n850.5, the pore pressure is lowe

for the case whereas/as850.1 than foras/as850.5. A similar
observation is made about the tensile nature of the effective ra

Fig. 13 Pore pressure varying with r ÕR for am Õam8 Ä0.1, 1.0, for
tÄ0.001, 0.01, and 0.1 day

Fig. 14 Effective radial stress varying with r ÕR for am Õam8
Ä0.1, 1.0, for tÄ0.001, 0.01, and 0.1 day
Transactions of the ASME
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stresses, shown in Fig. 17. On the other hand, the effective
gential stress shown in Fig. 18 is most compressive for low

ratios of E/E8, n/n8, and as/as8. The combined effect of the
anisotropy of both the material and thermal expansion coefficie
results in complex behavior patterns. A consistent inference wh
relates the change in values for these ratios to behavior of
stresses and pore pressure may be difficult to draw. Howe
noting that a change in these ratios results in a correspon

modification of the values forbs, bs8, andbs f, a fair prediction is
plausible.

Fig. 15 Effective tangential stress varying with r ÕR for
am Õam8 Ä0.1, 1.0, for tÄ0.001, 0.01, and 0.1 day

Fig. 16 Pore pressure varying with r ÕR at tÄ0.001 day for dif-
ferent combinations of EÕE8, nÕn8, and am Õam8
Journal of Applied Mechanics
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Conclusions
The solution for the inclined borehole problem in a transvers

isotropic poroelastic medium under nonisothermal conditions
been presented in this paper. A superposition scheme, invol
decomposition of the complex problem along with its bounda
conditions into simpler problems which can be solved easily,
been used to arrive upon the solution. A parametric analysis
been presented to study the material anisotropy effect on the s
and pore pressure profiles.

The temperature difference leads to a modification of both
pore pressure and stress distributions. The effect of the anisot

Fig. 17 Effective radial stress varying with r ÕR at tÄ0.001 day
for different combinations of EÕE8, nÕn8, and am Õam8

Fig. 18 Effective tangential stress varying with r ÕR at t
Ä0.001 day for different combinations of EÕE8, nÕn8, and am Õam8
JANUARY 2005, Vol. 72 Õ 111
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of thermic coefficients has been studied varying the thermal
pansion coefficients in the isotropic and transverse directi
while keeping the mechanical parameters isotropic. It was fo
that the effects on the pore pressure and stress profiles are
pronounced when the material has a higher thermal expan
coefficient in the transverse direction. In contrast, the stress
pore pressure responses are more or less comparable to the i
pic case when the thermal expansion coefficients are lower in
transverse direction. The time-dependent variation of the indu
pore pressure is characterized by a front which moves into
formation as time progresses. The effect of anisotropy of mech
cal parameters has been studied varyingE/E8 and n/n8. It is in-
teresting to note that for ratios ofE/E8, n/n8.1, the ratios of the
thermal expansion coefficients affect the stress and pore pres
distributions in a manner similar to the case when the mechan
parameters are isotropic. On the other hand, whenE/E8, n/n8,1,

the trend of these results~i.e., effect ofas/as8) is reversed.
Again, it must be noted that applicability of the analytical s

lution may seem limited for the case where the isotropic plan
perpendicular to the borehole axis. Nevertheless, it serves
unique tool in both understanding the underlying phenomena,
validation of numerical analyses in which some of the assum
tions may be relaxed subsequently@35,36#.
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Appendix

Transversely Isotropic Borehole Solution. The complete so-
lution for the inclined borehole problem in a transversely isotro
medium and an isotropic medium are given.

s rr 52P01S0 cos 2~u2u r !1s rr
~1!1s rr

~2!1s rr
~3! (A1a)

suu52P02S0 cos 2~u2u r !1suu
~1!1suu

~2!1suu
~3! (A1b)

szz52Sz1@n8~Sx1Sy!1~a822n8a!p01~b822n8b!T0#

1n8~s rr 1suu!2~a822n8a!p2~b822n8b!T (A1c)

s ru52P01S0 sin 2~u2u r !1s ru
~3! (A1d)

s rz52~Sxz cosu1Syz sinu!@12~R2/r 2!# (A1e)

suz5~Sxz sinu1Syz cosu!@11~R2/r 2!# (A1f)

p5p01p~2!1p~3! (A1g)

T5T01T~2! (A1h)

wheres rr
(1) , s rr

(2) , s rr
(3) , suu

(1) , suu
(2) , suu

(3) , s ru
(3) , p(2), p(3), and

T(2) are obtained by solving the modified plane strain problem
indicated earlier. In the above,u r , P0 , andS0 are given by

u r5
1
2 tan21@2Sxy /~Sx1Sy!# (A2a)

P05~Sx1Sy!/2 (A2b)

S050.5A~Sx2Sy!214Sxy
2 (A2c)

The expressions fors rr
(1) , s rr

(2) , s rr
(3) , suu

(1) , suu
(2) , suu

(3) , s ru
(3) ,

p(2), p(3), andT(2) are obtained as follows@32,37#:
Solutions for Mode 1:

s rr
~1!5H~ t !@P02pw#S R2

r 2 D (A3a)
112 Õ Vol. 72, JANUARY 2005
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suu
~1!52H~ t !@P02pw#S R2

r 2 D (A3b)

Solutions for mode 2 and mode 3 are obtained in the Lapl
domain and are inverted to the time-domain using the Steh
algorithm @37#.

Solutions for Mode 2:

sT̃~2!5~Tw2T0!F~v! (A4a)

sp̃~2!5G1F~j!1G2F~v! (A4b)

ss̃ rr
~2!5aS 12

M12

M11
D $F1C~j!1F2C~v!%1bsS 12

M12

M11
D $~Tw

2T0!C~v!% (A4c)

ss̃uu
~2!52aS 12

M12

M11
D $F1V~j!1F2V~v!%2bsS 12

M12

M11
D $~Tw

2T0!V~v!% (A4d)

Solutions for Mode 3:

p̃~3!5
S0

s S cf

2Gk
C1K2~jr !1A1C2

R2

r 2 D cos 2~u2u r ! (A5a)

s̃ rr
~3!5

S0

s FA1C1S 1

jr
K1~jr !1

6

~jr !2
K2~jr !D 2A2C2

R2

r 2

23C3

R4

r 4 Gcos 2~u2u r ! (A5b)

s̃uu
~3!5

S0

s F2A1C1S 1

jr
K1~jr !S 11

6

~jr !2D K2~jr !D
13C3

R4

r 4 Gcos 2~u2u r ! (A5c)

t̃ ru
~3!5

S0

s
2A1C1S 1

jr
K1~jr !1

3

~jr !2
K2~jr !D 2

A2

2
C2

R2

r 2

23C3

R4

r 4
sin 2~u2u r ! (A5d)

where Kn is the modified Bessel function of the second kind
ordern. In the above

F~x!5F K0~xr !

K0~xR!G (A6a)

C~x!5F K1~xr !

xrK0~xR!
2

RK1~xR!

xr2K0~xR!
G (A6b)

V~x!5F K1~xr !

xrK0~xR!
2

RK1~xR!

xr2K0~xR!
1

K0~xr !

K0~xR!G (A6c)

F15F ~pw2p0!2S ch f

~12cf /ch! D ~Tw2T0!G (A6d)

F25S ch f

~12cf /ch! D ~Tw2T0! (A6e)

v5A s

ch
; j5A s

cf
(A6f)

The constantsC1 , C2 , C3
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C15
4

2A1~B32B2!2A2B1
(A7a)

C252
4B1

2A1~B32B2!2A2B1
(A7b)

C35
2A1~B21B3!13A2B1

3@2A1~B32B2!2A2B1#
(A7c)

in which

A15
aM

M111a2M
(A8a)

A25
M111M1212a2M

M111a2M
(A8b)

B15
M11

2Ga
K2~jR! (A8c)

B25
1

jR
K1~jR!1

6

~jR!2
K2~jR! (A8d)

B352S 1

jR
K1~jR!1

3

~jR!2
K2~jR!D (A8e)

Isotropic Borehole Solution
Complete solution for the inclined borehole in an isotropic m

terial is obtained using the same decomposition scheme and

~A1a!–~A1h!, with the added condition thata5a8 and bs5bs8.
Solutions fors rr

(1) , s rr
(2) , s rr

(3) , suu
(1) , suu

(2) , suu
(3) , s ru

(3) , p(2), p(3),
and T(2) for the inclined borehole in the isotropic medium we
obtained by Li et al.@34#. Their solutions have been corrected f
some of the typographical errors and reproduced for clarifica
below.

Solutions for Mode 1:
Solutions fors rr

(1) andsuu
(1) are the same as given in Eqs.~A3a!

and ~A3b!.
Solutions for Mode 2:

sT̃~2!5~Tw2T0!F~v! (A9a)

sp̃~2!5F1F~j!1F2F~v! (A9b)

ss̃ rr
~2!5aS 122n

12n D $F1C~j!1F2C~v!%1bsS 122n

12n D $~Tw

2T0!C~v!% (A9c)

ss̃uu
~2!52aS 122n

12n D $F1V~j!1F2V~v!%2bsS 122n

12n D $~Tw

2T0!V~v!% (A9d)

The functionsF(x), C(x), andV(x), F1 , F2 are as defined in
Eqs.~A6a!–~A6c!.

Solutions for Mode 3:

p̃~3!5
S0

s FB2~12n!~11nu!2

9~12nu!~nu2n!
C1K1~jr !

1
B~11nu!

3~12nu!
C2

R2

r 2 Gcos 2~u2u r ! (A10a)
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s̃ rr
~3!5

S0

s FB~11nu!

3~12nu!
C1S 1

jr
K1~jr !1

6

~jr !2
K2~jr !D

2
1

12nu
C2

R2

r 2
23C3

R4

r 4 Gcos 2~u2u r ! (A10b)

s̃uu
~3!5

S0

s F2
B~11nu!

3~12nu!
C1S 1

jr
K1~jr !F11

6

~jr !2GK2~jr !D
13C3

R4

r 4 Gcos 2~u2u r ! (A10c)

t̃ ru
~3!5

S0

s F2B~11nu!

3~12nu!
C1S 1

jr
K1~jr !1

3

~jr !2
K2~jr !D

2
1

2~12nu!
C2

R2

r 2
23C3

R4

r 4 Gsin 2~u2u r ! (A10d)

where B is the Skempton’s pore pressure coefficient,nu is the
undrained Poisson’s ratio, and Kn is the modified Bessel function
of the second kind of ordern.

The constantsC1 , C2 , C3 are given by

C152
12jR~12nu!~nu2n!

B~11nu!~D22D1!
(A11a)

C25
4~12nu!D2

~D22D1!
(A11b)

C352
jR~D21D1!18~nu2n!K2~jR!

jR~D22D1!
(A11c)

in which the constantsD1 andD2 are given by

D152~nu2n!K1~jR! (A12a)

D25jR~12n!K2~jR! (A12b)
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A Fast Boundary Element Method
for the Analysis of Fiber-
Reinforced Composites Based on
a Rigid-Inclusion Model
A new boundary element method (BEM) is developed for three-dimensional analy
fiber-reinforced composites based on a rigid-inclusion model. Elasticity equations
solved in an elastic domain containing inclusions which can be assumed much stiffe
the host elastic medium. Therefore the inclusions can be treated as rigid ones with on
rigid-body displacements. It is shown that the boundary integral equation (BIE) in
case can be simplified and only the integral with the weakly-singular displacement k
is present. The BEM accelerated with the fast multipole method is used to solv
established BIE. The developed BEM code is validated with the analytical solution
rigid sphere in an infinite elastic domain and excellent agreement is achieved. Nume
examples of fiber-reinforced composites, with the number of fibers considered rea
above 5800 and total degrees of freedom above 10 millions, are solved successfully
developed BEM. Effective Young’s moduli of fiber-reinforced composites are evaluat
uniformly and ‘‘randomly’’ distributed fibers with two different aspect ratios and volu
fractions. The developed fast multipole BEM is demonstrated to be very promisin
large-scale analysis of fiber-reinforced composites, when the fibers can be assume
relative to the matrix materials.@DOI: 10.1115/1.1825436#
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1 Introduction
Modeling can play an important role in the analysis and des

of fiber-reinforced composite materials. Mechanical proper
and possible failure modes of these composites can be pred
early during the design stage using modeling techniques. H
ever, modeling fiber-reinforced materials presents many c
lenges to numerical methods. Fibers in a composite can have
ferent properties, shapes and sizes. They can be straight or cu
short or long, aligned or oriented arbitrarily, and distributed u
formly or randomly. All these factors make estimates of the m
chanical properties of fiber-reinforced composites very diffic
using the numerical methods. Often a representative volume
ment~RVE! containing only a few fibers may not be sufficient f
accurately determining the effective properties of a compos
Large-scale models with hundreds or thousands of fibers ma
deemed necessary in many situations. Unfortunately, modelin
bers, matrix, and possibly interphases between them as sep
material domains in large-scale models is beyond the limit
current computing power. This has been the main reason that
of the current models of the fiber-reinforced composites based
the boundary integral equation and boundary element me
~BIE/BEM! are two-dimensional ones with one or a few fibe
considered in the RVEs~see, e.g., Refs.@1–8#!. These models are
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adequate for the study of local properties, such as interfa
stresses and fractures, of a composite, but are often not suffi
for evaluating the overall mechanical properties of the compos
Therefore, models that can capture the overall behaviors of a c
posite without overwhelming computing resources are needed
will be beneficial in large-scale simulations. Using the rigi
inclusion model seems to be a feasible first step in large-s
simulations for investigating the interactions of fibers, load tra
fer mechanism and effective properties of a composite. The rig
inclusion approximation is valid when the fibers have mu
higher values of stiffness compared with that of the matrix. T
approximation can significantly reduce the modeling complex
for the analysis, as will be demonstrated in this paper.

There are two approaches regarding whether or not to fur
simplify the geometries for modeling rigid inclusions. One a
proach treats the rigid inclusions as they are without further s
plifying their geometries, which consequently requires 3D mod
for rigid inclusions. The other approach treats slender rigid inc
sions, as in the case of long-fiber-reinforced composites, as ri
line inclusions, where the geometry of an inclusion is reduced
line. This rigid-line inclusion model is valid when the aspect ra
of an inclusion is large. It is also efficient in modeling of rigid-lin
inclusions because of the simplified geometry. Only 2D models
rigid-line inclusions in a medium have been studied so far.

In the analysis of rigid-line inclusions, also called anticracks
a 2D elastic domain@9#, many research results have been repor
in the literature. Boundary integral equation and boundary e
ment method have been found especially suitable for the ana
of rigid-line inclusions, since cracks in 2D, the counter part
rigid lines, have been studied intensively by using the BIEs. Ma
of the results for crack analysis can be extended readily to
analysis of rigid-line inclusions. In the early 1990s, the group
Hu, Chandra and Huang made considerable contributions to
study of rigid-line inclusions in a matrix using the boundary int

trial
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gral equation method for 2D cases. Some of their analytical
numerical results can be found in Refs.@10–14#. In these works,
the rigid lines embedded in an infinite space are represente
distributions of tractions along the rigid lines~as compared to
distributions of dislocations for cracks! and integral equations ar
established using the Green’s functions. The interactions of r
lines with cracks and the effects of rigid lines on the effect
elastic material properties of composites were successfully stu
using this approach for 2D models@10–14#. Extensive review of
the earlier theoretical work on the elasticity study of rigid-lin
inclusions in a solid can also be found in Refs.@10–14#. Recently,
there seems to be a renewed interest in the study of rigid-
inclusions using the BIEs. In Ref.@15#, Leite, Coda, and Venturin
reported a 2D BEM coupled with the finite elements that are u
to model the bar inclusions in a matrix. These bar inclusio
representing fibers in a matrix, are assumed to be rigid within
cross section of a bar, but can deform along the axial directio
their models. The displacement and stress fields near the lin
clusions are studied by this approach. In a recent work@16#, Dong,
Lo, and Cheung developed a hypersingular BIE approach for
analysis of interactions of rigid-line inclusions with cracks in a 2
elastic medium. Stress intensity factors at the tips of rigid lines
computed with this hypersingular BIE approach and compa
with analytical solutions. In all the results mentioned above, o
2D models with a small number~less than 10! of rigid-line inclu-
sions have been considered. Most recently, Nishimura and
@17# used the fast multipole BEM to solve rigid-line inclusio
models in the context of 2D thermal analysis. The rigid-line co
cept in the thermal case means line inclusions with much hig
thermal conductivities than that of the matrix material. A hyp
singular BIE was employed and up to 10 000 line inclusions w
studied. The effective thermal conductivity of a 2D medium~thin
films! containing rigid lines were successfully evaluated using
2D RVEs embedded in an infinite plane in Ref.@17#.

In the case of modeling rigid inclusions as 2D or 3D obje
without simplifying their geometries, Ingber and Papathanasio
work @18# seems to be the only reported one using the bound
element method. The full conventional BIE for Navier’s equati
governing anincompressiblemedium containing rigid fibers is
solved in@18# in order to determine the effective moduli of com
posites with different fiber volume fractions and aspect rati
Constant boundary elements were employed to discretize the
which contains the singular as well as weakly-singular kern
Parallel computing was used to solve the BEM equations. Up
200 short, aligned rigid fibers, with the total degrees of freed
~DOFs! of about 12 000, were successfully solved by the dev
oped BEM approach. Very good agreement of the evaluated e
tive moduli using their BEM approach and analytical results
reported in@18#, which clearly demonstrates that the rigid-fib
model is very promising and the BEM is very efficient for an
lyzing fiber-reinforced composites. In the field of fluid mechani
there are many research results concerning the flows of fl
around rigid solids. Two recent references using the bound
element method for modeling rigid bodies in fluids can be fou
in Refs. @19#, @20#. In particular, in Ref.@19#, an indirect BIE of
the first kind using the single-layer potential is developed for so
ing Stokes equations and this approach is found to be very st
and more amenable to fast iterative solvers.

The boundary element method based on the BIEs is a na
way to model inclusion problems, due to its reduction of the
mension of the problem domain and high accuracy. With the
velopment of the fast multipole methods~FMM! ~see a recent
review in Ref.@21#! for solving boundary integral equations, larg
models with several million degrees of freedom can be sol
readily on a desktop computer. Rokhlin, Greengard, and
workers, who pioneered the FMM, have done extensive rese
on the FMM for inclusion problems in the context of potent
fields as well as elastic fields in two-dimensional domains~see,
Ref. @22# and related papers in Refs.@23–25#!. Rodin and co-
116 Õ Vol. 72, JANUARY 2005
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workers @26# have formulated the BIE for 3D elastic inclusio
problems using the FMM. Solutions for up to 343 spherical vo
in an elastic domain were computed using their parallel FM
BEM code ~with total DOFs about 400 000! @26#. Some other
development of the fast multipole BEM can be found in Re
@27#, @28# for general elasticity problems, and in@29–31# for crack
problems. With the advances of new composites, new mode
approaches that can handle even larger numbers of fibers i
RVE need to be developed. The rigid-inclusion approach seem
be a feasible first approximation with the current computing
pabilities. All these demands in materials research and progre
in the BEM suggest that the rigid-inclusion models and the f
multipole BEM may play a significant role in the analysis of fibe
reinforced composites.

