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Sharp Corner Functions for
o.c.mcee | Mindlin Plates

J. W. Kim
Transverse displacement and rotation eigenfunctions for the bending of moderately thick
Georgia Institute of Technology, plates are derived for the Mindlin plate theory so as to satisfy exactly the differential
Atlanta, GA equations of equilibrium and the boundary conditions along two intersecting straight
edges. These eigenfunctions are in some ways similar to those derived by Max Williams
. for thin plates a half century ago. The eigenfunctions are called “corner functions,” for
A. W. Leissa they represent the state of stress currently in sharp corners, demonstrating the singulari-
Ohio State University, ties that arise there for larger angles. The corner functions, together with others, may be
Columbus, OH used with energy approaches to obtain accurate results for global behavior of moderately
thick plates, such as static deflections, free vibration frequencies, buckling loads, and
mode shapes. Comparisons of Mindlin corner functions with those of thin-plate theory are
made in this work, and remarkable differences are fomI: 10.1115/1.1795221
Introduction derive the corner functions for all types of intersecting edge con-

. . L itjons that may be encountered or closely approached in physical
The existence of stress singularities in sharp corners of Ioad% ations and to compare them with those that have been used for
plates has been well known for more than a century. The natur

e, .
these singularities was carefully studied by Williapas?] for thin the thin plate theory.
plates in bending, and for the plane stress and plane strain prob-
lems of two-dimensional elasticity, all of them relating to the bi-
harmonic differential equation. Williams investigated all combinaeoveming Equations of the Mindlin Theory
tions of boundary conditions along the intersecting edges; for.l_he ell-known Mindlin theory assumes displacement compo-
plate bending, these were for clamped, simply supported, and free w wn Mindi y u ISP P

edges. He derived the eigenfunctions that satisfied the biharmo'r:ﬁ:"cntS in the fornj12-14

equation and the boundary conditions along the edges and, thus, at u,(r,0,2)=z¢.(r,6)
the sharp corner of intersection.
These eigenfunctions, which may be called “corner functions,” Ug(r,0,2)=2y(r,0) 1)

have been found to be very useful in solving problems involving
the overall behavior of plates. For example, free vibrations of
circular sectorial plates having reentrant corners or V-notch@spolar coordinates where, andu, are radial and circumferen-
[3-5], of cantilevered skew platd$,7], and of rhombic plates tial components in the midplane, respectively, ani$ transverse.
[8,9] have been studied using these functions. Transverse defl€bus, ¢, and ¢, are rotations of normals to the midplane due to
tions of statically loaded plates, or bifurcation buckling of themhending. The transverse shear strains are implicitly present as the
could equally well be analyzed with the functions; but to the awdifferences between the total slopesv/dr,(1/r)dw/d6] of the
thors’ knowledge they have not yet been. Mathematically condeformed middle surface and the bending rotations.

plete sets of other functionérigonometric and algebraicare The governing equations of equilibrium for a plate in polar
added to the corner functions to effect accurate solutions bpordinates are expressed in terms of moment resuliéntdM 4,
means of an energy approach—the Ritz method, in the case of #m& M, , and shear force resultan@ andQ, as

free vibration problems.

w(r,6,z)=w(r,0)

It is well known that at least shear deformation and rotary in- oM + E My + M,—M 9_Q -0
ertia effects need to be considered if the plate is moderately thick ar r de r '
or if the higher free vibration frequencies of thin plates are needed
(cf. Leissa[10]). Thus, it is desirable to have corner functions that IMyg + 1 % + EM -Q,=0 )
consider the shear deformation, as well as the bending deforma- ar rag rr?xe
tion, inherently. These may be used when sharp corners containing
bending and/or transverse shear stress singularities are present to ‘9_Qf+ l &Jr 1 =0
solve not only free vibration problems, but also static deflection a r a9 r =’

and buckling problems for moderately thick plates. Haggblad a
Bathe[11] examined the stress singularities near a corner for t
case of two intersecting simply supported edges, as a part o
more general study of boundary layer behavior of a Reissner/ dp, v Ay
Mindlin plate theory in choosing proper mesh sizes near edges M,=D[7+ F( it W”
when using finite elements. The purpose of the present work is to
1 dbg\ = dbr
[0 S

- v
r ar

pfq1e resultants are related to the bending rotations and transverse
gplacement by
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Young’s modulush is the plate thickness, andis the Poisson
ratio. In addition,G=E/2(1+v) is the shear modulus ane?

=x?/12 [12] is the shear correction factor. Substituting E8).
In Eq. (3) D=Eh%12(1— v?) is the flexural rigidity, wher€E is into Eq.(2) yields

1 ow
Y90

Qs=« Gh(d’e

‘92¢r 1 ‘9¢r ﬁ_ i%_'_ E ‘?2¢9
2 I' (9I’ r2 r2 a0 r orae

‘92¢r 1 C?(br ¢r 2 ‘9¢0 1 ‘9 ¢r
7|0 >( A R R TRTIrr) Ml

- 2Gh( + Mo
K fon ar |-

2 2 2
{(1_ )(ﬁdm Logy ¢y 19 ¢>9+3a¢>r) s V)( Py LPd 14 @”_Kzeh

r ar r2 r2 (702 r2 a6

r2 g2 r adradf 2 90

1ow|
¢"+F(7_0)_0 “4)

2 2
2Gh| 2% d), ¢>r+1a¢,, gw  1low 1 9w
r r 06 (9r2 r or r2 (932

General Solutions and Boundary Conditions where the eigenvalues and \ are generally complex numbers,
To obtain solutions of Eq4), the bending rotations and trans-and ¥, ¥, andF, are functions ofg only.
verse displacement of the Mindlin plate are assumed as Consider now the explicit forms oF,, ¥,, andF,. Equation
Y (5) is inserted into the equilibrium equatior4). This yields a
(1, 0)=r"W(6) system of three simultaneous ordinary differential equations in
Do(r,0)=r "V ,(0) (5) terms of three unknown functionk,, ¥,, andF, as follows:

w(r,0)=r*"1F,(0)

|
D{(1—0)[W/+(A\2=1)W,—2W )]+ (1+ »)[(\2— D)W, + (A~ 1) W] 2k*Gh[r2W, + (A + 1)r* A *2F,]1=0
D{(1—v)[ W)+ (AN2= D)W y+ 2W/ ]+ (1+ »)[(Vi+ (N + 1) W] = 2k’Gh(r2W y+ r* M 2F )1 =0 (6)

F/4+ (A 1)2F,— M N [(A+1) W, +W,]=0

where the primes indicate derivatives with respect.ttt should From Eq.(7b),

be pointed out that the variabfeis still present since the shear

terms involvingr?, r* **2 andr* ~* appear in Eq(6). However, P

in the immediate neighborhood of the veri@e., asr —0), these ' AN1+v)+3-v

terms vanish when compared to other terms in &g. provided and substituting this into Eq8) yields

that A —2<A<\ and the displacements and slopes are bounded.

This is a key point in this derivation. No attempt is being made W}/ +[(A+1)2+(A—1)2]¥+ (A +1)2(\—1)?¥,=0

here to obtain solutions of E¢6) that are valid for all values af. (10)

Instead, corner functions are being derived that satisfy(@dand . L

boundary conditions exactly only at the cormner=(0). As de- The general solution of the above equation is found to be

scribed earlier in the Introduction, the value of such functions is _ : _

that they account for the stress singularities exactly in the corner Vy()=AcosA+1)6+Bsin(A+1)6+Ccogr~1)6

when used with additional smooth functions to solve problems by +DsinA—1)6 (11)

an energy method, thereby accelerating considerably the conver-

gence of the solution&.g., free vibration frequenciegoward the whereA, B, C, andD are arbitrary constants. It should be noted

exact values as more terms are added. Thus(@geduces to that thg above solution is not valid fﬁEO or\= +q. becagse for
such eigenvalues, the general solution of E) is not in the

[2V5+(1-»)(N2=1)W,]  (9)

(1= [P/ +(N2=1)¥, —2¥ ]+ (1+ »)[(\2= 1)V, form given by Eq.(11).
The functionV, is determined by back substitution of E41)
+(A-1)Vy]=0 (7a) into (9) and integration of the resulting equation. That is,
(1= ) [ W)+ (N2= 1)+ 2W/ ]+ (14 »)[ ¥+ (N +1)¥/]=0 W (0)=Asin(A+1)§—Bcogr+1)0+yCsin(A—1)0
(7b) — yD cogA—1)0 (12)
Fi+(\+1)°F,=0 (7¢)  where
Differentiating Eq.(7a) with respect tod and rearranging the AM1+v)—3+w

result, the following equation is obtained: (13)