In this paper, a new BIE formulation is presented for the ana
sis of rigid inclusions in a general 3D isotropic elastic mediu
based on the general direct BIE formulation. The BIE conta
only the displacement kernel and the influence of the tract
kernel is implied in the coefficient of the free displacement ter
Although this integral equation is essentially~not exactly! a Fred-
holm integral equation of the first kind, it is suitable for numeric
solutions with iterative solvers because a good preconditione
available. The BEM accelerated by the fast multipole method
used to solve the established BIE and the preconditioned sys
of equations is found to be well conditioned. The analytical so
tion of a rigid sphere in an infinite elastic domain is used
validate the developed BEM code and excellent agreemen
achieved. Examples for modeling fiber-reinforced composi
with the number of fibers reaching above 5800 and total DO
above 10 millions, are successfully solved by the developed
multipole BEM. Effective Young’s moduli of fiber-reinforced
composites are evaluated for uniformly and ‘‘randomly’’ distri
uted and oriented fibers with two different aspect ratios and v
ume fractions. The developed fast multipole BEM is demonstra
to be very promising for large-scale analysis of fiber-reinforc
composites, when the fibers can be assumed rigid relative
the matrix. It can also be applied to modeling other inclusi
problems.

2 BIE Formulation for an Elastic Medium Containing
Rigid Inclusions

The boundary integral equation for the analysis of an ela
domain containing rigid inclusions is derived in this section. Th
new and simplified BIE formulation contains only one integr
with the displacement kernel and thus can facilitate more effic
computation. Consider a 3D infinite elastic domainV embedded
with n rigid inclusions~Fig. 1!. The matrix is loaded with a re-
mote stress or displacement field. The displacement at a p
inside the domain is given by the following direct representat
integral ~see, e.g.,@32#!:

Fig. 1 A 3D infinite elastic medium „R3
… embedded with rigid

inclusions
Transactions of the ASME
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u~x!5E
S
@U~x,y!t~y!2T~x,y!u~y!#dS~y!1u`~x!, ;xPV,

(1)

whereu and t are the displacement and traction vectors, resp
tively; S5øaSa with Sa being the boundary of theath rigid
inclusion~Fig. 1!; andu` the undisturbed displacement field whe
a remote stress or displacement field is applied and the rigid
clusions are not present~This term is similar to that for an inciden
wave in the elastodynamic case@33#!. For a finite domain model
this term will not be present in Eq.~1!. The two kernel functions
U~x,y! and T~x,y! in Eq. ~1! are the displacement and tractio
components in the fundamental solution~Kelvin’s solution!, re-
spectively, which can be found in any BEM references~see, e.g.,
@34–37#!.

Before we let the source pointx approach the boundaryS to
derive the boundary integral equation, we first consider the rig
body motions of each inclusion. For a rigid inclusion enclosed
Sa , the displacement at any pointy can be described by the rigid
body motions as:

u~y!5d1vÃp~y!, (2)

whered is the rigid-body translational displacement vector,v the
rotation vector, andp a position vector for pointy measured from
a reference point~such as the center of the inclusion!. Consider a
complementproblem in the interior region enclosed bySa and
filled with the same material as that of domainV. Then the fol-
lowing representation integral holds:

05E
Sa

@Ũ~x,y! t̃~y!2T̃~x,y!ũ~y!#dS~y!, ;xPV, (3)

where ũ and t̃ are the displacement and traction vectors, resp
tively, for this complement problem;Ũ5U and T̃52T as in Eq.
~1! ~the normal for the region enclosed bySa is in the opposite
direction ofn shown in Fig. 1!. Any rigid-body motion is a solu-
tion to the elasticity equations for the complement problem. Th
the following solution:

ũ~y!5u~y!5d1vÃp~y!, t̃~y!50

satisfies the representation integral~3!. Substituting these result
into ~3!, we obtain:

E
Sa

T~x,y!@d1vÃp~y!#dS~y!50, ;xPV,

or

E
Sa

T~x,y!u~y!dS~y!50, ;xPV, (4)

for the region enclosed bySa (a51,2, . . . ,n). This is exactly the
second integral with theT kernel in Eq.~1! on one inclusion.
Therefore, the integral in Eq.~1! involving theT kernel vanishes
and Eq.~1! reduces to:

u~x!5E
S
U~x,y!t~y!dS~y!1u`~x!, ;xPV, (5)

for all rigid inclusions (S5øaSa). This representation integra
can be applied to evaluate the displacement field at any p
inside the domainV, once the tractions on the surfaces of the rig
inclusions are obtained. The stress field at any point in the dom
can also be evaluated by taking derivatives of expression~5! and
applying the Hook’s law.

To obtain the traction values on surfaces of the rigid inclusio
we let the source pointx approach the boundaryS to arrive at the
following boundary integral equation:

u~x!5E
S
U~x,y!t~y!dS~y!1u`~x!, ;xPS5ø

a
Sa , (6)
Journal of Applied Mechanics
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in which no jump term arises since theU kernel is only weakly
singular @34–37#. This BIE for rigid-inclusion problems is ex-
tremely compact and simple, in which only the weakly-singu
kernel needs to be handled. Analytical solutions for rig
inclusion problems may be obtained for simple geometries
using this BIE formulation.

Although the BIE~6! for rigid inclusions are much simpler to
handle than the BIE for elastic inclusions, it requires additio
considerations, that is, the rigid-body motions of each inclusi
expressed by Eq.~2! that contains six unknowns~d andv vectors!
for each inclusion. Additional equations are needed to supplem
BIE ~6!. These equations can be obtained by considering
equilibrium of each inclusion, that is, the following~six scalar!
equations:

E
Sa

t~y!dS~y!50; (7)

E
Sa

p~y!3t~y!dS~y!50; (8)

for a51,2, . . . ,n. Expression~7! represents the equilibrium o
the forces, while expression~8! that of the moments, for the rigid
inclusions. BIE~6! and Eqs.~2!, ~7!, and ~8! are simultaneously
solved to obtain the unknown rigid-body motionsd and v, and
traction t for all the inclusions.

It should be pointed out that BIE in~6! is essentially a Fred-
holm integral equation of the first kind, although not exactly sin
it contains additional finite number of unknownsd andv for each
inclusion. Integral equations of the first kind are usually cons
ered not suitable for numerical solutions with iterative solve
This problem can be resolved in two ways. Namely, we eit
convert the BIE into an equivalent equation of the second kind
use a preconditioner after the discretization. One may poss
replace BIE~6! by a second kind integral equation of the follow
ing form as one uses instead the traction equation correspon
to ~6!:

1
2t~x!5E

S
TU~x,y!t~y!dS~y!1Tu`~x!, ;xPS5ø

a
Sa ,

whereT is the traction operator which is applied tox. Unfortu-
nately, the solution to this equation is not unique. We theref
decided to use BIE~6! for the analysis since we can find a goo
preconditioner for the system obtained after discretization of~6!,
as we shall see later.

In 2D, BIE ~6! will degenerate in the limit as the aspect ratio
an inclusion tends to infinity, that is, equations generated by us
BIE ~6! on the two opposing boundaries of a slender inclus
will be identical and thus not enough equations will be availa
for solving the BIE for separate tractions. In this case, the sum
tractions across the inclusion can be used as a new variable in
~6! to derive a new equation. Different Green’s function formu
tions can also be employed to consider rigid lines based on
work in Refs.@9–15#, which may turn out to be equivalent with
the equation based on BIE~6!. Like the crack cases, hypersingula
BIE formulations can also be applied, as has been done recen
@16# for 2D elasticity, and in@17# for 2D thermal analysis of line
inclusions. New BIE formulations for rigid-line inclusion prob
lems in 3D, however, still remain to be developed.

3 The Fast Multipole Method
The fast multipole method@21–31# is employed to accelerate

the BEM solution of the BIE for rigid inclusions. In recent year
the fast multipole method has been demonstrated to be espec
good for solving problems with large numbers of cracks and
clusions in both 2D and 3D cases. Using the fast multip
method for the BEM, the solution time of a problem is reduced
orderO(N), instead ofO(N2) as in the traditional BEM~with N
here being the number of equations!. The memory requirement is
JANUARY 2005, Vol. 72 Õ 117
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also reduced since the iterative solver~such as GMRES! does not
require the storage of the entire matrix in the memory. Thus, la
models that had to be solved on a supercomputer in the pas
now be solved on a desktop computer.

In the following, we briefly list the main results of the fa
multipole method for the developed BIE~6! to show the essenc
of this powerful approach to solving BIEs. Complete formulatio
and steps in implementations of the FMM for elastostatic pr
lems can be found in Refs.@38,39#. Other formulations using dif-
ferent FMM approaches for general elasticity problems can
found in Refs.@26–28#.

We start with the following form of the fundamental solutio
~index notation is employed here, where repeated indices im
summations!:

Ui j ~x,y!5
1

8pm S d i j

2

r
2

l1m

l12m

]

]xi

xj2yj

r D , (9)

wherel andm are the Lame´ constants,d i j the Kronecker symbol,
and r 5r (x,y) the distance between the source pointx and field
point y. The following identity holds:

1

r ~x,y!
5(

n50

`

(
m52n

n

Sn,m~OxW !Rn,m~OyW !, (10)

for uOyW u,uOxW u, in which O represents a third point,Rn,m and
Sn,m are solid harmonic functions defined in Refs.@38,39#, and
( ) means the complex conjugate. Substituting~10! into ~9!, we
arrive at:

Ui j ~x,y!5
1

8pm (
n50

`

(
m52n

n

@Fi j ,n,m~OxW !Rn,m~OyW !

1Gi ,n,m~OxW !~OyW ! jRn,m~OyW !#, (11)

where,

Fi j ,n,m~OxW !5
l13m

l12m
d i j Sn,m~OxW !2

l1m

l12m
~OxW ! j

]

]xi
Sn,m~OxW !,

Gi ,n,m~OxW !5
l1m

l12m

]

]xi
Sn,m~OxW !.

The significance of expression~11! is that the kernelUi j (x,y) is
now a sum of functions in the form ofkn

(1)(x2O)kn
(2)(y2O),

which will facilitate integrations independent of the source poinx
and thus reduce the number of integrals to compute. To see
consider the integral in BIE~6! on a subdomainSo of Saway from
the source pointx. Applying expression~11!, with point O being
close to subdomainSo , we obtain:

E
So

Ui j ~x,y!t j~y!dS~y!5
1

8pm (
n50

`

(
m52n

n

@Fi j ,n,m~OxW !M j ,n,m~O!

1Gi ,n,m~OxW !Mn,m~O!#, (12)

in which,

M j ,n,m~O!5E
So

Rn,m~OyW !t j~y!dS~y!, (13)

Mn,m~O!5E
So

~OyW ! jRn,m~OyW !t j~y!dS~y!, (14)

are called themultipole momentsfor given n and m. Note that
these four moments are independent of the location of the so
point x and thus only need to be calculated once for all locatio
of the source point away fromSo (So will be a cell in FMM and
O will be the center of this cell!. To evaluate the integral using Eq
~12!, only a small number of terms are required in the expans
For example, using ten terms forn in these expansions has bee
118 Õ Vol. 72, JANUARY 2005
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found sufficient for most problems. Further details of the FMM
the context of general 3D elastostatic problems and used in
work can be found in Refs.@38,39#.

The fast multipole BEM code developed for the current ana
sis of rigid inclusions in 3D elastic media is based on the FM
BEM code that was developed at the Kyoto University for gene
elasticity problems@38#. This earlier FMM code has been teste
on some large-scale stress analysis problems of regular struct
More details on the FMM for the BEM and its implementations
solving other types of problems can be found in Refs.@21#, @39#.

4 Discretization of the BIE
The boundary element method, accelerated by the fast m

pole method, is applied to solve BIE~6! together with Eqs.~2!,
~7!, and~8!. In this paper, constant triangular boundary eleme
are used to discretize these equations over the surfaces o
inclusions. One node is placed on each surface element and
field variable~traction! is assumed to be constant over each e
ment which is a flat triangular area defined by its three cor
points. Although constant elements may not be as accurat
linear or quadratic surface elements, they have certain advant
over other higher-order elements. For example, all the integ
involved in using the constant elements can be evaluated ana
cally in both 2D and 3D cases.~As a matter of fact, it is not
impossible to carry out analytical integrations for any planar e
ments with arbitrary polynomial basis functions. But the resu
will be quite complicated.! This avoids the use of any numerica
integration in the BEM and hence guarantees the accuracy in
evaluation of all integrals when the source pointx is very close to
an element of integration~which happens when many inclusion
are closely packed in a model!.

If the nodes are grouped together for each inclusion, numbe
on one inclusion after another, then a discretized form of the B
~6! can be written as:

H ũ1

ũ2

]

ũn

J 5F Ũ11 Ũ12 ¯ Ũ1n

Ũ21 Ũ22 ¯ Ũ2n

] ] � ]

Ũn1 Ũn2 ¯ Ũnn

G H t̃1

t̃2

]

t̃n

J 1H ũ1
`

ũ2
`

]

ũn
`
J , (15)

wheren is the total number of inclusions being considered;ũa and
t̃a the nodal displacement and traction vector for inclusiona,
respectively;ũa

` the given remote displacement vector evalua
on inclusiona; andŨab the coefficient matrix obtained from th
~analytical! integration of the displacement kernel over inclusi
b when the source pointx is located on inclusiona. From Eq.~2!,
the nodal displacement vector on an inclusiona can be related to
the rigid-body translationd and rotationv of that inclusion by the
following expression:

ũa5H u1

u2

]

um

J 5F a1

a2

]

am

Gwa5Aawa , (16)

in which ui is the nodal displacement vector at nodei ~with m
being the number of nodes on inclusiona!; ai the transformation
matrix for each nodei on inclusiona given by @see Eq.~2!#:

ai5F 1 0 0 0 p3 2p2

0 1 0 2p3 0 p1

0 0 1 p2 2p1 0
G , (17)

with pk being the component of the position vectorp for nodei;
and finally in ~16!, wa is the rigid-body displacement vector fo
inclusiona, defined by:

wa5@d1 d2 d3 v1 v2 v3#T, (18)
Transactions of the ASME
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for a51,2, . . . ,n. The system of equations~15! is supplemented
with the following ones from discretizations of Eqs.~7! and~8! on
each inclusiona:

Ba t̃a50, (19)

for a51,2, . . . ,n, in which Ba is a 633m coefficient matrix
obtained by evaluating Eqs.~7! and ~8! on inclusiona.

With results in~16!–~18!, the discretized BIE~15! and Eq.~19!
can now be combined to provide the following form of the syst
of equations:

3
2Ũ11 2Ũ12 ¯ 2Ũ1n A1 0 ¯ 0

2Ũ21 2Ũ22 ¯ 2Ũ2n 0 A2 ¯ 0

] ] � ] ] ] � ]

2Ũn1 2Ũn2 ¯ 2Ũnn 0 0 ¯ An

B1 0 ¯ 0 0 0 ¯ 0

0 B2 ¯ 0 0 0 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Bn 0 0 ¯ 0

4 5
t̃1

t̃2

]

t̃n

w1

w2

]

wn

6
55

ũ1
`

ũ2
`

]

ũn
`

0
0
]

0

6 . (20)

There are 3N16n equations in the above system~with N5m
3n, being the total number of nodes on all inclusions!, which are
sufficient for solving the 6n unknown rigid-body displacement
and rotations (wa) of then inclusions, and the 3N unknown trac-
tion components (t̃a) at theN boundary nodes over all the inclu
sions. Note that in the above system, the dimension for subm
Aa is 3m36 and forBa is 633m. Both are not square matrice
~the number of nodes per inclusionm can be large!. If all the
inclusions are of the same size and shape, and meshed in the
way, then both the submatricesAa andBa can be computed only
once for all the inclusions.

The iterative solver GMRES is used to solve the system
equations in Eq.~20!, in which the multiplication of the~coeffi-
cient! matrix and~approximate solution! vector in each iteration
are obtained by using the fast multipole method. In the FMM,
maximum depth of the oct-tree structure is below 10 levels. Dir
integrations for near field interactions are computed during e
iteration and are not stored to save the memory space. As fo
preconditioner, we use the following~‘‘diagonal’’ ! matrix:

M53
2Ũ11 0 ¯ 0 A1 0 ¯ 0

0 2Ũ22 ¯ 0 0 A2 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ 2Ũnn 0 0 ¯ An

B1 0 ¯ 0 0 0 ¯ 0

0 B2 ¯ 0 0 0 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Bn 0 0 ¯ 0

4 .

(21)

The system in~20! is right-preconditioned with this matrix. The
inverse ofM is easily obtained as:
Journal of Applied Mechanics
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M2153
P1 0 ¯ 0 Q1 0 ¯ 0

0 P2 ¯ 0 0 Q2 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Pn 0 0 ¯ Qn

R1 0 ¯ 0 S1 0 ¯ 0

0 R2 ¯ 0 0 S2 ¯ 0

] ] � ] ] ] � ]

0 0 ¯ Rn 0 0 ¯ Sn

4 ,

where

F Pi Qi

Ri Si
G5F2Ũi i A i

Bi 0
G21

, for inclusion i 51,2, . . . ,n.

(22)

Physically speaking, inverting the matrix on the right-hand side
~22! means to solve a rigid-inclusion problem for the whole spa
just containing one inclusion~ith one!. The inversion in~22! is a
small operation which can be carried out efficiently with any
rect solver for a matrix equation. With this preconditioning, t
upper-right and lower-left submatrices in~20! reduce to zero ma-
trices, while the lower-right submatrix and the block diagonals
the upper-left submatrix are converted into identity matrices. T
is essentially equivalent to converting the original integral eq
tion in ~6! into another equation of the second kind whose solut
is unique. The system thus obtained is well conditioned and
solutions are stable, as shown in the following numerical
amples.

5 Numerical Examples
The developed fast BEM for the analysis of rigid inclusions

first validated using a test case of a single rigid sphere for wh
the analytical solution can be found readily. Then, the BEM co
is applied to study the fiber-reinforced composites using the rig
inclusion model.

5.1 A Rigid Sphere in an Infinite Elastic Medium. To
validate the developed new BIE formulation and its BEM imp
mentation for the study of rigid-inclusion models of fibe
reinforced composites, a rigid sphere in an infinite elastic med
is considered first~Fig. 2!. The elastic medium containing th
rigid sphere is loaded with a far-field triaxial stresss`. The ana-
lytical solution for this axisymmetric problem can be obtain
readily using basic elasticity theory@40# or the equivalent inclu-
sion method@41#. The radial displacement, radial and tangent
stresses in the elastic domain are found to be:

Fig. 2 A rigid sphere in an infinite elastic domain V
JANUARY 2005, Vol. 72 Õ 119
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Fig. 3 A boundary element model of the sphere „with 1944 surface elements …
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s r~r !5s`F11
2~122n!