Y= N1+v)+3—v
(1= W +2(\* =)W/ +[N(1+v)—3+»]¥3=0 (8) The solutionF, of Eq. (7c) is
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= i A la N1
F,(6)=GsinA+1)#+H cog\+1)6 (14) A(lfv)cos( ) 7%08( ) 0
whereG andH are also arbitrary constants. 2 2
Consequently, by introducing Eqdl.1), (12), and(14) into Eq. AN+ A1«
(5), the following solutions for bending rotations and transverse ~ —COS——5— TYCOSTH 0 =0
displacement are obtained: _
. . A+ 1)a
¢ (r,0)=r"Asin(A+1)6—B cog\+1)6+ yCsinA—1)6 0 0 cos—
—yD cogA—1)46] (15a) (20)

After expanding and simplifying Eq20) the resulting character-

dy(r,0)=r[Acog\+1)#+Bsin(A+1)§+Ccogr—1)0 At : _
istic equations fol and\ are, respectively,

+D sin(A—1)6] (15b)
- . . COSa= —COS\ «, 21)
A+l ; _
w(r,0)=r*"" G Sln()\+1)0iH coga+1)0] (15c) (O 1a
where the characteristic valuasand \ are determined from the cos 2
boundary conditions along the radial edges. . . .
Since the circumferential edge condition away from the vertd¥©M Ed.(19), the relationship betwee andD is

of the sharp corner does not influence stress behavior within a (A-1a
sufficiently small neighborhood of the vertex, only support condi- B y cosT
tions along the radial edge are considered. Boundary conditions — = (22)
along the radial edgé= 6, (a constantare characterized as one D (A Da
of following four cases. cos 2

1. Fr(_ee_radial edgeln Mindlin plate theory, the ben_ding moment,Sim”a”y, for the antisymmetric case, when coefficieBtD, and
twisting moment, and shear force must all vanish so that H gre set to zero in Eq$15a)—(15c), the characteristic equations

M (r,66) =M 4(r, 86) =Qy(r, ) =0 (16) forAandh are
2. Simply supported radial edg@here are two possible ways of COSa=COSA a, 23)
enforcing simply supported conditions in Mindlin plate theory: (:+ Da
a. Condition S. For the first simply supported condition, sin 2
M(r,80)= & (r,80)=W(r,0,)=0 (17a)  and theA are related taC by
b. Conditions &. For the second simply supported boundary . (A Da
condition, A ysnn—2
—=—— (24)
M y(r,80) =M, o(r,80) =W(r,8,)=0 (170) c Sin(>\+1)a
3. Clamped radial edgeFor this type of support condition, 2
B _ _ As a result, upon combining Eq&1) and(23), the characteristic
b1(1,00) = ¢y(r, 60) =W(r,60) =0 (8) equations for Mindlin plates, which are simply supportedndi-
. . . tion S along both intersecting, radial edges are
Characteristic Equations and Corner Functions
COSa= F COSA & (259)

In this section the procedure of deriving characteristic equations

for N and\ and the associated corner functions is demonstrated in sin(;+ 1)a=0 (2%)

the case where both radial edges are simply supported. Here, , . . -
Mindlin simply supported conditions along the radial edge@ which Eq.(25a) is exactly the same as the characteristic equa-

6=+al2 are defined such that the circumferential moment, taﬁpns for thin sectorial plates with simply supported radial edges

gential rotation, and transverse displacement all vafiish con- Ll and Eq.(25b) is additional for the transverse shear stress

dition S). Because of the symmetry of the edge conditions witfFSultant. There are an infinite number of real o, eigen-

respect top=0 the displacement components, ¢,, andw may values,\ and\) of Egs. (25). Corresponding to eack and A,

be divided into symmetric and antisymmetric parts. eigenfunctionse, , ¢,, andw are the desired corner functions,

For the symmetric case, when the even functiong af Eqs. Obtained by substituting Eq§22) and (24) back into Eqs(15a)

(15a) and (15¢) and the odd functions of in Eq. (15b), that is and(15b). N _

A=C=G=0, are inserted into the boundary conditiofBqs. ~ Using the sets of boundary conditions given by Ed$)—(18)

(17a)) a set of algebraic equations fBf D, andH are obtained, and following the same procedure, characteristic equations for
and A and corner functions can be derived for Mindlin plate

,()‘Jrl)“ A ,()\_1)0‘ theory for arbitrary boundary conditions along the two intersect-
Mi-v)Beos— yDeos—5—=0 (1% ing edges. Table 1 summarizes the characteristic equations for all

ten possible combinations of boundary conditions. It is found that

B COS(?\+1)017 b cos(xil)a o (1) the first of the two equations shown in Table 1 for both edges

2 Y 2 simply supportedS) is identical to that arising from thin plate

_ theory, but all other cases yield equations that are significantly
(Mo different. As described above, the second characteristic equation
H cos———=0 (1%)  for transverse shear stress resultants in each case, which is ac-

counting for the transverse shear stress, does not arise in thin plate
where y=y(vA+1)—(A—1). For a nontrivial solution, the de- theory. In the Appendix, the Mindlin corner functions for the dif-
terminant of the coefficients of Eq$19a)—(19c) must vanish. ferent combinations of free, simply supporté8 and $), and
That is, clamped radial edge conditions are summarized.

Journal of Applied Mechanics JANUARY 2005, Vol. 72 / 3



Table 1 Characteristic equations of N, and ):k for different boundary conditions based on
Mindlin plate theory

Boundary Condition

6=0 0=a Characteristic equation
Clamped Clamped

. 1+v . =
sinA\ga==* 35 A¢Sing, sin\+1)a=0

Clamped Simply supporte(b) 1+ _
sin 2\.a= —(E))\k sin2a, sin(\+1)a=0
Clamped Simply supporte(&*) 2 4—(1+v2\2sifa | —
Sl )\ka—W, sin\+1)a=0
Clamped Free 2 4—(1+v)AZsir? —

. - Sin \ya= W; cog\t+1)a=0
Simply supportedS) Simply supportedS) COS\a=FC0Sa, SinQ\y+1)a=0
Simply supportedS) Simply supportedS*) sin 2ya=\,sin 2, sin(+1)a=0
Simply supportedS) _ Free sin 2y =\ sin 2a, cosfy+1)a=0
Simply supportedS") Simply supportedS*) sin\a=F\sina, sin(\+1)a=0
Simply supportedS*) Free sin\a=F\sina, cosfy+1)a=0
Free Free

sin\a=FN\sine, sin(\+1)a=0

Discussion of Stress Singularities at Reentrant Corners  Figure 1 shows a plot of the minimum real partshoés func-
of Mindlin Plates tion of « arising from the characteristic equations shown in Table
] ) ) . ~ 1. In constructing Fig. 1 the Poisson ratichas been set to 0.3.

When the displacement functions given in EE) are substi- Tpe cusps arise in the curves because only the minimum roots are
tut_ed into Eq«(3), the bending and twisting moment resultants argngwn. A study of Fig. 1 reveals that for vertex angles be-
written as tween 180 and 360 deg, all the cases considered have the bending
and twisting moment singularities; that is, E86) shows that this
occurs whenn<1. On the other hand, regardless of the radial edge

M.=Dr1 (x W v, conditions of the Mindlin sectorial plates, there is no moment
1= Dr A+ ¥+ 90 singularity if the vertex angle is less than 63 deg. The moment
singularities are present at>90 deg for simply supportedS)
M,=Dr* Y (vA+1)¥ +% (26)
o T 325 I — e
i | ) {
200 s Eeasms
(1-vD 4 adi D ; PR
Mr,,——r B ()\—l)\I’(ﬁ- —_— LA RN |Case No. Boundary Conditions [
2 ae 275 T 1 $-S
e | 2 C-F,CS
I AT 3 S-F,S-§
250 1o n S eesr
and the transverse shear stress resultants become I\ . ‘\l : s[ i 6 cd
e -
2GhP[W, + (A +1)F E SET
=k“Ghr +(N+ > ;
Qr=« [V, +( )F.] 27) p; 200 \‘\\ \\\
\ é. 175 7 ‘\l'. \ \\ » K
ﬂFz g s 3 \
Q,=K’Ghr| ¥+ ) = SRR BN
a0 150 -
e e
125 e e :
where the functionsV',, ¥,, andF, are presented in Eq§ll), ' ST ‘ =
(12), and(14). It can be recognized from E¢6) that the bending 100 mE 7
momentsM, , M,, andM,, at the vertex (=0) of intersecting o R 1Y
straight edges, according to the Mindlin theory, vary identically tc (s 4=t o < :lg
those found for classical thin plate theory, namely,rant-type R 13
singularity for 0<A<1. The transverse shear forc€ and Q, 0s0 T+ s = mm ] §
(Egs. (27)) nearr=0_of Mindlin theory vary asr™ when —1 e N e / o g
<A<0. ForA>1 and\>0, no singular moments and shear forces 025 - ’ T — =
exist at the vertex of intersecting edges according to the Mindli ;
theory. Characteristic values a0 for the rotationss, and ¢, 0.00
and\<—1 for transverse displacementalso exist, but are not 0 30 6 % 120 150 180 20 240 270 30 330 360

. Vertex angle o (deg.)
used. For such values the displacement componje®s Egs.