11n

a3

r 3G , (24)

su~r !5s`F12
122n

11n

a3

r 3G , (25)

respectively, wherea is the radius of the sphere,E the Young’s
modulus, andn the Poisson’s ratio of the elastic medium. No
that ur(a)50, which is the result for a rigid sphere.

The convergence of the BEM is studied with several bound
element meshes for the sphere. The finest mesh used~with 1944
elements! is shown in Fig. 3. The radial stress computed by
BEM on the surface is compared with the analytical solution@Eq.
~24!# and the relative errors are plotted in Fig. 4 for differe
meshes with increasing numbers of elements. The error with
coarsest mesh~120 elements! is 4.93%, while that with the fines
mesh ~1944 elements! is 0.19%. The convergence of the BEM
results is achieved. The field displacement and stresses within
elastic domain are plotted in Figs. 5 and 6, respectively, for
coarsest mesh~120 elements! to deliberately show the errors o
the BEM. Even though the results on the surface for this coa
mesh contain a relatively larger error~4.93% for radial stress, Fig
4!, the results inside the domain~away from the surface! are quite
good. This is one of the advantages of the BEM approach, wh
uses integral representation@e.g., Eq.~5!# for this calculation that
tends to reduce the errors inside the domain. Note that both
radial and tangential stresses tend to the applied far-field s
s`, as the distancer from the center of the sphere increases. T
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stress contour plot forsx on the surface~boundary of the me-
dium! is given in Fig. 7 for the finest mesh~shown in Fig. 3!. The
boundary stress field is obtained by using the traction results
averaged at each corner node using results on the surroun
elements. Note the increase of the stress value on the surface~with
a stress concentration factor of 1.6154! and its location due to the
presence of the rigid sphere in the elastic medium.

The excellent agreement of the BEM results with the analyti
solution for this example suggests that the developed new
formulation and its BEM implementation are correct and effe
tive. Fiber-reinforced composite materials will be considered n
using this rigid-inclusion model and the BEM approach.

5.2 Short-Fiber-Reinforced Composites. Modeling of
fiber-reinforced composites using the rigid-inclusion model a
the developed BEM is considered in this and next examples. S
fibers in a matrix are more likely to act like rigid rods@18# if their
stiffness is more than an order of magnitude higher than tha
the matrix. Several representative volume elements containing
ferent numbers of fibers are used to study the interactions of
fibers and to estimate the effective properties of the compos
We limit our attention to short and moderately long fibers in
matrix, where the aspect ratio~length/diameter! of an inclusion is
kept below 20. The main purpose of these examples is to show
capabilities and promises of the developed fast BEM in lar
scale modeling of fiber-reinforced composites. The models s
ied here are simple and ideal in nature, with more realistic o
being left for future applications.

The RVEs considered in this study are of finite sizes andem-
beddedin an infinite domain with the same material as that of t
matrix ~cf., similar inclusion models in 2D infinite space reporte
in Refs.@9–14,16,17#!. In this way, the problem can be posed
Transactions of the ASME
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Fig. 4 Convergence of the BEM results for surface radial stress s r„a…
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ss
an infinite domain problem and the structure of Eq.~20! can be
preserved.@A RVE model as a finite domain problem can be eas
implemented with some modifications of Eq.~20! to consider di-
rect loading on the surfaces of a RVE.# In the current embedded
RVE models, a far-field uniaxial tensile stress is applied in
x-direction~Fig. 8!. To estimate the effective Young’s modulus
a composite in one direction~e.g., the fiber orx-direction!, the
displacements and stresses at some surfaces of the RVE,
called data-collection surfaces~Fig. 8!, are computed using Eq
~5! and its gradients, after the tractiont is determined for each
rigid inclusion by solving the BIE equations. The effectiv
Young’s modulus of the composite is estimated using the displa
d Mechanics
ily

he
f

o be
.

e
ce-

ment and stress results at these data-collection surfaces by
following formula ~which ignores the stresses on the lateral s
faces that have been found much smaller in value compared
sx in the cases studied!:

Eeff5
~sx!~ave!L

~Dux!~ave!
, (26)

whereEeff is the estimated effective Young’s modulus of the co
posite in thex-direction ~Fig. 8!, and the displacement and stre
averaged over the data-collection surfaces~Fig. 8! are obtained
by:
Fig. 5 Radial displacement „Ãs`aÕE… obtained by the BEM model with 120 elements
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Fig. 6 Radial and tangential stresses „Ãs`
… obtained by the BEM model with 120 elements

Fig. 7 Contour plot for stress sx„Ãs`
… on the surface of the rigid sphere
JANUARY 2005 Transactions of the ASME
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~Dux!~ave!5~ux~x5L/2!!~ave!2~ux~x52L/2!!~ave! , (27)

~sx!~ave!5@~sx~x5L/2!!~ave!1~sx~x52L/2!!~ave!#/2, (28)

with L being the length of the RVE in thex direction Fig. 8, the
origin of the coordinate system is located at the center of
RVE!. In this way, the effective modulus is obtained as the lo
elastic constant of the volume with inclusions. One may argue
the effective modulus in~26! is an apparent property because it
obtained using an infinite domain that acts as part of the ‘‘load
device.’’ Indeed, the effectiveness of this approach with a R
embedded in the infinite domain needs to be verified with ot
results and improved RVE models can also be developed.
reader is referred to Sec. 6 for further discussions and an atte
to verify the proposed approach.

A mesh with 456 boundary elements for a short, cylindric
fiber of an aspect ratio equal to 5~length550 and diameter510! is
shown in Fig. 9. This mesh is sufficient for obtaining converg
results for the estimated effective moduli. The fiber is initial
placed at the center of a box of dimensions 100320320 ~chosen
arbitrarily! and filled with the matrix material. This box is the
repeated in thex-, y-, and z-directions to generate the multiple
fiber RVE models. Three different distributions and orientations
the fibers are considered. The first case is the uniform distribu
of aligned fibers, to be called theuniformcase. The second case
a ‘‘random’’ distribution of aligned fibers, where the fibers are st
aligned in thex-direction, but their locations are shifted random

Fig. 8 A RVE of a short fiber-reinforced composite

Fig. 9 A BEM mesh used for the short fiber inclusion „with 456
elements …
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in the x-, y-, and z-directions to such an extent that each fib
remains in its own box~territory! to avoid contact of the fibers
This case is called thealigned randomcase. The third case is
‘‘random’’ distribution and ‘‘random’’ orientation of the fibers
Again the random distribution and~small angle! rotation of a fiber
is limited to the extent that it remains in its own box. This case
named therandom~or to be more precise, acontrolled random!
case. In all the cases, the volume fraction of the fiber is 9.1
based on the dimensions of the RVE and fibers. A Poisson’s r
of 0.3 is used for the matrix.

Figure 10 shows the contour plot of surface stresssx ~in the
matrix! for the RVE containing 216 ‘‘random’’ short fibers. Fo
each fiber, high stresses occur around the two ends of the fi
which is consistent with the theory that in the limit as the slen
inclusion becomes a rigid line, singularity of stresses will arise
the two tips@9#. Values of these stresses are even higher when
fibers are closer to each other, suggesting closer interactions o
fibers. This stress plot is typical among all the studied RVEs c
tainingq3q3q fibers, withq52, 3, 4, 6, 8, 10, 12, and 13 in thi
example. The largest RVE with 2197~an array of 13313313!
‘‘random’’ fibers is shown in Fig. 11. The total degrees of freedo
for the model in Fig. 11 is 3 018 678~521973~6145633!!.

The normalized Young’s moduli (Eeff /Ematrix) of the compos-
ites, estimated with the three different fiber distributions and o
entations using the above mentioned RVEs, are plotted in Fig.
The increase of the effective Young’s modulus of the compo
estimated by the RVEs with uniform distributions of aligned fibe
ranges from 28.1% to 40.8%~a difference of 45.2%! as the num-
ber of fibers~or size of the RVEs! increases from 8 to 2197. Th
values of the modulus in this uniform case increase gradually
tend to a constant value. These results suggest that a RVE w
smaller number of short fibers is inefficient for obtaining the
fective properties accurately with Eq.~26! even in the cases with
uniform distributions of aligned fibers~without considering the
periodic boundary conditions!. The estimated increases of th
Young’s moduli in thealigned randomand randomcases range
from 27.7% to 46.2% and oscillate within this range until a
proaching another constant. Surprisingly, the estimated modu
the aligned random and random cases are higher for most R
than those in the corresponding uniform case. This may sug
that the load transfer may be improved by the ‘‘random’’ distrib
tions of fibers in a short-fiber composite. However, in comparis
the values of the effective moduli are about 30% lower than th
predicted by the theory and BEM~for incompressible materials!
reported in Ref.@18# for the same fiber volume fraction and aspe
ratio. This may be due to the fact that the fibers in the curr
models are confined within their own boxes and no ‘‘relays’’ occ
in the fiber direction, even in the ‘‘random’’ case, which leads
‘‘weakest-link’’ regions between two arrays of fibers. While in th
models used in Ref.@18#, aligned fibers are placed randomly i
the RVE and therefore better load transfer are achieved. Fur
tests on the current BEM can be carried out with more reali
distributions of the fibers.

Figure 13 shows the CPU time used to obtain results in
short-fiber composite example, on a FUJITSU PRIMEPOW
HPC2500 machine~a shared memory machine with 96 CPUs a
384GB memory! and using four CPUs. In this example, no serio
attempts have been made to parallelize the code except for
automatic parallelization made by the compiler. Contrary to
traditional BEM where the solution time is ofO(N3) ~with N here
being the total number of DOFs!, the CPU time required for solv-
ing a model using the fast multipole BEM is only ofO(N) as
shown in Fig. 13~a straight line with the slope close to unity!.
Furthermore, the memory required for solving a problem also
creases linearly with the size of the problem for fast multipo
BEM. Also, the number of iterations required to reach the conv
gence with a tolerance of 1025 in using the GMRES is between
~for N510 992) and 7~for N53 018 678). Therefore, the fas
JANUARY 2005, Vol. 72 Õ 123
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Fig. 10 Contour plot of surface stresses „Ãs`
… for a model with 216 ‘‘randomly’’ distributed

and oriented short fibers
r
a

t
i

6
d
and
multipole BEM is much faster and more efficient as compa
with the traditional BEM~further discussions and examples c
be found in Refs.@21,39#!.

These preliminary results in modeling short-fiber-reinforc
composites clearly demonstrate the effectiveness and robus
of the developed fast multipole BEM based on the rigid-inclus
model.
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5.3 Long-Fiber-Reinforced Composites. Composites rein-
forced with relatively long fibers, with an aspect ratio of 1
~length580 and diameter55!, are studied using the develope
BEM. Each fiber is discretized using 600 boundary elements
placed in a box of the same dimensions~100320320! as in the
short-fiber example. This box is then repeated in thex-, y-, and
z-directions to generate RVEs containingq3q3q fibers, withq
Fig. 11 A RVE containing 2197 short fibers with the total DOF Ä3 018 678
Transactions of the ASME
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Fig. 12 Estimated effective Young’s moduli in the x -direction for the composite model with
up to 2197 short rigid fibers „fiber volume fraction Ä9.16%…
l

uli
g

he
es
ses,

ted
os-
.9%
he
52, 3, 4, 6, 8, 10, 12, 13, 15, and 18 in this example. The larg
model with 5832 fibers and 10 532 592 DOFs~58323~61600
33!! is shown in Fig. 14. The fibers are arranged in the so ca
‘‘random’’ manner as in the short-fiber RVEs. Again, these a
‘‘controlled random’’ distributions~each fiber within its own box!
and orientations~with small rotation angles! of the fibers so that
no contact among them occur in the RVEs. The volume fraction
the fiber is 3.85% for all the long-fiber models in this examp
The Poisson’s ratio for the matrix is 0.3.
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est
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Figure 15 shows the normalized effective Young’s mod
(Eeff /Ematrix) computed for the composites with the relatively lon
fibers using the RVEs in the uniform and ‘‘random’’ cases. T
increases of the computed effective moduli are about two tim
higher in these long-fiber cases than those in the short-fiber ca
even though the fiber volume fraction is lower. This is expec
since aligned long fibers are better for load transfer in a comp
ite. The increases in the values of the modulus range from 75
to 95.0% for the uniform case and from 65.4% to 87.6% for t
Fig. 13 CPU time used for solving the BEM models for the short-fiber cases
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Fig. 14 A RVE containing 5832 long fibers with the total DOF Ä10 532 592
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random case. Results for the uniform case increase gradually
the increase of the RVE sizes and tend to a constant v
~95.0%!. The values obtained for the ‘‘random’’ case fluctuate f
the smaller RVEs and also approach a constant for the la
RVEs. However, the increases in the ‘‘random’’ case are about
lower than those in the uniform case in this long-fiber examp
This suggests that even small misalignment and rotations of
fibers~which are uniformly and closely packed in the fiber dire
tion initially! will offset the enhancement in the stiffness for lon
fiber composites. The largest RVE model~with 5832 fibers and
10 532 592 DOFs! can be solved in 3 h and 40 min~wall-clock
ANUARY 2005
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8%
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time! on the PRIMEPOWER HPC2500 computer using 32 CPU
with a tolerance of 1025 in the solution with GMRES and ten
term expansion in the FMM. The code used for this example w
parallelized with minimum efforts using OpenMP and automa
parallelization option of the compiler.

Rapid convergence is achieved in this case also. The numb
iterations in solving the preconditioned system using the GMR
iterative solver is between 5~for N514 448) and 11~for N
510 532 592) with a tolerance of 1025. This shows that the pre
conditioner in~22! works very well even in problems when th
Fig. 15 Estimated effective Young’s moduli in the x -direction for the composite model with
up to 5832 long rigid fibers „fiber volume fraction Ä3.85%…
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aspect ratio of the inclusions is as large as 16. The robustne
the developed BEM for modeling fiber-reinforced composites
demonstrated again by this example which has reached 10 mi
DOFs for the boundary element method.

6 Discussions
The developed fast multipole BEM for the analysis of fibe

reinforced composites based on the rigid-inclusion model
been demonstrated to be very effective and efficient for large s
models. Interactions of the fibers, load transfer mechanisms
effective properties of a composite can be investigated rea
using the BEM code with different parameters, such as fiber
pect ratios, volume fractions, waviness, distributions, and orie
tions. However, further studies are needed regarding the effec
ness of the model and method for evaluating the effec
properties of the composite materials, since the rigid-inclus
model has some obvious limitations. For example, the effec
the ratio of the Young’s modulus of the fiber to that of the mat
for a composite can not be accounted for in the rigid-inclus
model ~this ratio is equal to infinity in the rigid model for an
matrix material!. Although there are a large amount of experime
tal data and numerous analytical results based on different the
for estimating the effective properties of fiber-reinforced comp
ites, direct comparison of the BEM results with these data was
attempted in this study~except with that in Ref.@18#!, because of
the wide variations in those data. More realistic models of
fiber-reinforced composites using the rigid or elastic inclusion
proaches need to be studied using the developed BEM in fu
applications.

The boundary integral equation developed for this study,
~6!, is essentially an integral equation of the first kind, which, us
in its original form, may raise the question of stability and co
vergence of its solutions when using iterative solvers as in
FMM. Our experience has shown that even for integral equati
of the first kind, the FMM BEM, which uses iterative solvers su
as GMRES, can still deliver fast converging and stable res
with good preconditioners. Our selection of using the right p
conditioner in Eq.~22! turns out to be very effective.

The RVE used in this study is of finite size as shown in Fig.
that is embedded in an infinite space filled with the matrix ma
rial and loaded remotely~cf., again, 2D models in infinite spac
used in Refs.@9–14,16,17#!. This is chosen so that an infinit
domain problem can be solved, which is easier to handle conc
ing the boundary conditions and, in general, converges faster
an interior problem using the FMM. In this infinite domain pro
lem, the displacement and stress fields on the surfaces of the
~data-collection surfaces! need to be calculated after the bounda
solutions on all the inclusions are obtained with the fast multip
BEM. This calculation of the fields inside the domain takes ex
CPU time, which can be substantial for large models, althoug
can be computed by using the FMM also@30#. An interior prob-
lem defined on the finite sized RVE directly can certainly
implemented with some modifications of Eq.~20! and may pro-
vide some improvements to the current RVE model. For exam
the boundary solutions~displacements and tractions! on the RVE
surfaces, which are available after the solution of an interior pr
lem, can be used directly to evaluate the effective propertie
more reliable, and perhaps more elegant, approach for compu
the effective modulus is to use FMM for periodic boundary co
ditions @25#. Our preliminary analysis with the two dimension
Laplace problems@17# shows that the periodic FMM BEM can b
implemented easily, and the increase of the CPU time over
ordinary FMM is less than 20%. The effective property obtain
with an equivalent formula of~26! and with the periodic FMM did
not differ very much. The elastic counterpart of the periodic FM
is now underway.

The rigid-inclusion model for fiber-reinforced composites m
have the potential in some very urgent applications, such as m
eling of the emerging carbon nanotube~CNT!-based composites
Journal of Applied Mechanics
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~see, e.g., Refs.@42–45#!. The Young’s moduli of carbon nano
tubes are in general greater than 1 TPa along the tube direc
about two orders higher than those of many matrix mater
@43,44#. To model the CNT-based composites, continuum mech
ics approaches using the FEM or BEM@46–49# may still be ap-
plied if the overall behaviors and properties of the CNT-bas
composites are to be investigated. However, CNTs are usu
produced in different shapes and sizes~for example, being curved
twisted, or bundled!, and are difficult to align in a composite
Thus the computational models for such composites may nee
contain a much larger number of fibers in a RVE, as compare
those for traditional composites for which the fibers can
aligned easily and distributed uniformly, mainly because of th
larger scales. The BEM can model multimaterial problems ea
since it uses elements only on boundaries and interfaces of
problem domain. With the fast multipole BEM, the solution tim
has also been reduced dramatically for large-scale problems.
rigid-inclusion model further simplifies the BEM approach a
increases its efficiency in the analysis of some special compo
materials, as demonstrated by the examples in the previous
tion. All these features and new development make the BEM v
appealing in large scale analysis of CNT-based composites
estimating their overall mechanical properties. Studies are un
way along this line in modeling CNT-based composites by us
the developed fast multipole BEM with new interface conditio
based on molecular dynamics simulations of CNT-fiber pullo
tests.

The work reported in this paper, on using the rigid-inclusi
models for analyzing fiber-reinforced composites, is only the fi
step in the development of a more general FMM BEM for stud
ing such materials and many others. The developed BIE form
tion and the FMM BEM can be extended readily for other pro
lems. A FMM BEM solver for general inclusion problems can
developed, where the inclusions can be elastic or rigid, or sim
a void. Other RVE models, for example, with periodic bounda
conditions, can be implemented as stated above. Interfacing
developed BEM with other methods~such as molecular dynamics!
for multiscale analyses of CNT-based composites can also be
sidered and may present unique advantages over other dom
based methods. Higher-order boundary elements can be appli
further increase the efficiency and accuracy of the BEM. A pr
tical and important development for the BEM code is to deve
an improved preprocessor that can generate the boundary ele
mesh for a RVE containing a large number of truly random
distributed and oriented fibers, including curved ones, so
more realistic models of composites can be analyzed based on
experimental or fabrication parameters. Finally, full parallelizati
of the BEM code can be implemented to further increase the
bustness of the developed fast multipole BEM for even lar
models based, eventually, directly on scanned 3D models of c
posite material samples.

7 Conclusion
A new boundary integral equation formulation for the analy

of an elastic medium containing rigid inclusions is derived in th
paper. This new BIE contains only the weakly-singular displa
ment kernel from the fundamental solution and thus is much m
efficient to solve than the traditional singular BIE. The fast m
tipole boundary element method is employed to solve this n
BIE. The developed BIE formulation and FMM BEM code a
found to be very stable and the results converge in about 10 it
tions for a tolerance of 1025 with the preconditioned GMRES
The numerical results for a spherical rigid inclusion in an elas
domain match very closely with the analytical solution. Short- a
moderately long-fiber-reinforced composites are investigated
ing the developed BEM and their effective Young’s moduli a
estimated using the BEM displacement and stress results for
representative volume elements. The largest model studied
tains more than 5800 fibers and has the total degrees of free
JANUARY 2005, Vol. 72 Õ 127
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over 10 millions. These preliminary results clearly demonstr
the effectiveness, efficiency and promises of the developed
multipole BEM for studying fiber-reinforced composites, wh
the fibers are much stiffer than the matrix material.
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Rayleigh Waves Generated by a
Thermal Source: A Three-
Dimensional Transient
Thermoelasticity Solution
A three-dimensional transient thermoelastic solution is obtained for Rayleigh-type di
bances propagating on the surface of a half-space. These surface waves are genera
either a buried or surface thermal source, which has the form of a concentrated hea
applied impulsively. In an effort to model this problem as realistically as possible,
half-space material is taken to respond according to Biot’s fully coupled thermoelast
The problem has relevance to situations involving heat generation due to: (i) laser a
(impulsive electromagnetic radiation) on a surface target, (ii) underground nuclear ac
ity, and (iii) friction developed during underground fault motions related to seismic
tivity. The problem was attacked with unilateral and double bilateral Laplace transfor
which suppress, respectively, the time variable and two of the space variables. The
leigh wave contribution is obtained as a closed-form expression by utilizing asympt
complex-variable theory and certain results for Bessel functions. The dependence
normal displacement associated with the Rayleigh wave upon the distance from the
epicenter and the distance from the wavefront is also determined.
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1 Introduction

A class of interesting problems of thermomechanical wave m
tions arises from the action of a thermal source in a conduc
and deformable body. The source can be situated either on
surface or inside the medium~buried source!. Typical problems of
this class involve:~i! laser action~impulsive electromagnetic ra
diation! on a surface target~see e.g. Morland@1#, Sve and Mik-
lowitz @2#, Bechtel@3#, Hetnarski and Ignaczak@4#, and Royer and
Chenu@5#!, ~ii ! underground nuclear activity~see e.g., Bullen and
Bolt @6#!, and ~iii ! friction developed during underground fau
motions related to seismic activity~see e.g., Kanamori et al.@7#!.
In many cases, these problems can be viewed as a th
dimensional~3D! situation involving a thermoelastic half-spac
under either a surface or buried heat source. This situation is s
ied here by employing the coupled inertial thermoelasticity the
of Biot @8# ~see also Achenbach@9#!. In particular, we focus atten
tion on the surface disturbance of the Rayleigh-type and provid
closed-form expression for the associated displacement field
deed, past experience with pure mechanical~i.e., without any ther-
mal effects! versions of the present problem indicates that
Rayleigh-wave disturbance is thedominantone over the surface
after a certain time~see e.g., the 2D analysis of Garvin@10# in-
volving a buried dilatational source in a half-plane and the
analysis of Pekeris and Lifson@11# involving a buried concen-
trated vertical force in a half-space!.

We should mention that a recent study by the present aut
and Brock~Lykotrafitis, Georgiadis, and Brock@12#! dealt with

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, March 2, 20
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should be addressed to the Editor, Professor Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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the same problem studied here and provided an evaluation o
complete field at the surface. This field comprises thermoela
dilatational and Rayleigh waves, and elastic shear waves. H
ever, the latter study relies much upon numerical analysis~involv-
ing numerical wavenumber integrations and numerical Lapla
transform inversions! and does not furnish an analytica
expression for the evaluation of the surface displacements.
stead, our aim here is to provide a simpleclosed-formexpression
for the Rayleigh-wave disturbance without using any special
merical technique. This was made possible by using asympto
and certain results of complex-variable theory and Bessel fu
tions in addition to the basic integral-transform analysis of R
@12#. The key idea used is making explicit the appearance
Rayleigh-wave poles by obtaining an approximate form of
Rayleigh function that exhibits no dispersion but still depen
upon the thermoelastic constants. Notably, this approximate f
is numerically very close to the exact one giving therefore v
accurate results.

It should be mentioned that most of the studies published be
on wave propagation induced by sudden heating model the p
lems asone-dimensional~see e.g., Boley and Tolins@13#, and
Hetnarski and Ignaczak@14#!, employuncoupledthermoelasticity
~see e.g., Sve and Miklowitz@2#! or treat onlyinfinite domains,
i.e., full spaces~see e.g., Predeleanu@15#, Fleurier and Predeleanu
@16#, Sharp and Crouch@17#, and Manolis and Beskos@18,19#!.
Also, some of the aforementioned works consider the special c
of a time-harmonicresponse. On the contrary, the present stu
aims at a more realistic formulation of these problems and
therefore based on the transient coupled inertial thermoelasti
while it treats a three-dimensional problem in a half-space
main. Notice that the relevance of the constitutive theory u
here to thermal-shockproblems—particularly the importance o
inertial and thermal-coupling effects—was shown in the studies
Hetnarski@20#, Boley and Tolins@13#, Sternberg and Chakravort
@21,22#, and Francis@23#. More recent work employing this theor
in transient problems of wave propagation and fracture w
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done by, among others, Atkinson and Craster@24#, Brock @25#,
Brock, Rodgers and Georgiadis@26#, Brock and Georgiadis@27#,
Georgiadis, Brock, and Rigatos@28#, and Georgiadis, Rigatos, an
Brock @29#. Finally, within the context of a different theory
namely inertialess and uncoupled thermoelasticity, soluti
for thermally activated surface displacements in a half-space w
obtained by Barber@30# and Barber and Martin-Moran@31#.

2 Problem Statement
Consider a 3D body in the form of a half-spacez.2H ~see

Fig. 1! which is both thermally conducting and deformable. T
body is initially at rest and at uniform temperatureT̃0 . At time t
50, a thermal source acts at a point situated at a depthH below
the surface. This point of the half-space is taken as the origin
the Cartesian coordinate system (x,y,z). A concentrated therma
source having an impulsive time variation is assumed, with
understanding that the solution of this problem~Green’s function
or fundamental solution! can be integrated in space and time
give then the solution for any general thermal loading. Also,
source has an intensityKQ, whereK is the thermal conductivity
with dimensions of~power!~length!21~°C!21, °C means degrees o
temperature andQ is a multiplier expressed in~°C!~length!~time!.

Then, according to the linear, isotropic, inertial coupled th
moelasticity theory~Biot @8#, Achenbach@9#, Chadwick@32#, and
Carlson@33#!, the governing equations for this problem are wr
ten as

s5m~¹u1u¹!1l~¹•u!12k0~3l12m!u1, (1)

q52K¹u, (2)

m¹2u1~l1m!¹~¹•u!2k0~3l12m!¹u5r
]2u

]t2
, (3)

K¹2u2rcv

]u

]t
2k0~3l12m!T̃0

]~¹•u!

]t

1KQ•d~ t !•d~x!•d~y!•d~z!50, (4)

where ~1! is the Neumann-Duhamel law,~2! is the heat-
conduction Fourier law,~3! is the displacement-temperatu
equation of motion, and~4! is the coupled heat equation. Also,
the above equations,s is the stress tensor,u is the displacemen

Fig. 1 A thermally conducting and deformable body in the
form of 3D half-space under the action of a buried „HÅ0… or
surface „HÄ0… heat source
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vector, u5T̃2T̃0 is the change in temperature,T̃ is the current
temperature,T̃0 is the initial temperature,q is the heat-flux vector,
~l,m! are the Lame constants,k0 is the coefficient of linear ex-
pansion,r is the mass density,cv is the specific heat at constan
deformation,d~ ! is the Dirac delta distribution,1 is the identity
tensor,¹ is the gradient operator, and¹25(]2/]x2)1(]2/]y2)
1(]2/]z2) is the Laplace operator. All field quantities above a
functions of (x,y,z,t).

In addition, zero initial conditions are taken, i.e.

u5]u/]t5u50 for t<0 in ~2`,x,`,2`,y,`,

2H,z,`!, (5)

and we also assume that the half-space surfacez52H is traction
free and insulated~i.e., no heat is conducted through the ha
space surface and air!. Finally, the pertinentfinitenessconditions
at remote regions~Ignaczak and Nowacki@34#! state that the field
at infinity remains bounded although temperature signals trave
according to Biot’s theory—at an infinite speed.

The objective of the present work is to determine the verti
displacement at the surface for the problem described
Eqs.~1!–~5!. The solution of this problem is greatly facilitated b
removing the source term in~4! and considering this term as
discontinuity along animagined planeat z50. This strategy was
introduced first by Pekeris@35# ~see also Miklowitz@36#! in treat-
ing the pure mechanical problem of a half-space under a bu
vertical force. Considering thus an imaginary plane alongz50
that separates the original half-space into the half-space 0,z
,` ~region 1 in Fig. 1! and the strip2H,z,0 ~region 2 in
Fig. 1!, we write the pertinent continuity and discontinuity cond
tions at z50 along with the standard boundary conditions
z52H

u~1!~x,y,0,t !5u~2!~x,y,0,t !, (6a)

u~1!~x,y,0,t !5u~2!~x,y,0,t !, (6b)

sz j
~1!~x,y,0,t !5sz j

~2!~x,y,0,t !, (6c)

]u~1!~x,y,0,t !

]z
2

]u~2!~x,y,0,t !

]z
5Q•d~ t !•d~x!•d~y!, (6d)

sz j~x,y,2H,t !50, (7a)

]u~x,y,2H,t !

]z
50, (7b)

where2`,x,`, 2`,y,`, ( j 5x,y,z), and the superscrip
in parentheses 1 or 2 attached to a field quantity means tha
planez50 is approached asz→01 or z→02, respectively.

In this way, the original problem~1!–~5! and ~7! is equivalent
to the problem described by~1!–~3! and ~5!–~7! and with the
equation K¹2u2rcv(]u/]t)2k0(3l12m)T̃0(](¹•u)/]t)50
replacing now Eq.~4!. Further, a convenient normalization is pe
formed allowing the two field equations of the problem@i.e., Eqs.
~3! and ~4! with no source terms# to take the form

¹2u1~m221!¹D1k¹u2m2
]2u

]s2
50, (8)

k

m2
¹2u2

k

hm2

]u

]s
1

«

h

]D

]s
50, (9)

wheres5V1t is the normalized time~with dimension of length!,-
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V15@(l12m)/r#1/2 is the dilatational-wave velocity in theab-
sence of thermal effects~i.e., within the ‘‘pure’’ mechanical
theory!, k52k0(3l12m)/m5k0(423m2),0 is the normal-
ized coefficient of linear expansion,«5(T̃0 /cv)(kV2 /m)2 is the
dimensionless coupling coefficient,h5(KV2 /mmcv) is the ther-
moelastic characteristic length,V25(m/r)1/2 is the shear-wave
velocity, m5V1 /V2.1, andD5¹•u is the dilatation. As regards
the range of numerical values that« and h take on, for most
materials the characteristic length is very small@typically h
5O(10210 m), see, e.g., Chadwick@32## but the coupling coeffi-
cient can be as high as«5O(1021) ~e.g.,«50.36 for Polycarbon-
ate atT̃0540°C). The fact thath is very small with respect tos
for a rather wide time-range will be conveniently utilized in th
ensuing analysis.

3 Basic Integral-Transform Analysis
This section essentially reproduces relevant material from

recent related work~Lykotrafitis, Georgiadis, and Brock@12#!.
This material is briefly presented here for the sake of compl
ness and because of the need to introduce certain definitions.
also emphasized that although the form of conditions~6! and ~7!
suggest existence of an axisymmetric field, the basic integ
transform analysis presented here is appropriate for more ge
nonaxisymmetricsituations. This is why we do not use the Hank
transform below. Certainly, the fact that we deal with an axisy
metric field in our specific problem will emerge in the course
solving the problem.

The dependence of the problem on the variables (x,y,s) is
suppressed through the use of multiple Laplace transforms~see
e.g., van der Pol and Bremmer@37#, and Carrier et al.@38#!. The
unilateral transform pair~direct and inverse transform! is defined
as

F~x,y,z,p!5E
0

`

w~x,y,z,s!•e2psds, (10a)
Journal of Applied Mechanics
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w~x,y,z,s!5~1/2p i!E
G1

F~x,y,z,p!•epsdp, (10b)

and the direct transform suppresses the timelike variables. The
double bilateral transform pair is defined as

F* ~q,w,z,p!5E
2`

` E
2`

`

F~x,y,z,p!•e2p~qx1wy!dxdy,

(11a)

F~x,y,z,p!5~p/2p i!2E
G2

E
G3

F* ~q,w,z,p!•ep~qx1wy!dqdw,

(11b)
and the direct transform suppresses the space variables (x,y). In
what follows, we save a capital letter for the unilateral dire
transform, whereas the double bilateral direct transform is deno
by an asterisk. It is also noticed that~van der Pol and Bremme
@37#!: ~1! Because of Lerch’s theorem for the uniqueness
unilateral Laplace transforms and because of the existenc
Widder’s inversion formula for realp, it is sufficient to view
F(x,y,z,p) as a function of areal variablep over some segmen
of the real axis in the half-plane of analyticity. OnceF(x,y,z,p)
is determined as an explicit function ofp in the course of solving
the transformed differential equations, its definition can be
tended to the whole complexp-plane, except for isolated singula
points, through analytic continuation.~2! The variablesq and w
should be treated ascomplex. ~3! The integration pathG j ,
with ( j 51,2,3), is a line parallel to the imaginary axis in th
associated transform plane and lieswithin the region of
analyticity.

Applying now ~10a! and ~11a! to the governing equations~1!,
~8!, and~9!, and considering~5! yields the following general ex-
pressions for the transformed temperature change, displacem
and stresses~details of this procedure are given in Appendix A
Ref. @12#!. These expressions are, of course, different in the
gions 1 and 2 of the original half-space.
~a! Region 1 (0,z,`):

l

k

m2
Q*

pUx*

pUy*

pUz*
1

m
Sxy*

1

m
Sxz*

1

m
Syz*

1

m
Sxx*

1

m
Syy*

1

m
Szz*

m
5

l

M 1 M 2 0 0 0 0 0 0

2q 2q 1 0 0 0 0 0

2w 2w 0 1 0 0 0 0

a1 a2

q

b

w

b
0 0 0 0

22qw 22qw w q 0 0 0 0

2qa1 2qa2 2
Tw

b

wq

b
0 0 0 0

2wa1 2wa2

wq

b
2

Tq

b
0 0 0 0

Tw1 Tw2 2q 0 0 0 0 0

Tq1 Tq2 0 2w 0 0 0 0

2T 2T 22q 22w 0 0 0 0

m 3
X1e2pa1z

X2e2pa2z

X3e2pbz

X4e2pbz

0
0
0
0

4 . (12)
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~b! Region 2 (2H,z,0):

l

k

m2
Q*

pUx*

pUy*

pUz*
1

m
Sxy*

1

m
Sxz*

1

m
Syz*

1
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Tw1 Tw1 Tw2 Tw2 2q 0 2q 0

Tq1 Tq1 Tq2 Tq2 0 2w 0 2w

2T 2T 2T 2T 22q 22w 22q 22w

m 3
X5epa1z

X6e2pa1z

X7epa2z

X8e2pa2z

X9epbz

X10e
pbz

X11e
2pbz

X12e
2pbz

4 (13)
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whereQ* is the multiply-transformed change in temperature, a
(Ux* ,Uy* ,Uz* ) and (Sxy* ,Sxz* , . . . ,Szz* ) are the multiply-
transformed components of, respectively, the displacement ve
and the stress tensor. We should also notice that solution~12! is
bounded atz→` appropriately satisfying thus the finiteness co
ditions, whereas such constraints need not be imposed on sol
~13!. In the above equations, the yet unknownX1 , X2 , . . . ,X12
are arbitrary functions of (q,w,p) which have to be determine
from the boundary conditions in each specific problem. Also,
following definitions are employed in~12! and ~13!:

a65~m6
2 2q22w2!1/2, (14a)

b5~m22q22w2!1/2 (14b)

m65
1

2 F S 11
1

~hp!1/2D 2

1
«

hpG 1/2

6
1

2 F S 12
1

~hp!1/2D 2

1
«

hpG 1/2

,

(15)

M 65m6
2 21, (16)

T52b22m25m222~q21w2!, (17a)

T652a6
2 2m2 (17b)

Tq65T612q2, (18a)

Tw65T612w2 (18b)

Tq5T1q2, (19a)

Tw5T1w2. (19b)

Further, a new complex variablez is defined throughz25q2

1w2 allowing the placement of necessarybranch cutsfor the
functions a6[a6(z,p)5(m6

2 2z2)1/2 and b[b(z)5(m2

2z2)1/2. These restrictions in thez-plane are in accord with the
chosen solution forms in~12! and~13!. For the representative cas
of b~z!, Fig. 2 depicts these branch cuts~the cuts are situated
outwards with respect to the originz50—a similar situation exists
for the functionsa6(z,p)). In this way, it is Rea1>0, Rea2

>0, and Reb>0 in the cut plane. Also, we record here the tw
possible arrangements ofm1 , m2 , and m with respect to their
magnitude. This information in conjunction with the placement
132 Õ Vol. 72, JANUARY 2005
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branch cuts will enable the proper definition of the regions
analyticity of various functions appearing in the analysis.

The quantitiesm1 andm2 arep-dependent~recall thatp is real
and non-negative!, whereasm is constant. From their definitions
the following inequalities follow:

m2,m1,m for hp.
m2~11«!21

m2~m221!
, (20a)

m2,m,m1 for hp,
m2~11«!21

m2~m221!
. (20b)

In addition, useful approximations for the quantitiesm1 and
m2 can be obtained from~15! by takings→(1/p), whens is very
small or very large, and by performing series expansion and ke
ing the dominant terms~see e.g., Carrier et al.@38# for similar
procedures!. The following approximate forms considerably sim
plify unilateral Laplace transform inversions

m1>1 and m2>
1

~hp!1/2
for

s

h
!1, (21a)

m1>S 11«

hp D 1/2

and m2>
1

~11«!1/2
for

s

h
@1.