(15)] become infinite at =0, which is not acceptable in the physi-Fig. 1 Variation of minimum values of Re  (A) with vertex angle
cal sense. « based on Mindlin plate theory  (v=0.3)
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2755 | I
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225 e
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Fig. 2 Variation of minimum values of A with vertex angle « Fig. 3 Variation of minimum values of Re (A, with vertex angle
based on Mindlin plate theory (all ») a based on classical plate theory  (v=0.3)

singular shear forces exist at>180 deg for Case 1which in-
cludes simply supporte(s), clamped-simply supporte®), free-
free, and clamped-clamped radial edgé=or Case Awhich in-
cludes clamped-free and simply support&kHfree radial edges
the singular shear forces arise @90 deg. Whenn=360 deg,
the orders of the shear force singularities at the tip of the crack are
’em for Case 1, and%*for Case 2. It appears, from Figs. 1 and
?, that for the vertex angles greater than 180 deg, all the cases,
regardless of radial edge conditions, have singular moments and
fransverse shear forces. For clamped-free radial edges, both mo-
ment and transverse shear force singularities arise wire0

(Case 1 and clamped-simply supporté8) (Case 4 radial edges,
whereas the singular moments existaat180 deg for free-free
(Case % and clamped-clampe(Case 6 radial edges. For the
clamped-free(Case 2 and simply supportedS)-free (Case 3
radial edges, the moment singularities existaat63 deg and
a>128 deg, respectively. In all the cases except Case 1,
strength of the moment singularity at the vertex of the Mindli
sectorial plates increases with increasimgWhen =360 deg
(i.e., radial line crack the orders of the moment singularities a

i —1/2 —3/4
t2h_e 4“21:;:[1 f fg:aégsaeml for Cases 5 and &, for Cases deg_, whereas tho_se singularities on the simply suppd@getree

P — ) ~_ radial edges are introduced whet-128 deg.

The minimum values ok given in Table 1 are presented in Fig. |n order to demonstrate the types of moment and transverse

2 as a function of vertex anglke. Here, the values of are inde- shear force singularities obtained from the foregoing analysis, cal-
pendent of the Poisson ratio According to Eq.(27), transverse culations are made for characteristic values in the case where the
shear force singularities occur whare 0. Figure 2 shows clearly radial edges are both simply support@). Here, the characteris-
that the strength of this singularity at the vertex of the Mindlinic equations foix and\ [see Eqs(25)] have closed form, exact
sectorial plates increases monotonically with increasingrhe solutions. These are, for moments,

ANp=——1, (p=123...) for 0 deg=<a=<180 deg
o
(28)
T
)\q:q—+1, (g=-112...) for 180 deg= a<360 deg
(44
[
and for the transverse shear forces, Itis clear from Eqs(28) and(29) that the orders of bending and
twisting moments are™“~2 for 0 deg<a<180 deg and ~ ™'«
— sm7 for 180 deg=a<360 deg, while the order of transverse shear
AN=——1, (s=123...) for all « (29)

@ forces isr™«~1 for all a.
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Comparisons of Classical and Mindlin Plate Singulari- Clamped-Clamped Radial Edges

ties For Symmetric Modes.
One would think that the results from a moderately thick plate

theory, such as that of Mindlin, would be similar to those of the

classicalthin) plate theory and would approach them as the thick-

ness ratio becomes small. But such is not the case with the mo- L

ment singularities considered above. Not only do the Mindlin - Y €OS

characteristic equation&able ) not contain a thickness ratio, bi(r,0)=, Dyr' Wcoikﬁ 1o
but, except for the plate having the intersecting edges both simply k=1 cos—— "

supportedS), the characteristic equations are significantly differ- 2

ent. These equations for the thin plate theory are available in the
paper by Leissa et al3].
To permit direct comparison with the eigenvalias shown in

Fig. 1, the corresponding eigenvalues of thin plate theory are

shown in Fig. 3, which are the roots of their characteristic equa-

tions. One sees, for example, that CadS4S is the same curve

in both figures, as it should be, arising from the same character- =1 e

istic equation. But one sees also that Cag&%,S"-S*,S*-F) of w sin—X

Mindlin plate theory has the same curve as Cas€-€) of clas- 0 :2 Durik| — 2

sical plate theory. Remarkably, the characteristic equatidalsle olr,0) e K - (MF D

1) for all three edge combinations are identical and do not contain SIHT

v. Interestingly, the C-C plate for the Mindlin theof@ase 6 has

a curve in Fig. 1 similar to, but slightly different from the F-F

classical platgCase 5. The Poisson ratio appears in the charac-

teristic equations for both theories, but for=0 they would be +sin(\—1)6 (Alb)

identical.

Of particular interest is the relative strengths of the moment

singularities between the theories. Comparing them for the C-C

edges at, for exampla=240 deg, one sees=0.68 for Mindlin * B o

theory (Fig. 1) and A=0.74 for classical plate theorfFig. 3), W(r,g)zz Hyr " cog\+1)6 (Alc)

indicating a slightly stronger singularity for the former. The higher k=1

roots of\ contribute less, if any, singularity. But if one compares o

Cases 2, 3, and @-F,S-F,C-$ of classical theory in Fig. 3 with Wherey is given by Eq.(13).

those of Fig. 1, one sees large differencea.it is also interest-

ing to observe in Fig. 1 that, according to the Mindlin theory, the

C-F and C-3 combinationgCase 2 of intersecting edges gener-

ate moment singularities for external corners having acute angles »

greater than 63 deg; whereas in classical theory, they arise only P _2 cu™d -

for obtuse(a>90 deg and reflex(a>180 deg angles. (T, )_k:1 Kf (Mt Da
sin——/——

2

=7 CogN—1)¢ (Ala)

sin(\+1)6

For Antisymmetric Modes.

. (AN Da
Vi Sin————

i\ +1)0

Concluding Remarks

In the above work the corner functions are derived for each of
the ten possible combinations of radial edge conditions that may + yesin\—1)8 (Ald)
exist at a sharp corner, according to the Mindlin plate theory,
accounting for transverse shear deformation as well as bending
deformation. These functions are different from those of classical

(thin) plate theory for bending, not only in the functional forms, Cos(kk—l)a

but also in the eigenvaluga and\), which appear as arguments ” \ 2

in the functions. The Mindlin plate corner functions may be used ¢9(r,9):k§_‘41 Cyrk| — Wcoi?\ﬁ 1)6
to obtain accurate results for the global behavitatic deflec- N S——F——

tions, vibration frequencies, buckling loads, mode shpmds 2

moderately thick, isotropic, homogeneous plates, in the same
manner that has been carried out for thin plates when sharp cor-
ners causing moment singularities are present. +cogh,—1)0 (ALe)

It was also shown that the moment singularities arising in the k
Mindlin theory are, in some cases, significantly different from
those arising in the thin plate theory. Why this should be the case
is a topic worthy of further study.

W(r,0)= >, Gyr*isin(\+1)0 (ALf)
k=1
Appendix: Mindlin Plate Corner Functions for Various

Radial Edge Conditions Clamped-Simply Supported(S) Radial Edges

In this appendix the Mindlin plate corner functions are summa- .
rized for the possible combinations of clamped, simply supported ]
(conditions S and 9, and free radial edge conditions that are ¢i(r,0)=>, C M —sin(\+1) 6+ yf1, COIN+1) 6
examined in the present study. The corresponding characteristic k=1

equations for, and\, are given in Table 1. + Y Sin(N—1) 60—y, f1 cogA — 1) 0] (A2a)
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©

Gy(r,0)= D, Cur™ —cog A+ 1) 0~ yif 1 SN\ +1) 0
k=1

+Cog A — 1) —fy Sin(A—1) 6] (A2b)
W(r,0)= >, G Lsin(\+1)0 (A2¢)
k=1
where

f _ Sir()\k"' l)a—'yksin()\k— 1)6!
Ty [cog N+ 1) a—cog A —1)a]

(A2d)

Clamped-Simply Supported (S*) Radial Edges

©

Be(1,0)= D, Crr™{ —sin(\+1) 0~ yif o COI A+ 1) 6
k=1

+7kSin()\k— 1) 0+ ‘ykfzk Coi)\k—l)ﬁ] (A3a)

©

By(r,0)= D, Cur™[ —cog N+ 1) 0+ i f o SN+ 1) 0
k=1

+codN—1)6—fy sin(A—1)6] (A3b)
W(r,0)= >, G+ lsin(\+1)0 (A30)
k=1

where

2N cod Nt D) a—(y+ 1) (ANc—1)cogh —1)a

f2k: 2’yk)\k Sin()\k-i- 1)C¥_(’yk+ 1)(}\k_ 1)S|n()\k_ 1)a
(A3d)