(21b)

Notice that validity of~20a! or ~20b! is necessary but not suffi
cient for, respectively, the validity of~21a! or ~21b!.

Finally, it turns out that the case in~20a! is rather impractical
since it corresponds to anextremely smallinitial time interval of
the process, which for most conducting materials ist
,O(10213 s). This is found by takings→(1/p) for very smalls
~i.e., for very small time!. In the present study, information i
needed generally for longer times so we shall focus interest o
on the case~20b! and employ~21b! appropriately. Any case with
say, (s/h)>100 leads to a reasonable approximation form6 . The
results in~21b! are indeed robust because the normalized time
scaled by an extremely small length~the thermoelastic character
istic length!.

Now, transforming via ~10a! and ~11a! the continuity/
discontinuity conditions~6! and the boundary conditions~7!, in
view also of the general transformed solutions~12! and~13!, leads
to a linear algebraic system of 12 equations in the 12 unkno
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X1 , X2 , . . . ,X12. Obviously, an exact~i.e., symbolicaland not
numerical! solution to the system is sought here and this w
made possible by using MATHEMATICA™. The expressions f
X1 , X2 , . . . ,X12 are given in Appendix A.

Having available the solution (X1 ,X2 , . . . ,X12) and therefore,
by ~12! and ~13!, the general expressions for the double tra
formed temperature, displacements and stresses allows dete
ing the field quantities at any point of the original space and at
time instant through successiveinversionsof the type~11b! and
~10b!. However, we emphasize at this point that a treatment
ploying the Cagniard–deHoop technique@9,36,39# to accomplish
the transform inversions in an exact manner seems to be im
sible due to the very complicated multiple transformed solution
the present problem. In the simpler buried-source problems
non-thermal type such a difficulty was not met and the Cagnia
deHoop technique had successfully been applied~see e.g., Pekeris
@35#, Garvin@40#, and Payton@41#!. Indeed, we note that, after th
appropriate contour integration involved in the Cagniard–deH
technique, the integrand in the semi-infinite branch-line integ
tion is still p-dependent and, therefore, the unilateral transfo
inversion is impossible to be carried out exactly through the s
dard inspection procedure. For more details on this difficulty,
refer to the work by Georgiadis et al.@29#, who treated the coun
terpart 2D problem and employed anapproximationat a similar
point of the analysis. Their asymptotic approach is, however,
ferent than that employed here~see Sec. 4 below!.

We close the presentation of the basic integral-transform an
sis by noticing that if, instead ofd(t), a general dependence from
time of the thermal loading in~4! is to be considered~denoted by
an arbitrary functiong(t)), then the quantityQ in the equations of
Appendix A has to be replaced by (Q/V1)•G(p), whereG(p)
denotes the unilateral Laplace transform of the funct
g((s/V1)[t).

4 Transformed Solution and Asymptotic Consider-
ations

In what follows, we focus attention on the evaluation of t
vertical displacement at the surfaceuz(x,y,z52H,t). In view of
the previous results, the multiply transformed displacem
Uz* (q,w,z52H,p)[Uz* (z,z52H,p) is given by

Uz* ~z,z52H,p!5kQV1

T

p2

a1e2a2pH2a2e2a1pH

D~z,p!
, (22)

where the functionsa1(z,p) anda2(z,p), and the complex vari-
ablez have been defined before. Also, from~17a! and the defini-
tion of z, it is T5m222z2. One may notice that the very defin
tion of the variablez and the form ofUz* in ~22! exhibit the

Fig. 2 Branch cuts for the function b„z…Æ„m 2Àz2
…

1Õ2 in the
complex z-plane. Similar branch cuts, emanating from the
points mÁ„p …, are also introduced for the functions aÁ„z…
Æ„mÁ

2 Àz2
…

1Õ2.
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axisymmetricnature of the problem, a fact that will become ev
dent in the ensuing procedure. Finally, of central importance to
solution for thesurfacedisturbances is the functionD, which is
associated with waves of Rayleigh type. This is given as

D[D~z,p!5a2M 2R12a1M 1R2 , (23)

where the functions

R1[R1~z,p!54z2a1b1T2, (24a)

R2[R2~z,p!54z2a2b1T2, (24b)

can be identified as thethermoelasticcounterparts of the nonther
mal pure-elastic Rayleigh function~transformed function!, which
is given asRelastic54z2ab1T2, with a[a(z)5(12z2)1/2 and
b[b~z! given as before~see e.g., Achenbach@9#, Miklowitz @36#!.
Contrary to the latter case,R1 and R2 exhibit a p-dependence
showing therefore that the thermoelastic Rayleigh waves in
physical space/time domain are dispersive. However, it w
shown in the study of Georgiadis, Brock, and Rigatos@28# that
generally the thermoelastic Rayleigh-wave velocity varies o
slightly with time, a result explained in view of the fact that whi
there is a strong shear contribution~which remains unaffected by
thermal effects! to the Rayleigh waves, the dilatational part
them is very weak~see e.g., Viktorov@42#!. We will take advan-
tage of this result immediately initiating the asymptotic consid
ations to obtainuz(x,y,z52H,t).

It will be shown, indeed, that the functionD can be expressed
in terms of anapproximateRayleigh function that exhibitsno
dispersion~i.e., this Rayleigh function does not contain the tim
transform variablep! but still depends on the coupling constant«.
The approximate form of the functionD itself will exhibit depen-
dence upon the thermoelastic constants («,h) and the transform
variables (z,p). First, one may write from~23! and ~24! the fol-
lowing expression for the function (D/a1):

D

a1
54z2a2bM 1S M 2

M 1
21D1T2M 1S a2M 2

a1M 1
21D . (25)

Now, the terms (M 2 /M 1) and@(a2M 2)/(a1M 1)# in the above
expression, in view of~14a! and ~16!, are written as

M 2

M 1
5

m2
2 21

m1
2 21

(26a)

and

a2M 2

a1M 1
5

~m2
2 2z2!1/2

~m1
2 2z2!1/2

m2
2 21

m1
2 21

. (26b)

Further, when (s/h)@1, use of the expressions form1 andm2 in
either ~15! or ~21b! lead to the results

UM 2

M 1
U!1 (27a)

and

Ua2M 2

a1M 1
U!1. (27b)

To give a numerical estimate, we obtain values of the ra
@(a2M 2)/(a1M 1)# for different p’s ~recall thatp is the time
Laplace-transform variable!. The constants of a model materia
utilized in the present study to derive numerical results~see Sec. 6
below! are employed. These constants are«50.011, h51.864
31029 m, and Poisson’s ration50.3 @which gives a ratio of wave
velocitiesm[(V1 /V2)51.8708]. Also, we takez5zR , which is
the value corresponding to the arrival of the Raylei
wavefront—see Eq.~36! below and which for the model materia
is calculated to bezR52.0162. Then, the following values of th
ratio in question are obtained:
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@~a2M 2!/~a1M 1!#521.73840310211 for p5102,

@~a2M 2!/~a1M 1!#521.51502310215 for p5100,

@~a2M 2!/~a1M 1!#524.79091310223 for p51025,

which clearly show that for increasing time~i.e., decreasingp! the
ratio rapidly diminishes and can practically be taken equal to z
The same applies to the ratio (M 2 /M 1) as well.

Then,~27! allow writing ~25! under the following approximate
form:

D

a1
52M 1~4z2a2b1T2!, (28)

and, sincem1@1 for (s/h)@1, one may further obtain in view o
~16!

D

a1
52m1

2 ~4z2a2b1T2!, (29)

where in the last two expressions and, also, in what follows
quantitiesm1 andm2 assume the forms@taken from~21b!#

m15S 11«

hp D 1/2

, (30a)

m25
1

~11«!1/2
. (30b)

Finally, in view of the above, Eq.~29! becomes

D

a1
52

11«

hp F ~m222z2!214z2S 1

11«
2z2D 1/2

~m22z2!1/2G
[2

11«

hp
Rtherm, (31)

where the symbol[ means equality by definition.
In the above result, the approximate Rayleigh functionRtherm

exhibits no dispersion~i.e., it does not depend uponp! but de-
pends upon the coupling constant«. All the above approximations
will properly be utilized below.

The next step is to determine the zeros of the function (D/a1),
which is given in~31!. This information will be utilized later in
the inversion procedure. By invoking the principle of the arg
ment~see e.g., Carrier et al.@38#, and Ablowitz and Fokas@43#!, it
can be shown that the two real zerosz56zR of the function
(D/a1) are the only zeros of this function in the entirez-plane.
These correspond to axisymmetric thermoelastic Rayleigh wa
fronts propagating with a velocityVR5V1 /zR along the traction-
free half-space surface. Working with realp such that p.0
@which, of course, is necessary for the convergence of the inte
defining the unilateral Laplace transform in Eq.~10a!# in the case
of interestm2,m,m1 @cf. Eq. ~20b!#, we can obtain a closed
form expression for the rootzR by utilizing factorization opera-
tions of the kind encountered in solving Wiener–Hopf equatio
~see e.g., Achenbach@9#, Carrier et al.@38#, and Ablowitz and
Fokas@43#!. The function (D/a1) is analytic in thez-plane cut
along the interval (m2,uRe(z)u,m, Im~z!50! and behaves like
2m1

2 (m22m2
2 )z2 $with m15@(11«)/hp#1/2 and m25(1

1«)21/2% as uzu→`. Consequently, an auxiliary functionS(z) is
introduced through the definition

S[
~D/a1!

2m1
2 ~m22m2

2 !~z22zR
2 !

, (32)

which possesses the desired asymptotic propertyS(z)→1 as
uzu→` and, additionally, has neither zeros nor poles in thez-plane.
The only singularities ofS are the branch pointsz56m2 andz
56m @which are shared with the original function (D/a1)], so it
is single-valued in thez-plane cut along the interval (m2

,uRe(z)u,m, Im~z!50!. Then, the standard technique of facto
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ization through the use of Cauchy’s integral theorem~see e.g.,
Achenbach@9#, Carrier et al.@38#, and Ablowitz and Fokas@43#!
allows writing

S5S1
•S2, (33)

whereS1 andS2 are analytic functions in the overlapping hal
planes Re(z).2m2 and Re(z),m2 , respectively. These are give
by

S6~z!5expF2
1

p E
m2

m

arctanS 4v2ua2uubu

T2 D dv

v6zG , (34)

where

a2[a2~v!5~m2
2 2v2!1/2, (35a)

b[b~v!5~m22v2!1/2. (35b)

Further, one may observe from~34! that S1(z50)5S2(z
50) and, therefore,S(z50)5@S1(z50)#2. Now, we exploit the
latter observation by takingz50 and also take into account~32!–
~34! to obtain the followingexplicit formula for the root of the
function (D/a1). This root defines the speed of thermoelas
Rayleigh waves

zR5
m2

@2~m22m2
2 !#1/2

•S1~z50!
. (36)

It is noticed, finally, that the inequalitym,zR always holds.

5 Inversion Procedure and Solution in the Physical
SpaceÕTime

In view of the definition~11b!, one can write the unilatera
Laplace transformed vertical displacement in the form

Uz~x,y,z52H,p!5S p

2p i D
2E

2 i`

1 i`E
2 i`

1 i`

Uz* ~q,w,z52H,p!

•epqxepwydqdw, (37)

whereUz* is given in ~22!. Next, axisymmetry~circular symme-
try! of the problem will become clear and be exploited. To th
end, we setq5 is and w5 i t so thatz2[q21w252(s21t2)
52r2, and further consider the polar coordinates (r ,q) and
~r,f! defined through the relationsx1 iy5reiq and s1 i t
5reif. The first set of polar coordinates refers to the physi
plane (x,y), whereas the second set to the transform plane~s,t!.
Considering also the casex>0 andy>0 ~which, as will become
clear soon, does not impose any restriction to the solution!, it
should be Im~s!>0 and Im~t!>0, whereasr[(s21t2)1/2>0.

Now, in view of ~22!, ~31! and the newly introduced pola
coordinates, we obtain

Uz~r ,u,z52H,p!

5
kQV1

4p2 E
0

`S E
0

2p a1Te2a2Hp2a2Te2a1Hp

D~r,p!

3exp~2 iprr•cos~f2q!!df D rdr, (38)

and further, by observing that the inner integral in~38! is actually
independent on the starting limit of the integration interval, w
eliminate the variableq from the problem and get
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Uz~r ,u,z52H,p!

5
kQV1

4p2 E
0

`S a1Te2a2Hp2a2Te2a1Hp

D~r,p!

3E
0

2p

exp~2 iprr•cosf!df D rdr

5
kQV1

2p E
0

` a1Te2a2Hp2a2Te2a1Hp

D~r,p!
J0~prr!•rdr.

(39)

In the above relation, we havea65(m6
2 1r2)1/2, b5(m2

1r2)1/2, T5m212r2, and

D~r,p!52
11«

hp S 11«

hp
1r2D 1/2F ~m212r2!224r2S 1

11«

1r2D 1/2

~m21r2!1/2G52
11«

hp S 11«

hp
1r2D 1/2

Rtherm,

(40)

while the following standard result for the Bessel functionJ0( )
was used~see e.g., Watson@44#!

1

2p E
0

2p

exp~2 iprr•cosf!df5J0~prr!. (41)

One may observe that the last integral in~39! is but aninverse
Hankel transform~see e.g., Bracewell@45#!. This confirms the
circular symmetry of the problem.

Next, another change of variable defined by settingv5prr
leads to the following expression for a normalized expression
the unilateral Laplace-transformed vertical displacement at
surface

Uz
norm~r ,z52H,p!52

1

2~m22m2
2 !r 2

3E
0

` S e2a2Hp2
a2

a1
e2a1HpDT

m1
2 S v2

p2r 2
1zR

2 D •SS i
v

pr D
3

v

p2
J0~v!dv, (42)

whereUz
norm5(2pUz)/(kQV1), and the symbolsa1 , a2 , andT

take the following forms@which, of course, follow from the defi-
nitions in ~14a! and ~17a! and the several changes of variable
the previous analysis#

a65S m6
2 1

v2

p2r 2D 1/2

, T5m212
v2

p2r 2
. (43a,b)

Finally, we consider the inverse unilateral Laplace transform
~10b! and, further, interchange the latter integration and the in
gration in ~42!. This is permissible since the integral in~10b!
convergesuniformly within its region of convergence in the com
plex p-plane @37#. Cf. Miklowitz @36# and Markenscoff and Ni
@46#, e.g., for similar interchanges of the integration order in m
tiple transform inversions. In this way, we obtain the normaliz
vertical displacement at the surface,uz

norm5(2puz)/(kQV1), in
the physical space/time
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uz
norm~r ,z52H,s!

52
1

4p i

1

~m22m2
2 !zR

2r 2

•E
0

`S E
c2 i`

c1 i` S e2a2Hp2
a2

a1
e2a1HpDT

m1
2 ~p2 ipR!~p1 ipR!•SS i

v

pr D
epsdpD

3vJ0~v!dv,
(44)

where

a15S 11«

h D 1/2 1

p
g1 , (45a)

a25
1

~11«!1/2p
g2 , (45b)

g1[g1~p,v!5S p1
h

~11«!r 2
v2D 1/2

, (46a)

g2[g2~p,v!5S p21
~11«!

r 2
v2D 1/2

, (46b)

and

pR5
v

zRr
. (47)

Notice that the branch cuts depicted in Fig. 3 should be int
duced to render the functionsg1 andg2 single-valued. Also, the
constantc in the inner integral of~44! is taken slightly greater
than zero since allsingularities~poles and branch points! of the
corresponding integrand are situated in the plane Re(p)<0. Spe-
cifically, these singularities include the poles at6 ipR , the branch
point 2hv2((11«)r 2)21 for the functiong1 , and the branch
points6 iv(m2r )21 for the functiong2 ~see Fig. 3!.

With the above results available, we now focus interest on
thermoelastic Rayleigh waves. As is well-known~see e.g., Chao
et al. @47#, Achenbach@9#, and Miklowitz @36#!, analytically the
Rayleigh-wave effects correspond to the contributions from c
tain poles in the integrands of the inversion integrals. Indeed
our previous analysis we were able to make explicit the app
ance of Rayleigh-wave poles@cf. Eq. ~44!#.

We proceed now to evaluate the pole contribution in~44! ob-
taining therefore an approximate solution for the thermoela
Rayleigh-wave signals along the half-space surface. Care sh
be exercised, however, in evaluating the functionsa1(p,v) and
a2(p,v) at the points6 ipR , which lie along the Bromwich path
(c2 i`,c1 i`) ~see Fig. 3!. The following results are obtained:

a157 i zR,R
1/2 exp~6 iu/2!, (48a)

a257 i uaR2u at p56 ipR , (48b)

where

aR25~m2
2 2zR

2 !1/2, (49a)

,R5~11tan2 u!1/2, (49b)

tanu5
~11«!r

hzRv
. (49c)

The symbolu in the above relations~denoting an angle in Fig. 3!
should not be confused with the symbol used earlier to denote
change in temperature. Then,~44! provides the following expres-
sion for the disturbance due to the thermoelastic Rayleigh wa
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uz
norm~r ,z52H,s!52

L

r 2 E
0

`

f ~r ,H,v,s!•v•J0~v!dv,

(50)

where

f ~r ,H,v,s!5expS 2
vuaR2uH

zRr D cosS vs

zRr D

2

uaR2uexpS 2
v

r
,R

1/2H cos~u/2! D
zR,R

1/2

3cosF vs

zRr
2

u

2
2S v

r
,R

1/2H sin~u/2! D G , (51)

L5
m222zR

2

4S 11«

h D •S~zR!•~m22m2
2 !zR

2

. (52)

Further, as the analysis in Appendix B shows, the second t
of f (r ,H,v,s) in ~51! is negligible with respect to the first term
Omitting the small term, the normalized vertical displacement
comes

uz
norm~r ,z52H,s!52

L

r 2 E
0

`

expS 2
vuaR2uH

zRr D
3cosS vs

zRr D J0~v!vdv. (53)

Finally, evaluation of the integral in~53! ~Watson@44#! yields
the following closed-formexpression for the normalized vertica
displacement at the surface due to Rayleigh waves generated
buried thermal source in a half-space

uz
norm~r ,z52H,s!52

L

r 2
ReF uaR2uH

zRr
2 i

s

zRr

F11S uaR2uH
zRr

2 i
s

zRr D
2G3/2G ,

(54)

wherer is the radial distance from the epicenter, Re@ # denotes the
real part of a complex function, and the quantitiesL, aR2 andzR

depend on the material constants. It is also of notice thatuz
norm

depends on the ratio (H/r ).

Fig. 3 Branch cuts for the functions g¿„p ,v… and gÀ„p ,v…,
and the Bromwich path in the complex p -plane
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6 Numerical Results, Further Asymptotic Results, and
Concluding Remarks

Numerical results from the previous expression are obtai
easily through the use of MATHEMATICA™ for both numerica
integrations and symbolic manipulations involved. A model ma
rial was considered to derive the results shown in the graph
Figs. 4 and 5. It is characterized by the following constants: c
pling constant«50.011, thermoelastic characteristic lengthh
51.86431029 m, and Poisson’s ration50.3 @this value gives a
ratio of wave velocitiesm[(V1 /V2)51.8708]. The graphs
present the variation of the normalized vertical displacem
uz

norm[2puz(kQV1)21 with the normalized time V1(r 2

1H2)21/2t. In Fig. 4, the caser 510H is considered, whereas in
Fig. 5, both casesr 540H and r 5160H are presented. In al
cases,H5100 m is taken but a numerical inspection showed t
the shape of pulse does not change appreciably if normalizatio
utilized ~the displacement itself becomes larger for smal
depths!.

The graphs show the generation of the thermoelastic Rayle
wave at the half-space surface. We notice that as the distanc
the observation station from the epicenter increases, the shap
the Rayleigh disturbance appears to become sharper becau
the contraction of the real time scale with the increase of
length (r 21H2)1/2. Also, as the observation station moves aw
from the epicenter,decayin amplitude occurs after a certain poin
This attenuation is due to the 3D geometry of the problem~see for
analogous nonthermal situations in Pekeris and Lifson@11#, and
Achenbach@9#!. On the contrary, the latter result is not encou
tered in the respective 2D problem of a nonthermal buried dila
tional source treated by Garvin@10#, where once the Rayleigh
pulse takes its shape, it is not decaying.

In the sequel, we further investigate the behavior ofuz
norm(r ,z

52H,s) at large distances from the epicenter, i.e., forr @H. In
this case, it is (r 21H2)1/2>r and the normalized vertical dis
placement takes the form

uz
norm~r @H,z52H,s!>2L ReF X2 iY r

~r 21X22Y2r 22 i2XYr!3/2G ,

(55)

whereX5uaR2u•H/zR and Y5VRt/r . Taking r @H leads to the
conclusion thatr @X and then~55! takes the even simpler form

Fig. 4 The variation of the normalized vertical displacement
u z

normÆ2pu z„kQV1…
À1 with the normalized time s „r 2¿H2

…

À1Õ2

indicating the arrival of a thermoelastic Rayleigh wave at the
station rÄ10H. The constants have the values «Ä0.011, h
Ä1.864Ã10À9 m, nÄ0.3, and HÄ100 m.
Transactions of the ASME
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uz
norm~r @H,z52H,s!>2L ReF X2 iY r

~r 22Y2r 22 i2XYr!3/2G .

(56)

In addition, we can investigate the fieldnear the Rayleigh
wavefront. To this end, the transformationxR5VRt2r is used in
~56!, wherexR denotes the distance from the Rayleigh wavefro
providing

uz
norm~r @H,z52H,s!

>2
L

r 1/2
ReF X

r
2 i S xR

r
11D

F2xRS xR

r
12D2 i2XS xR

r
11D G3/2G .

(57)

Now, by takingr @X andr @xR , we get the following expression
for the vertical displacement far from the epicenter and, at
same time, very close to the Rayleigh wavefront

uz
norm~r @H,r @xR ,z52H,s!>2

L

~8r !1/2
ReF 2 i

~2xR2 iX !3/2G .

(58)

The above relation reveals that the displacement varies with
distance from the epicenter asuz

norm(r @H,r @xR ,z52H,s)
'r 21/2, while in the case of a source that is situated very close
the surface~i.e., whenxR@X) the displacement varies with th
distance from the Rayleigh wavefront asuz

norm(r @H,r @xR ,
z52H,s)'xR

23/2. The first of the aforementioned results show
that the surface effects attenuate with distance asr 21/2, the physi-
cal explanation of which is that the surface waves in our
problem are essentially cylindrical waves~see Ref.@9# for analo-
gous situations in classical elastodynamics!.

In conclusion, the 3D transient dynamic problem of a th
moelastic half-space under thermal buried or surface loadin
treated in this paper. The loading has the form of a concentr
heat flux applied impulsively and Biot’s fully coupled thermoela
ticity is utilized. The problem has relevance to situations invo
ing heat generation due to, e.g., laser action~impulsive electro-
magnetic radiation! on a surface target, underground nucle
activity, and friction developed during underground fault motio
Here, we were particularly interested in determining inclosed

Fig. 5 The variation of the normalized vertical displacement
u z

normÆ2pu z„kQV1…
À1 with the normalized time s „r 2¿H2

…

À1Õ2

indicating the arrival of a thermoelastic Rayleigh wave at the
stations rÄ40 H and rÄ160 H. The constants have the values
«Ä0.011, hÄ1.864Ã10À9 m, nÄ0.3, and HÄ100 m.
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form the disturbance associated with the propagation of the t
moelastic Rayleigh waves. This was made possible by using m
tiple Laplace transforms, asymptotics, complex-variable the
and certain results for Bessel functions. The dependence of
normal displacement associated with the Rayleigh wave upon
distance from the source epicenter and the distance from
wavefront was also determined.

Appendix A
The solution of the 12312 algebraic system of Sec. 3 reads

X152kQV1e22a2HpS 2~e2a2Hp2e22~a12a2!Hp!a2M 2TE

1S e2a2Hp1e22~a12a2!Hp22
M 2

M 1
e2~a12a2!HpDa1M 1TE

1~e2a2Hp1e22~a12a2!Hp!D D Y ~BA!, (A1)

X25kQV1S 2a2e2~a113a2!HpF22e2a2Hp1~e~a11a2!Hp

1e~a113a2!Hp!
M 2

M 1
G•M 1TE1e22a2Hp~~21

1e2a2Hp!M 1a1TE1~11e2a2Hp!D ! D Y ~CA!, (A2)

X3522kQV1bqTe2~a11a21b!Hp~a1ea1Hp2a2ea2Hp!~Tq

1w2!/~FA!, (A3)

X452kQV1bwTe2~a11a21b!Hp~a1ea1Hp2a2ea2Hp!~Tw

1q2!/~FA!, (A4)

X552
kQV1

2a1m2p~M 12M 2!
52

kQV1

B
, (A5)

X652kQV1e2~2a11a2!Hp$a2ea2HpM 2TE1a1~~ea2HpM 1

22ea1HpM 2!TE!1ea2HpD/~BA!%, (A6)

X75
kQV1

C
, (A7)

X85kQV1e2~a112a2!Hp~a2~2ea2HpM 12ea1HpM 2!TE

1a1ea1Hp~M 1T~2E!!1ea1HpD !/~CA!, (A8)

X95X1050, (A9)

X11522kQV1bqTe2~a11b!Hp~2a21a1e~a12a2!Hp!~Tq

1w2!/~FA!, (A10)

X1252kQV1bwTe2~a11a21b!Hp~2a1ea1Hp1a2ea2Hp!~Tw

1q2!/~FA!, (A11)

where

A5~a1M 12a2M 2!T~TqTw2q2w2!14a1a2b~M 12M 2!

3~q2Tq12q2w21w2Tw!, (A12)

B52a1m2~M 12M 2!p, (A13)

C52a2m2~M 12M 2!p, (A14)

D54a1a2b~M 12M 2!~q2Tq12q2w21w2Tw!, (A15)

E5TqTw2q2w2, (A16)

F5m2p. (A17)
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Appendix B
Considering the ratioR of the fluctuation amplitudes of the firs

and second terms in~51!, we obtain

R5
zRl R

1/2

uaR2u
expS v

r
HF l R

1/2 cos~u/2!2
uaR2u

zR
G D . (B1)

We will examine this ratio and conclude thatR takes on very
large values in the entire range ofv provided that the distance
from the epicenterr is much greater than the thermoelastic ch
acteristic lengthh. The lengthh is very smallfor most materials
@h5O(10210 m) as mentioned in the main text of the paper# and,
therefore, the requirement (r /h)@1 does not pose any seriou
limitation. Similarly to the case of Eq.~21b!, any choice with, say,
(r /h)>100 leads to a reasonable approximation. To cover
entire range ofv-values, we discern the following possibilities:

~1! Considering (v/r )→0, Eqs. ~49c! and ~49b! provide
the results lim(v/r )→0 tanu5`, lim(v/r )→0 ,R

1/25` and
lim(v/r )→0 cos(u/2)5221/2. Then, we find that
lim(v/r )→0((v/r )H@ l R

1/2 cos(u/2)2(uaR2u/zR)#)50 and
lim(v/r )→0 R5`.

~2! Considering (v/r )→`, Eqs. ~49c! and ~49b! provide
the results lim(v/r )→` tanu50, lim(v/r )→` ,R

1/251 and
lim(v/r )→` cos(u/2)51. Also, from ~36! and ~49a! we may infer
that (uaR2u/zR),1. Then, working as in the above case, we fi
that lim(v/r )→` R5`.

~3! Consideringv5O(r ), Eqs.~49c! and~49b! lead us to con-
clude that tanu and,R

1/2 takes on very large values. Consequen
it is cos(u/2)>221/2 and by~B1! it is seen thatR takes on very
large values in this case too.

Finally, we note that a numerical evaluation of the two terms
~51! showed that the amplitude of the first term is, at minimu
about 20 orders of magnitude greater than the amplitude of
second term.
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Coupled Plastic Wave
Propagation and Column Buckling
The plastic buckling of columns is explored in a regime where plastic wave propag
and lateral buckling are nonlinearly coupled. Underlying the work is the motivation
understand and quantify the dynamic crushing resistance of truss cores of all-metal
wich plates where each truss member is a clamped column. Members are typically
stocky such that they buckle plastically and their load carrying capacity decreases g
ally as they buckle, even at slow loading rates. In the range of elevated loading rat
interest here, the columns are significantly stabilized by lateral inertia, resisting lat
motion and delaying buckling and loss of load carrying capacity to relatively large o
all plastic strains. The time scale associated with dynamic axial behavior, wherein d
mation spreads along the column as a plastic wave, is comparable to the time
associated with lateral buckling such that the two phenomena are coupled. Severa
evant problems are analyzed using a combination of analytical and numerical proced
Material strain-rate dependence is also taken into account. Detailed finite element a
ses are performed for axially loaded columns with initial imperfections, as well as
inclined columns in a truss core of a sandwich plate, with the aim of determining
resistance of the column to deformation as dependent on the loading rate and the re
material and geometric parameters. In the range of loading rates of interest, dyn
effects result in substantial increases in the reaction forces exerted by core memb
the faces of the sandwich plate with significant elevation in energy absorption.
@DOI: 10.1115/1.1825437#
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1 Introduction
Pursued extensively for over 50 years, the dynamic axial lo

ing of columns is still an important subject because of its r
evance to a wide range of engineering applications. Much in
esting mechanics underlies qualitative and quantita
understanding of dynamic column buckling, and the subject
not been without controversy. Here, columnar truss member
all metal truss core sandwich plates motivate the study as t
sandwich plates have the potential for replacing solid plate c
struction for a range of applications including ship hulls, armo
vehicles, and chemical plants@1# where impulsive loads are o
concern. For applications involving high intensity dynamic crus
ing loads, cores can experience nominal strain rates greater
103 s21. Column members in truss cores are usually sufficien
stocky such that buckling occurs well into the plastic range, es
cially when the columns are stabilized by lateral inertia at eleva
loading rates. The basic cellular unit of a tetragonal truss cor
shown in Fig. 1. Although the columns in the core are inclin
with respect to the crushing direction, they nevertheless behav
a manner similar to an axially compressed column due to the
that their end displacements are constrained by the face shee
the direction parallel to the sheets. Of primary interest is the
sistance of the columns to deformation, the forces they exer
the face sheets during dynamic crushing, and the energy they
sorb. Most of the emphasis in this paper will be on axially co
pressed columns, but the direct relevance of results for axi
compressed columns to inclined columns will be demonstrate
the second half of the paper.

There is a large literature on dynamic plastic buckling of c
umns@2–5# and perhaps a rationale for further study is warrant

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, April 21, 200
final revision, May 3, 2004. Editor: R. M. McMeeking. Discussion on the pa
should be addressed to the Editor, Professor Robert M. McMeeking, Journ
Applied Mechanics, Department of Mechanical and Environmental Engineer
University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and wi
accepted until four months after final publication in the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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In the applications motivating this study, a representative colu
would be relatively stocky, typically 0.1 m in length, and subje
to a suddenly imposed velocity on the order of 100 ms21 at one
end corresponding to an overall strain rate of 103 s21. The load-
ing rates of interest are such that the initial stages of the defor
tion are dominated by the propagation of a plastic axial wa
down the column. Buckling is resisted by lateral inertia. Over
compressive strains of 20% or more can be achieved before
preciable buckling deflections occur. Buckling deflections, wh
depend on initial imperfection amplitudes, develop in the la
stages of the crushing. Thus, during the initial stage of deform
tion, the forces exerted on the face sheets are similar to th
exerted by a straight rod undergoing dynamic axial deformati
As buckling deformations develop, the forces depend in a com
cated way on coupled plastic wave propagation and lateral bu
ling.

The early study of Abrahamson and Goodier@3# on column
impact has aspects in common with the problem and loading r
of interest here. Specifically, their experiments involved imp
velocities in the range of interest here, and overall compres
strains on the order of 20% due primarily to axial straining we
observed. However, the primary motivation underlying the wo
in @3# was buckling and not the forces exerted during the impa
In addition, the theoretical approach of these authors was to
couple the axial deformation from the buckling deformation
assuming the axial stress state was established prior to the gr
of buckling deformations. Calladine and English@5# also decou-
pled axial deformations from bucking deformations in their stu
of the various influences of inertia on dynamic buckling. As w
be seen in the body of the paper, this decoupling is justified si
their work focused on a range of relatively low impact velocitie
the maximum impact velocity in their experiments did not exce
10 ms21. These authors make the important observation that
ertial stabilization effects scale differently with column size th
material strain-rate effects, a point that will be discussed in
present paper as well.

The problem that couples plastic wave propagation and lat
buckling has only recently received attention@6–8#, with analyti-
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cal and numerical approaches with primary emphasis on
buckle shape. Here, the coupled nonlinear problem is analy
using a numerical approach, accounting for both imperfecti
and material strain rate dependence, with emphasis on the fo
required to deform the column and the energy dissipated by
column. However, to shed light on the initial stages of the def
mation history, the next section of the paper presents results
the propagation of plastic axial waves down a rod following t
classic treatments of von Karman and Duwez@9# and Taylor@10#.
An important dimensionless loading rate parameter tied to
dynamic effects emerges from this analysis. The fully coup
problem is analyzed for a wide range of loading rates utilizing
commercially available codes ABAQUS/Standard and ABAQU
Explicit. Reaction forces and energy dissipation are determine
a function of geometric, material and loading parameters. With
aid of numerical analysis, it is also demonstrated that the for
exerted on the face sheets by inclined columns in a truss core
be well approximated using results for the axially compres
column.

2 Uniaxial Waves in a Rod

2.1 Wave Equation for Rate-Independent Material. Tay-
lor @10# and von Karman and Duwez@9# considered a one
dimensional plastic wave propagating down a rod. Taylor’s
proach was conducted within a finite strain setting, and a sim
approach will be followed here, but with a different choice
variables.~Several authors have remarked to the effect that
Karman and Duwez also use a finite strain approach in t
analysis, but their treatment of finite strain aspects is not nearl
transparent as that of Taylor.! Consider a semi-infinite bar extend
ing from x50 to x5` at t50, with a material point atx at t
50 located atX5x1u(x,t) at t. The logarithmic~true! strain is
related to the displacement gradient by«5 ln(11]u/]x). Analyti-
cal solutions are restricted to rods made of rate-independent
terials such that the true stress~force per current area! can be
regarded as a function of true strain,s~«!. Material rate-
dependence is taken into account in Sec. 2.3. In this subse
and the next, attention is limited to problems with monoton
straining such as a compression wave with no elastic unload
Following the earlier work of Taylor and von Karman and Duwe
the rod is assumed to be incompressible and the effect of ra
inertia is neglected. WithA as the cross-sectional area of the r
in the deformed state andF5sA as the force carried by the rod
equilibrium requires]F/]X5rA]2u/]t2, wherer is the density
of the material. Incompressibility impliesdA/d«52A. When ex-
pressed in terms ofu(x,t), the equilibrium equation can be writ
ten as

]2u

]x2 5
1

c~«!2

]2u

]t2 (1)

Fig. 1 Tetragonal Truss Core
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where the strain-dependent wave speed is

c~«!5AEt2s

r
e2« (2)

andEt5ds/d« is the tangent modulus of the true stress-log str
curve. The wave speed,Et , s, and« all depend onu through the
expressions listed above.

Three limiting cases of~1! and~2! are worth identifying. When
yielding occurs with small strains andEt@usu, c5AEt /r, which
is often referred to as the plastic wave speed. The finite st
formulation gives c5AsY /r for a plastic compression wav
propagating along an elastic-perfectly plastic rod (Et50) where
sY is the yield stress. The wave speed of a tensile wave
proaches zero whens5Et , corresponding to the Considere co
dition for necking localization.

2.2 Compression Wave in an Infinitely Long Bar Subject
to Constant Velocity at Its End. The solution produced inde
pendently during World War II by von Karman and Duwez@9# and
Taylor @10# for uniaxial impact loading of a long rod provide
insight to the column problems of interest in this paper. Spec
cally, at the higher rates of loading of interest, the column rema
nearly straight in the early stage of deformation and behavio
dominated by an axial plastic compression wave.

For the case of a semi-infinitely long bar (0<x,`) at rest at
t50 and subject to a uniform velocity,u̇(0,t)5V.0, at its left
end, a similarity solution to~2! exists@9,10# with dependence on a
single dimensionless variablej5x/(c0t) where c05c(0)
5AE/r is the elastic wave speed withE as Young’s modulus. The
solution is simple but highly nonlinear and implicit. Only th
details of interest will be presented here. The solution depend
the relation between« and j defined byc(«)/c05j and the in-
verse of this relation denoted by«5g(j). The regimej.1 lies
ahead of the disturbance; the regimejU,j,1 has the strain de-
pendence«5g(j); and the regime 0,j,jU has uniform strain
with «[«U5g(jU) and uniform velocityu̇5V. The front of the
section of the rod having uniform strain«U and velocityV propa-
gates down the rod with speedc(«U). The transition valuejU
depends on the imposed velocityV according to the highly im-
plicit equation

~12eg(jU)!jU1E
jU

1

~12eg(j)!dj5
V

c0
(3)

The solution is illustrated for a Ramberg–Osgood stress–st
relation

«

«Y
5

s

sY
1S s

sY
D n

(4)

with yield stresssY , yield strain «Y5sY /E, strain hardening
exponentN51/n (0,N,1) and tangent modulus

E

Et
511nS s

sY
D n21

(5)

Details of the solution, which must be obtained numerically us
~3!, are plotted in Fig. 2. Both the strain and the nomin
compressive stress~compressive force per original area
sN52se2«) in the uniformly strained region are displayed.