Clamped-Free Radial Edges

Be(r,0)= D, Cur™{ —sin(\+1) 0+ ¥y f o COI N+ 1) 0
k=1

+ ¥ Sin(A— 1) 0=y g cog N — 1) 0] (Ada)

©

bo(r,0)= D, Cr™[—cog Ny +1)0— yf SN\ +1)0
k=1

+cogh—1)0+f5 sin(\—1)6] (Adb)

©

W(r,0)= >, G Lsin(\+1)0 (Adc)
k=1

where

f. = )\k(l_V)Sir()\k+1)a+ A‘yksin()\k—l)a
sk 'yk)\k(l_ V)COS{)\k-i- l)a+ AYk COS()\k— l)a

(A4d)
and A‘}/k= ’}/k(V)\kJF 1)_ ()\k_ 1)

Simply Supported (S)-Simply Supported (S) Radial Edges

For Symmetric Modes.
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()\kf 1)(1
Vi COS————

qsr(r,a):E rMD, cog A +1)6
k=1

()\k+ 1)C¥
COST

— Yk CogA —1)0 (A5a)

A Da
Yk COS——=——

bo(r,0)=>, D, | — sin(\ +1)0
k=1

o
CoOg N+ 1)5

+sin(h—1)8 (ASD)
w(r,0)=>, H,r M cog h+1) 0 (A5c)
=]

For Antisymmetric Modes.

Y Sin(A—1)

N| R

Sin()\k"l‘ 1)6

$i(r,0)=2, ™C,| —
Kt s\t 1) 5

+ ¥k sin(h—1) 0 (A5d)

X a
Yk Sln()\k—l)g
cog N +1)6

bo(r,0)=>, ™G, —
K s\t 1) 5

+cogA\—1)6 (A5e)

©

W(r,0)= >, Gyr*Lsin(\+1)0 (A5f)
k=1

Simply Supported (S)-Simply Supported (S*) Radial Edges

©

Ge(r,0)=>, CIM =% Sin(\+1) 6+ Y f 4 COS N +1) 0
k=1

+ Y SiN(A—1) 0+ y N (1= ) f g cON — 1) 6]
(A6a)

©

By(r,0)= D Cur™ =7 COI N+ 1) 0— Yief aie SN+ 1) 6
k=1

+00g N — 1) 8= N(1— 1) f e sin(A—1)8]  (A6b)

W(r,0)= >, Gy lsin(\+1)6 (A60)
k=1
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where

~ (DD

T (A6d)

(‘yk+ 1)(}\k_ 1)S|n()\k+ l)a— 2’yk)\k Sin()\k_ l)a

200 Y cod At 1) a+ yh(1— v)cog A — 1) ]
(A6e)

fax

Simply Supported (S)-Free Radial Edges

%

bi(r,0)= >, C™ — i SN\ + 1) 0+ 3 f 4 COIN 1) 0
k=1

+ Yk Sin()\k_ 1)0+ ’yk)\k(l_ V)f4k COS)\k_ 1) 0]
(A7a)

0

Bor,0)= >, Cr™{ —F o\ +1) 0y f g Sin(\ +1)0
k=1
+cog N —1)0—\(1—v)fg SiNN—1)6] (ATb)

W(r,0)= >, Hyr 1 cogh+1)0 (ATc)
c1

wheref, is given in Eq.(A6e).

Simply Supported (S*)-Simply Supported (S*) Radial
Edges

For Symmetric Modes.

. 12
o nesinh—1)
Gi(1,0)= >, Dyr*e| ——————cog\+1)0
K= 2Nisinn+1) 5
— Y CogA—1)0 (A8a)
. @
> % SinA—1) >
by(r,0)= D, Der| — —sin\+1)6
k=1

20isinNctH 1) 5

+sin\—1)0 (A8b)
W(r,0)= >, Hyr 1 cogh+1)0 (A8c)
c1

wherey,= (y+1) (A —1).
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— o
° Yk COg N — 1)5
bi(r,0)=> Cur| — ——— " sin(\+1)0
=

2N CO N+ 1)5

+ e sin(\—1)0 (A8d)

— o
Yk Coikk—l)g
———————cosA+ )0

bo(r,0)=>, Cr™| —
K 20 cog N+ 1) 5

+cogh—1)60 (A8e)
W(r,0)= >, Gyr™*1sin(\+1)6 (A8f)
k=1

Simply Supported (S*)-Free Radial Edges

Be(r,0)= >, CI™ —F SN+ 1) 6 Y Foy COIN+1) 6
k=1

+ ¥ SINA— 1) 0=y (1= v) f g cOg N — 1) 0]
(A9a)