An analytical approximation is obtained by assuming the stra
are small and neglectings compared toEt in ~2! such thatc(«)
5AEt /r. Then, neglecting the linear stress contribution to t
strain in ~4!, it is readily shown thatg(j)52«Y(j/AN)22/(12N)

with

«U

«Y
52F11N

2AN
S V

c0«Y
D G 2/(N11)

(6)
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5F11N

2AN
S V

c0«Y
D G 2N/(N11)

(7)

c~«U!

c0
5ANF11N

2AN
S V

c0«Y
D G2(12N)/(11N)

(8)

The small strain solution depends on the imposed velocity,V, and
initial yield strain through the single parameter,V/c0«Y , which
will be seen to be the most important dimensionless param
governing dynamic effects in the present study. The small st
approximation is also plotted in Fig. 2, where it is seen tha
indeed captures the essential trends forV/c0«Y as large as abou
20. The front of the uniformly strained section of the rod prop
gates at a small fraction of the elastic wave speed whenV/c0«Y
'10, corresponding to imposed velocitiesV that are typically
several percent of the elastic wave speed. Since an initial y
strain usually lies within the range from 0.001 to 0.01, it follow

Fig. 2 Plastic compression wave propagating along a rod for
both the small strain approximation and the finite strain solu-
tion. „a… Strain «U in the region of uniform deformation behind
the propagating front. „b… Nominal compressive stress at the
left end of the rod and in the adjacent region of uniform strain.
The normalizations for the small strain approximation are valid
for all yield strains; the results for the finite strain solution are
computed with «YÄ0.003.
Journal of Applied Mechanics
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that for structural metals plastic wave propagation effects beco
dominantly important for impact velocitiesV typically in the
range from 10 to 100 ms21.

2.3 Dynamic Compression of Finite Length Rods. In this
section the study of dynamic compressive behavior of the stra
column, or rod, is continued accounting the effect of finite leng
As in the previous section, the rod is initially at rest. Att50, a
uniform velocity,V.0, is imposed at its left end while the righ
end atx5L is fixed. In the study in this subsection the material
taken to be the rate-independent limit of a structural stainl
steel, Al6XN, currently being considered as a possible candid
for truss cores. This material has substantial strain hardening
is nearly linear and moderate strain-rate sensitivity. The full ra
dependent specification of the material is given below in antici
tion of its use in subsequent sections. In tension, the relation
tween true stress and true strain is taken to be strictly bilinear
each value of plastic strain-rate:

s5H E«, «<«Y~11~ «̇p / «̇0!m!

sY~11~ «̇p / «̇0!m!1Et«p , «.«Y~11~ «̇p / «̇0!m!
(9)

with E5190 GPa,sY5400 MPa, Et52.4 GPa, «̇054920 s21,
m50.154, r57920 kg m23, and Poisson’s ration50.3. The
strain-rate dependence results in a 57% elevation of the stres
«̇51000 s21 versus the stress at«̇50.01 s21 at the same«p . The
rate-independent limit used in this section is obtained by set
m50. Comparisons will be made between predictions with a
without rate-sensitivity in the following sections.

The finite strain version of ABAQUS Explicit@11# has been
used to compute the responses. The right face of the colum
attached to a fixed rigid plate and left face of the column is
tached to a rigid plate with prescribed uniform velocityV for t
>0. The column model is comprised of eight-noded linear he
hedral elements. The model accounts for radial inertia. In
computations, the initial length of the rod isL50.122 m and its
radiusR is taken to beL/13. An undeformed mesh and a repr
sentative deformed mesh at an overall compressive strain of
are shown in Fig. 3 for two values ofV. Further mesh refinemen
does not appreciably alter the results discussed below. The r
of imposed velocities of relevance to the applications describe
the Introduction isV/(c0«Y)<20.

Fig. 3 Undeformed and deformed meshes for a straight rod
subject to velocities VÄ140 msÀ1 and VÄ200 msÀ1

†VÕ„c 0«Y…

Ä13.3 and 19 ‡ at its left end and fixed at its right end. The
deformed rods have been deformed to an overall strain of 20%.
No material rate dependence.
JANUARY 2005, Vol. 72 Õ 141
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The response of the column to a constant velocityV
5140 m/s@V/(c0«Y)513.3# is shown in Fig. 4. The forces on th
left and right plates are shown. Oscillations in the force on the
plate at early times in the history are due to numerical effe
associated with the abrupt increase of the applied velocity.
reduce these oscillations, the applied velocity on the left plat
increased from zero toV in a more gradual manner according
V(12e2t/t0). The oscillations are largely smoothed out and b
havior for Vt/L.0.05 is virtually unaffected by the choice oft0
as long asV0t0 /L,0.02. Oscillatory effects are much smaller o
the right face since there is no response until the arrival of
elastic compression wave.

Aside from oscillations at early times, the force on the left pla
is fairly constant throughout the deformation and well above w
the yield stress, consistent with the results for the infinitely lo
rod discussed in the previous section. The force on the left f
remains level to a nominal overall strain of 20% (Vt/L50.2), at
which point the computation was terminated. Thus, due to ine
effects there is a significant difference between the force a c
element will exert on the face sheet towards a blast loading an
the face sheet away from the blast. The deformed mesh in F
shows the rod at 20% strain (Vt/L50.2) where the thicker, uni-
formly compressed region has just reached the far end in the
V5140 m/s, while for the rod subject to the higher end veloc
V5200 m/s the compressed region has only spread over
thirds the length of the rod at the same overall strain.

Results such as those shown in Fig. 4 have been compute
20 m/s<V<200 m/s. ForV,20 m/s@V/(c0«Y),1.9#, dynamic
effects are not nearly so pronounced with plastic deformation
curring more uniformly along the rod and end forces that
nearly equal.

3 Coupled Plastic Wave Propagation and Lateral
Buckling for Axially Compressed Columns

In this section, results for the straight, finite length column a
lyzed in the previous section are determined under circumsta
where the column is permitted to buckle. The material compris
the column is described by~9! which includes rate-dependenc
however, results will be presented to highlight the roles of b
strain hardening and strain-rate dependence. As in the study o

Fig. 4 Nominal stress exerted by a rod on the plates at its two
ends, where the left plate impacts the rod at VÄ140 msÀ1

†VÕ„c 0«Y…Ä13.3‡ and the right plate is fixed.
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previous section, the ends of the column are ‘‘welded’’ to rig
plates and thus effectively clamped against rotation at each
The left plate experiences an imposed uniform velocityV starting
at t50, while the right end is fixed. The dynamic calculations a
carried out using a three-dimensional meshing using hexahe
elements with ABAQUS Explicit; quasi-static calculations use t
Standard version. A geometric imperfection is introduced to p
mote lateral buckling motion in the form of an initial transver
deflection

w~x!5
zR

2 F12cosS 2px

L D G (10)

where z is the normalized imperfection amplitude. As will b
shown later, an axially compressed column with imperfection a
plitude z51/4 provides a reasonable approximation to the
sponse of the tetragonal truss core construction where the m
bers are inclined but have no initial imperfection. Under dynam
conditions, a perfectly straight column that is not inclined do
not buckle, assuming no other imperfections due either to load
or material asymmetry. The nature of the governing equation
such that solution bifurcations do not occur. Dynamic buckli
requires an initial asymmetric imperfection of some type, a
moreover, the development of the lateral buckling motion depe
on the imperfection amplitude. For relatively stocky columns
interest here, an imperfection withz51/4 can be regarded as re
alistic, and later it will be shown that the buckling response is
a strong function ofz in this range.

The role of inertia in altering the column response is illustra
in Fig. 5 where deformed columns at a nominal strain of 20%

Fig. 5 Undeformed and deformed meshes of column with ini-
tial imperfection for quasistatic, VÄ20 mÕs, and VÄ200 mÕs
†VÕ„c 0«Y…Ä1.9‡ and high †VÕ„c 0«Y…Ä19‡. No material rate de-
pendence.
Transactions of the ASME
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shown for very slow~quasistatic loading! and two other imposed
velocities, V520 m/s and 200 m/s. The buckled shapes of
quasistatically loaded column and that withV520 m/s are similar
and representative of the classical mode of a clamped beam
contrast, the column loaded withV5200 m/s (V/«Yc0519.4) has
undergone relatively little lateral displacement even at an ove
strain of 20% and it is evident from the deformed shape that
majority of compression has occurred within the left half of t
column. The plastic wave traveling from the left end has not
spread over the entire column at the instant of the deformatio
Fig. 5, and lateral buckling is just beginning to develop.

There are important consequences of the dynamic stabiliza
of the columns against lateral buckling seen in Fig. 5. In appli
tions of all-metal sandwich construction for blast resistant pl
structures, energy absorption in the core is an important com
nent of superior performance. Any delay of buckling of a tru
core member due to inertial stabilization translates into gre
plastic energy dissipation. The column in Fig. 5 loaded atV
5200 m/s has absorbed the energy equivalent of the mat
strained to 20% under uniaxial compression, albeit nonuniform
along its length. The energy absorbed by the column loaded
sistatically to 20% overall strain is considerably less since it
dergoes significant lateral buckling and loss of load carrying
pacity. Under uniaxial compression, energy absorption scales
sY«̄pR2L, where «̄5Vt/L is the overall strain, and Fig. 6 dis
plays the plastic energy dissipation in the column at«̄50.1 nor-
malized by this factor as a function ofV/(«Yc0), with and without
material strain-rate dependence. This plot brings out the ex
tionally strong influence of dynamic loading on plastic dissipat
as measured by the parameterV/(«Yc0); energy absorption can b
enhanced by a factor of 2 or more in the rangeV/(«Yc0).10.

AL6XN has moderately high strain hardening. To separate
the influence of strain hardening on inertial stabilization and
related effects, columns of elastic-perfectly plastic material
investigated with the same initial yield stress as AL6XN in~9!.
The overall load-end shortening responses under quasistatic
ing with and without strain hardening~both materials havem

Fig. 6 Plastic energy dissipation as a function of VÕ„c 0«Y…

†and VÕ„L «̇0…‡, with and without strain-rate dependence at an
overall strain «̄Ä0.1 for the material specified by „9… and
c 0«Y Õ„L «̇0…Ä0.0175.
Journal of Applied Mechanics
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50) are plotted in Fig. 7, where each of the two columns have
initial imperfection with z51/4. High strain hardening leads t
significantly more postbuckling load carrying capacity. The su
stantial quasistatic postbuckling capacity for both columns i
consequence of their relative stockiness (L/R513) and the fact
that they are clamped on both ends.

Fig. 8 Nominal stress acting by the column on the left plate as
a function of the normalized imposed velocity V at three levels
of overall strain for both an elastic-perfectly plastic material
†„9… with EtÄ0 and mÄ0‡ and a material with high strain hard-
ening †„9… with EtÄ2.4 GPa, mÄ0‡. The imperfection amplitude
is zÄ1Õ4.

Fig. 7 Quasistatic nominal stress-end shortening behavior
with and without strain hardening. The material is specified by
„9… with EtÄ0 and mÄ0 for the elastic-perfectly plastic case
and EtÄ2.4 GPa and mÄ0 for the hardening material. The
stockiness ratio is RÕLÄ0.077 and the imperfection amplitude
is zÄ1Õ4.
JANUARY 2005, Vol. 72 Õ 143
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Computed values of the normalized force exerted by the
umn on the plate on the left end as a function of imposed velo
are given in Fig. 8 for a column of elastic-perfectly plastic ma
rial and of strain hardening typical of AL6XN in~9!, both with no
rate-dependence (m50). With F as the force, the normalizatio
is s̄/sY , where s̄5F/A0 is the nominal stress andA0 is the
initial cross-sectional area of the column. It can be seen that
force is nearly independent of strain, consistent with the respo
discussed earlier in Fig. 4, except for the elastic-perfectly pla
column at low levels of imposed velocity. The most striking fe
ture of the results in Fig. 8 is the large amplification of the for
exerted by the column on the left plate asV is increased. Force
amplification arises from two sources:~1! inertial stabilization of
the column against buckling and~2! the momentum imparted to
the column by the left plate. The component associated with i
tial stabilization gives rise to the increased plastic dissipation
Fig. 6.

The effect of material strain-rate dependence on the reac
force on the left plate is shown in Fig. 9. The lower curve is th
discussed for AL6XN with strain-rate dependence suppres
@m50 in ~9!# while the upper curve incorporates the strain-ra
dependence of this material. When material rate-dependenc
taken into account, additional dimensionless parameters arism
andV/(L «̇0). The results in Fig. 9 include the values ofV/(L «̇0)
on the abscissa. The elevation of the reaction force due to mat
strain-rate dependence over the corresponding force for the
independent material is what would be expected for the ove
strain rate of 103 s21 @corresponding to the impact velocity wit
V/(«Yc0)511.6 in Fig. 9#; the influence is similar to that seen i
Fig. 6 on the energy dissipation.

Based on dimensional considerations, the normalized reac
force depends on a relatively large dimensionless paramete
according to

s̄

sY
5 f S V

«Yc0
,N,

sY

E
,
R

L
,
Vt

L
,

V

L «̇0
,mD (11)

Fig. 9 Nominal stress acting by the column on the left plate as
a function of the normalized imposed velocity V for a strain
hardening material „9… with „mÄ0.154… and without „mÄ0…
strain-rate dependence at an overall strain of 10%. The imper-
fection amplitude is zÄ1Õ4 and c 0«Y Õ„L «̇0…Ä0.0175.
144 Õ Vol. 72, JANUARY 2005
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with c05AE/r. Equation~11! brings out the point emphasized b
Calladine and English@5# that inertial effects and material rate
dependence effects scale differently with respect to colu
length. In the range of behavior in which inertial effects are dom
nated by axial deformation, the controlling parameter
V/(«Yc0). The dimensionless parameter controlling the influen
of material rate-dependence isV/L «̇0 . The results presented
above suggest that the dependence of end forces and energy
sipation on material strain-rate dependence throughm andV/L «̇0
is more-or-less what would be expected at the overall strain-r

Fig. 10 „a… Effect of the stockiness, RÕL , on the nominal
stress acting by the column on the left plate as a function of the
normalized imposed velocity V for a strain hardening material
with no strain-rate dependence †„9… with EtÄ2.4 GPa, mÄ0‡.
The imperfection amplitude is zÄ1Õ4. „b… Effect of the yield
strain, «YÄsY ÕE, on the nominal stress acting by the column
on the left plate as a function of the normalized imposed veloc-
ity V for a strain hardening material with no strain-rate depen-
dence †„9… with EtÄ2.4 GPa, mÄ0‡. The imperfection ampli-
tude is zÄ1Õ4.
Transactions of the ASME
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given its effect in elevating the flow stress in~9!. In the range of
overall strainVt/L from 0.05 to more than 0.2, the normalize
reaction force is essentially independent of strain for relativ
stocky columns, except for small strain hardening at low impo
velocities.

The effect of the slenderness ratio,R/L, and the initial yield
strain,«Y5sY /E, on the normalized reaction force at an over
strain of 10% are shown in Figs. 10~a!, 10~b!. The slenderness
ratio has a significant effect at smallV/(«Yc0) but almost no
effect at higher values of this parameter, consistent with the
that the buckling deflections remain small until overall strains
in excess of 20%. Similarly, for the normalizations used in F
10~b!, there is little dependence on the initial yield strain.

In summary, for a specific material in the range of impos
velocities satisfyingV/(«Yc0).5 and for overall strains from
roughly 5% to 20%, the single most important dimensionless
rameter in~11! is V/(«Yc0), with V/L «̇0 playing a secondary role
such that the nominal reaction stress resisting the motion of
plate imposing its velocity on the column has the form

s̄

sy
5 f S V

«Yc0
,

V

L «̇0
D . (12)

4 The Dynamic Response of Tetragonal Truss Core
Finite element calculations have been performed on the tet

onal truss core unit of Fig. 1 under conditions where the ri
bottom plate is held fixed and the rigid top plate to which the c
faces are welded is suddenly accelerated towards the bottom
with velocity V. The emphasis here is on the reaction force
erted by the core element on the top plate, and it will be sho
that this resistance can be successfully modeled using the re
for the axially loaded columns of the previous section. Each me
ber of the unit of the regular tetrahedron in Fig. 1 is a column
length L and solid circular cross-section of radiusR with R/L
50.077. The precise geometry is shown in Fig. 1. The heightH
of the core is specified byH/L5A2/3. The material is that speci
fied in ~9! with no strain rate dependence (m50). Results are
computed for various imposed velocities for overall strains up
20% («̄5Vt/H50.2). The average reaction stress,s̄, acting on
the top plate and plotted in Fig. 11 is the net vertical force divid
by the area of the tetragonal unit. The results of the simulati
for the tetragonal core are plotted as solid points. As in the cas
the axially loaded columns, there is relatively weak depende
on overall strain for strains in the range from 5% to 20%.

The insert in Fig. 11 compares the deformed shape of a mem
of the tetragonal unit for a case with quasistatic loading with o
subject to high velocity loading, both at an overall strain of ab
20%. The deformation of the dynamically loaded member is p
marily confined to its upper third while the lower portion of th
member remains almost straight. By contrast, the member
formed quasistatically undergoes bending deformations due
buckling over its entire length.

Included in Fig. 11 are predictions of the average reaction st
based on the results obtained in the previous section for the
ally loaded clamped column with three levels of initial imperfe
tion. To plot the results based on the axially loaded column,
length and aspect ratio of the column are identified with those
the inclined member. Furthermore, the axial velocity applied
the upper end of the column is the component of the appro
velocity of the two plates resolved in the direction parallel to t
column, i.e.A2/3V, and, as before, the lower end is fixed. Sim
larly, the vertical component of the reaction force acting on
upper plate is taken to be 3A2/3 times the axial force in the col
umn and converted to the stress averaged over the unit cell in
11. Since the results for the axial column are almost indepen
of the overall strain in the range from 5% to 20%~cf. Fig. 8!, only
the average over the strain range is plotted in Fig. 11 for
column approximation. The effect of the initial imperfection lev
is not large for the three levels shown andz51/4 seems to be a
Journal of Applied Mechanics
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realistic choice. Finally, it is noted that the results based on th
for the axially compressed column provide a reasonable appr
mation to the reaction force exerted by the tetragonal core.

5 Summary
The dimensionless parameterV/(«Yc0) can be used to gaug

whether coupled plastic wave propagation and lateral buck
occurs in columns whose ends experience a relative velocityV,
and relatively strong dynamics occur whenV/(«Yc0).5. For rela-
tively stocky columns, overall end-shortening corresponding
compressive strains of 20% or more can be achieved before
preciable bucking deformation occurs. The reaction force at
end of the column resisting the imposed motion is amplified b
factor of 2 or more above that for a quasistatically loaded colum
Similarly, the energy dissipated in plastic deformation by the c
umn at a given overall imposed strain is significantly increas
due to the inertial stabilization of the column. The roles of t
various geometric and material parameters are detailed in the
per for the case of constant velocity loading. These results pro
insight into how columns can be expected to behave under o
types of dynamic axial loading. The present paper reveals
importance of dynamic effects in the performance of truss core
all-metal sandwich plates under high intensity dynamic loads.
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Exact Critical Loads for a Pinned Half-
Sine Arch Under End Couples
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Jian-San Lin
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In this note we show that for a pinned half-sine arch under e
couples snap-through buckling will occur unsymmetrically if t
initial height of the shallow arch is greater than 6.5466r, where
is the radius of gyration of the cross section. The closed-fo
expression for the critical couple can be obtained analytica
@DOI: 10.1115/1.1827244#

1 Introduction
The prediction of snap-through buckling of a shallow arch i

classical problem in applied mechanics. Fung and Kaplan@1# de-
rived the exact critical loads for a pinned half-sine arch un
sinusoidal loading. For other load distributions such as unifo
pressure and a concentrated force at the midpoint, the cri
loads can be obtained by summing a few terms of a rapidly c
verging Fourier series. For a complete review of the previo
works of arch stability, the readers are referred to the two bo
by Simitses@2,3#. In all these previous works, the external loa
causing snap-through buckling are lateral forces. In this note
consider the case when the sinusoidal arch is under couple
both ends.

2 Equilibrium Equation
We consider a pinned shallow arch with equal and oppo

momentsM* applied to the two ends. This model finds applic

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
28, 2004; final revision, May 19, 2004. Associate Editor: R. C. Benson.
Copyright © 2Journal of Applied Mechanics
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tion in an electromechanical switching device with a curved be
coated with piezoelectric films on the top and bottom surfac
The end moment is proportional to the actuating voltage. T
equilibrium equation of the loaded arch can be written as

EI~y2y0! ,xxxx2p* y,xx1M* @2d8~x!1d8~x2L !#50 (1)

p* is the axial force

p* 5
AE

2L E
0

L

~y,x
2 2y0,x

2 !dx (2)

E, A, and I are Young’s modulus, area, and moment of inertia
the cross section.L is the distance between the two pinned en
d8 is the derivative of the Dirac delta function with respect tox.
y0(x) is the initial shape of the arch. Equations~1! and~2! can be
nondimensionalized to the forms

~u2u0! ,jjjj2pu,jj1
p

4
M @2d8~j!1d8~j2p!#50 (3)

p5
1

2p E
0

p

~u,j
2 2u0,j

2 !dj (4)

where

u5
y

r
, u05

y0

r
, j5

px

L
, p5

p* L2

p2EI
, M5

4M* L2

p5EIr
(5)

r is the radius of gyration of the cross section. The initial shape
the arch is assumed to be in the form

u0~j!5h sinj (6)

It is assumed that the shape of the deformed arch can be expa
as

u~j!5(
n51

`

an sinnj (7)

After expanding the derivative of the Dirac delta functiond8 as a
Fourier sine series and substituting Eqs.~6! and ~7! into Eqs.~3!
and ~4! we obtain the equations foran

n4an1n2pan1qn50, n51,2,3, . . . (8)

where

p5
1

4 (
k51

`

k2ak
22

h2

4
, (9)

q15M2h, (10)
ry
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qn50, n52,4,6, . . . , (11)

qn5nM, n53,5,7, . . . (12)

3 Equilibrium Configurations
Equation~8! represents a set of an infinite number of coup

nonlinear equations for an infinite number of coordinatesan .
There are two types of solutions.

3.1 Symmetrical Solution. a2i50, where i 51,2,3, . . .
The equations in Eq.~8! with even number ofn are satisfied
automatically because of condition~11!. The remaining coordi-
natesa2i 11 can be related toa1 by a simple deduction procedur
from Eq. ~8! as

a2i 115
2a1q2i 11

~2i 11!2@4i ~ i 11!a12q1#
, i 51,2,3, . . . (13)

After substituting Eq.~13! into Eq.~9!, and substituting the result
ing p into Eq. ~8! for n51, we obtain the following equation fo
a1

f 1~a1!1(
i 51

` H q2i 11
2 a1

3

4~2i 11!2@4i ~ i 11!a12q1#2J 50 (14)
,

.

i

t
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where

f 1~a1!5a11
a1

4
~a1

22h2!1q1 (15)

In the special case whenM50, the three solutions of Eq.~14! are
denoted byP0 , P1

1 , andP1
2 @4#, respectively.P0 represents the

original shape, Eq.~6!. P1
2 is another stable configuration on th

other side.P1
1 is an unstable position betweenP0 andP1

2 .

3.2 Unsymmetrical Solution. a2 jÞ0 for some j, and all
other a2i50, i 51,2,3, . . . , iÞ j . This type of solution involves
odd number ofn in Eq. ~7!, plus one additional harmonic with
n52 j . For this type of solution we can solve forp from the 2j th
equation of Eq.~8! as

p524 j 2 (16)

After substituting Eq.~16! into the (2i 11)-th equation in Eq.~8!
we can solve fora2i 11 exactly as

a2i 115
q2i 11

~2i 11!2@4 j 22~2i 11!2#
i 50,1,2, . . . (17)

After substituting Eqs.~16! and~17! into Eq.~9! we can solve for
a2 j as
a2 j56
1

2 j
Ah2216j 22

q1
2

~4 j 221!2
2(

i 51

`
q2i 11

2

~2i 11!2@4 j 22~2i 11!2#2
(18)
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This pair of solutions are denoted asP1(2 j )
6 .

4 Snap-Through Buckling
By inspecting Eq.~14! for the root locus ofa1 we can show

that for smallerh the roota1 corresponding toP0 will merge with
a1(P1

1) asM increases from zero. For largerh, on the other hand
a1(P0) will merge with a1(P12

6 ) instead, which is known explic-
itly from Eq. ~17! as

a1~P12
6 !5

q1

3
(19)

There then exists a specialh, denoted byh̄, at whicha1(P0) will
merge with botha1(P1

1) anda1(P12
6 ) simultaneously. This situ-

ation occurs when Eq.~14! admits a double root, which require
the derivative of Eq.~14! with respect toa1 to vanish

4
d f1

da1
1(

i 51

` H qn
2a1

2

~2i 11!2@4i ~ i 11!a12q1#2 F3

2
8i ~ i 11!a1

4i ~ i 11!a12q1
G J 50 (20)

Therefore, ifh is smaller thanh̄, the arch will snap symmetrically
On the other hand, ifh is greater thanh̄, the arch will snap
unsymmetrically. This note intends to present the exact crit
moment for the latter case. After replacinga1 in Eqs. ~14! and
~20! by q1/3, both equations can be rearranged further into
forms

~119k1!M222hM114428h250 (21)

~113k2!M222hM11222h250 (22)
s
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where

k15(
i 51

`
1

~2i 21!2~2i 13!2
5

9p2264

576
(23)

k25(
i 51

`
1

~2i 21!3~2i 13!3
5

51p22512

1536
(24)

After eliminatingM from Eqs.~21! and~22! we can solve for this
specialh as h̄56.5466.

For the easy use in practical design procedure, we may sum
rize the conclusion in terms of physical parameters as follows
the initial heighth* at the midpoint of the sinusoidal arch und
end couples is greater than 6.5466r , the shallow arch will snap
unsymmetrically, and the critical couples can be found exactly

M cr*
65

p3EI

9L2
@16h* 62A~64172p2!h* 221296r 2p2# (25)

M cr*
1 corresponds to the critical couple which will snap the ar

from position P0 to P1
2 . On the other hand,M cr*

2 , which is
always negative, corresponds to the critical couple which w
allow the arch to snap back from positionP1

2 to P0 .
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Analysis of the Bridgman Procedure to
Characterize the Mechanical
Behavior of Materials in the Tensile
Test: Experiments and
Simulation

Diego J. Celentano
e-mail: dcelenta@lauca.usach.cl

Eduardo E. Cabezas and Claudio M. Garcı´a
Departamento de Ingenierı´a Mecánica,
Universidad de Santiago de Chile,
Av. Bdo. O’Higgins 3363, Santiago, Chile

This note presents an experimental analysis and a numer
simulation of the mechanical behavior experienced by cylindri
specimens of pure copper during the tensile test. A set of exp
ments has been carried out in order to derive the hardening
rameters that characterize the material response. The simula
of the deformation process during the whole test is performed w
a finite element large strain elastoplasticity-based formulatio
The results of the simulation show that the mechanical charac
ization involving the classical Bridgman correction factor, defin
in terms of logarithmic strains and aimed at predicting the stre
distribution at the necking zone, cannot properly describe
hardening response for this material. Therefore, the use of a
ferent correction factor, which consequently leads to another
of hardening parameters, is proposed. Finally, an adequate
perimental validation of the numerical results is obtained for th
last case.@DOI: 10.1115/1.1827243#

1 Introduction
The diffuse necking process of cylindrical samples used in

tensile test has been extensively studied~see, e.g., Refs.@1–3#!. In
particular, Bridgman@1# derived, based on some geometric co
siderations of the deformation pattern, analytical expressions
the stress distribution at the neck written in terms of the t
~logarithmic! strain in this zone. Thus, this procedure allowed
adequate experimental derivation of the parameters involve
the hardening response. However, such relationships are
valid for certain materials~e.g., low carbon steels, some alum
num alloys, etc.! for which the maximum deformation«p* related
to a uniform strain and stress distributions along the specim
~i.e., just before the necking development! is around 0.10. There
fore, the applicability of this methodology to any material is rath
limited.

On the other hand, several finite element large strain form
tions usually defined within the plasticity framework have be
developed and applied to the analysis of this test~see, e.g., Refs
@4–10#, and references therein!. Furthermore, some of such for
mulations have been validated with given experimental data c
sidering cylindrical specimens of different materials. Neverth
less, Bridgman’s assumptions have been only confirmed
materials presenting«p* '0.10.

The aim of this note is to analyze the Bridgman procedure
characterize the mechanical behavior, specifically the harde
response, of materials in the tensile test. To this end, an exp

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 1
2004, final revision, June 17, 2004. Editor: R. M. McMeeking.
Copyright © 2Journal of Applied Mechanics
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mental analysis and a numerical simulation of the deformat
process experienced by cylindrical specimens of pure coppe
presented. This material has been intentionally chosen since
straightforward application of the earlier mentioned analytical
pressions@1# to predict the stress distribution at the neck is n
adequate because, as shown below,«p* ~which is a material char-
acteristic parameter! is approximately 0.05 for this case. The e
perimental procedure undertaken to characterize some spe
features of the material response is briefly described in Se
where details on the derivation of the parameters involved in
assumed potential plastic hardening law are also given. The
merical simulation of the tensile test is performed in Sec. 3. A f
description of the large strain isotropic elastoplasticity-based
mulation together with the corresponding finite element mo
used in the analysis can be found in Refs.@9,10#. First, the simu-
lation is carried out with the hardening parameters derived fr
the experiments by applying the classical Bridgman stress cor
tion factor. The respective numerical results show an inaccu
description of the hardening response for this material. Theref
the use of an alternative correction factor, which conseque
leads to another set of hardening parameters, is proposed. T
the results obtained with these last parameters are found to
equately agree with the experimental measurements. Aside f
the engineering stress-strain curve, different results at the sec
undergoing extreme necking are specifically analyzed: ratio
current to initial diameter in terms of the elongation and both lo
and mean true axial stress versus logarithmic strain.

2 Experimental Characterization
The experimental procedure adopted in this work to charac

ize the mechanical behavior of a material consisted of the follo
ing steps@9,10#.

~1! Selection of the material and the specimen to be tes
according to the American Society for Testing and Materi
~ASTM! standards@11#. Cylindrical specimens of pure coppe
with a nominal diameter of 9 mm have been chosen conside
an initial extensometer length of 50 mm.

~2! Chemical characterization to check an adequate comp
tion according to the selected material. This routine task is car
out by means of an optical spectrometer.

~3! Mechanical tensile test. Engineering stress-strain cur
have been obtained with five specimens considering a load
speed of 2.5 mm/min~value within the range specified by th
ASTM standards@11#!. Only average experimental values will b
shown below due to the good repeatability achieved in the m
surements. As usual, the engineering stress is defined asP/A0 ,
where P is the axial load andA0 is the initial transversal area
while the engineering strain or elongation is computed asL
2L0)/L0 , with L andL0 being the current and initial extensom
eter lengths, respectively.

~4! Characterization of the plastic behavior. At high levels
elongation, the stress and strain distributions are no longer
form along the specimen due to the necking formation that ta
place in the samples. Therefore, the engineering stress-s
curve cannot provide a proper description of the physical phen
ena involved in the test. Following the procedure proposed
Bridgman @1#, the mechanical response can be adequately
scribed by a different stress-strain curve defined in terms of
mean equivalent stresss̄eq versus an equivalent deformation«eq
~composed of an elastic and plastic contributions! respectively
given by s̄eq5 f BP/A and«eq5s̄eq/E1«p , where f B(«p)<1 is
an assumed known correction factor applied to the mean true a
stressP/A, A is the current transversal area at the necking zoneE
is the Young’s modulus,«p5 ln(A0 /A)522 ln(D/D0) is the true
~logarithmic! deformation andD is the current diameter~as can be
seen,D is the additional variable to be measured!. Taking into
account the correction factors shown in Fig. 1~a!, two different
experimentals̄eq2«eq relationships, respectively, plotted in Fig
1~b! and 1~c!, have been obtained from four specimens. It sho

8,
005 by ASME JANUARY 2005, Vol. 72 Õ 149



Fig. 1 Analysis of a copper cylindrical tension specimen. „a… Correction factor versus true deformation. Mean equivalent stress
versus equivalent deformation obtained with „b… f B„«p*Ä0.10… and „c… f B„«p*Ä0.05….
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be noted thatf B(«p* 50.10) is the classical Bridgman expressio
while f B(«p* 50.05) is a proposed function specifically derived f
pure copper through the experimental-numerical methodology
tailed in Ref.@10# ~in both cases,f B51 for 0<«p<«p* and f B

,1 for «p.«p* ). Accordingly, two potential correlations of th

type s̄eq5Ap«eq
np

~as usual@1–10#, this potential expression is as
sumed to govern the plastic isotropic hardening behavior of
material with Ap and np being hardening material parameter!
have been derived from these data via a standard least-sq
technique. They are, respectively, presented in Figs. 1~b! and 1~c!
where, as can be seen, two different sets of hardening param
have been obtained@Ap5393.5 MPa; np50.102 for f B(«p*
50.10) andAp5366.1 MPa;np50.054 for f B(«p* 50.05)]. The
numerical responses computed with these properties are comp
and discussed in Sec. 3.

3 Numerical Simulation and Experimental Validation
The main objective of the present analysis is to assess the

merical predictions corresponding to the two sets of harden
properties derived in the mechanical characterization descr
earlier for pure copper tensile cylindrical specimens and, addit
ally, to compare these responses with the respective experim
measurements. The other material properties considered in
computations are: Young’s modulus 115,000 MPa, Poisson’s r
0.34 and yield strength 188 MPa. Moreover, details about
spatial discretization used can be found in Refs.@9,10#.

Figure 2 shows the engineering stress-strain relationship
some results at the section undergoing extreme necking: the d
eter relation versus the elongation in the necking zone and
150 Õ Vol. 72, JANUARY 2005
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addition, the load and mean true axial stress both against the l
rithmic deformation. Experimental values as well as numeri
results corresponding to the hardening parameters derived
f B(«p* 50.10) andf B(«p* 50.05) are allplotted together for com-
parison. In what follows, these two numerical solutions will
simply identified with the symbolsf B(«p* 50.10) and f B(«p*
50.05), respectively.

In sharp contrast with the numerical predictions off B(«p*
50.10), an overall good agreement between the simulation
tained with f B(«p* 50.05) and the experimental values can be o
served. This is particularly apparent at high levels of elongati
Specifically, the engineering stress@Fig. 2~a!# and the diameter
ratio @Fig. 2~b!# predicted byf B(«p* 50.10) are both unrealisti-
cally overestimated in the engineering strain range where the n
formation occurs. Although both simulations have been compu
up to the same final~fracture! elongation of 13.2%, note that th
corresponding logarithmic strains at this stage are completely
ferent @see Figs. 2~c! and 2~d!#: 0.67 for f B(«p* 50.10) and 0.92
for f B(«p* 50.05).

The experimentally measured load decreases from an elo
tion of 1.23% or, equivalently, from a logarithmic deformation«p
of 0.045 onwards. The corresponding deformations provided
the two simulations are 5.12% and 0.058 forf B(«p* 50.10) and
4.16% and 0.048 forf B(«p* 50.05). However, the mean true axia
stress continues increasing until the fracture stage where a l
amount of plastic hardening can be appreciated. This indic
that a geometrical instability occurs~instead of a constitutive in-
stability! since, as it is well known, the effect on the stress cau
by the reduction of the transversal area at the necking zone
Transactions of the ASME



Fig. 2 Analysis of a copper cylindrical tension specimen. „a… Engineering stress-strain relationship. Results at the section
undergoing extreme necking: „b… ratio of current to initial diameter versus axial elongation, „c… load versus true deformation, and
„d… mean true axial stress vs true deformation.
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dominates over the material hardening. Once the maximum loa
reached, the regions of the specimen outside the necking
begin to elastically unload.

The numerical predictions for the ratio of current to initial d
ameter in terms of the elongation start with a linear relationsh
reflecting uniform distributions of stresses and strains, which p
sents an approximate slope of 0.5 due to the incompressib
nature of the plastic flow. This situation is kept up to elongatio
of 5.0% for f B(«p* 50.10) and 4 % for f B(«p* 50.05) that corre-
spond, as mentioned earlier, to the respective points of maxim
load. Afterwards, a sudden reduction of the diameter takes p
causing the necking formation and, hence, nonhomogene
stress and strain distributions along the specimen. As can be
the numerical results obtained withf B(«p* 50.05) fit the experi-
mental ones reasonably well during the whole test even with
inherent difficulty associated with the measurement of the dia
eter at the neck.

The experimental value of the logarithmic deformation cor
sponding to the maximum load is very close to the exponentnp

for the correlation obtained withf B(«p* 50.05). Moreover, note
that the well-known condition stated by the simplified relations
np5«p* @2,3# is nearly fulfilled in this case. This fact explains th
satisfactory experimental validation of the numerical results c
responding to the hardening parameters experimentally der
through the application of the correction factorf B(«p* 50.05).
Larger values ofnp, like that obtained viaf B(«p* 50.10), lead to
a unrealistic response for this specific material.
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d is
one

i-
ip,
re-
ility
ns

um
ace
ous
een,

the
m-

e-

ip
e
or-
ved

4 Conclusions
An experimental characterization and a numerical simulation

the mechanical behavior occurring in pure copper cylindri
specimens during the standard tensile test have been prese
The study has focused on the analysis of the Bridgman proce
aimed at deriving the material hardening parameters via the ap
cation of a stress correction factor that accounts for the nonho
geneous stress and strain distributions along the specimen
the neck forms. It has been shown that the classical correc
factor has led to a unrealistic material response. Therefore, the
of an alternative correction factor, obtained through a previou
reported experimental-numerical methodology, has been prop
in order to derive another set of hardening parameters. The re
provided by the simulation for this last case are consistent w
the experimental data. However, it remains to be seen in fur
research if this alternative correction factor is applicable to ot
materials exhibiting«p* '0.05 in the tensile test.
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