©

By(1,0)= D Cur™ =7 COIN+ 1) 0+ Yief g SIN(A+1) 6
k=1

+Cog Ny —1) 0+ A(1— v)fg Sin(A—1)8]  (A9D)

©

W(r,0)= > Hyr M Lsin(h+1)0 (A9c)
k=1

where

(= cog g t+1l)a—cogn—1)a
SKT 2N sinN+ 1) a+ A (1—v)sin(A—1)a”

(A9d)
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Free-Free Radial Edges

For Symmetric Modes.

. o
> wesinh—1)
$:(r,0)=, Dy ———————cogA+1)8
Kt 2Nisinn+1) 5
— Y CoOgN—1)0 (Al0a)
- . o
* %sinh—1) >
By(r,0)= D, Der| — —sin\+1)6
k=1

20 sin\+1) 5

+sin(A\—1)0 (A10b)
W(r,0)= >, Hr "1 cogh+1)0 (A10c)
k=1
wherey,= (y+1) (A — 1)
For Antisymmetric Modes.
— o
o Y CosA—1) 5
Bi(r,0)=>, Cyrx —————————siner 1o
K=t 2\ cosNt 1) 5
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J— o
Yk CO{ N —1) 5
= cogNt+1)60

b(r,0)=, Cr™| —
Kt 2\ cosNt 1) 5

+cogh—1)6 (A109)

©

W(r,0)= >, Gyr*lsin(\+1)0 (A10f)
k=1
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Teraheriz Vibration of Short
Carbon Nanotubes Modeled as
Timoshenko Beams

J. Yoon
Short carbon nanotubes of smaller aspect ratio (say, between 10 and 50) are finding
C. Q. Ru1 significant application in nanotechnology. This paper studies vibration of such short
carbon nanotubes whose higher-order resonant frequencies fall within terahertz range.

e-mail: c.ru@ulaberta.ca 5 ! - qUETl v
Because rotary inertia and shear deformation are significant for higher-order modes of

A. Mioduchowski shorter elastic beams, the carbon nanotubes studied here are modeled as Timoshenko
beams instead of classical Euler beams. Detailed results are demonstrated for double-
Department of Mechanical Engineering, wall carbon nanotubes of aspect ratio 10, 20, or 50 based on the Timoshenko-beam model
University of Alberta, and the Euler-beam model, respectively. Comparisons between different single-beam or
Edmonton T6G 2G8, Canada double-beam models indicate that rotary inertia and shear deformation, accounted for by

the Timoshenko-beam model, have a substantial effect on higher-order resonant frequen-
cies and modes of double-wall carbon nanotubes of small aspect ratio (between 10 and
20). In particular, Timoshenoko-beam effects are significant for both large-diameter and
small-diameter double-wall carbon nanotubes, while double-beam effects characterized
by noncoaxial deflections of the inner and outer tubes are more significant for small-
diameter than large-diameter double-wall carbon nanotubes. This suggests that the
Timoshenko-beam model, rather than the Euler-beam model, is relevant for terahertz
vibration of short carbon nanotubes.DOI: 10.1115/1.179581j4

1 Introduction to the hollow structure of CNTs, short CNTs are preferred in many

Because of novel electronic properties and superior mechanif4P¢s to prever_lt undesirable kinking and buckling. .Therefore, vI-
strength, carbon nanotubé8NTS) have become the most prom_bratlonal.behawor Qf shqrt (':.NTS, say, of faspect rgtlo between .10
ising candidate materials for nanoelectronics, nanodevices, @l 50, is of practical significance. In this case, intertube radial
nanocompositefLl—8]. Mechanical behavior of CNTs, including displacements of MWNTSs, which are ignored by the existing
vibrational behavior, has been the subject of numerous rec&ifigle elastic-beam modgl1-14, could come to play a signifi-
studies. Since controlled experiments at nanoscale are difficaént role. Recently, we have studied the role of interlayer radial
and molecular dynamics simulations remain expensive and forndisplacements in transverse vibration of MWNT$,17] based on
dable for large scale systems, continuum mechanics models, sactimple linear model of multiple elastic beams. Our results show
as the classical Euler elastic-beam model, have been effectiveiyt noncoaxial intertube vibration of MWNTSs will be excited at
used to study overall mechanical deformation of CNTs, such @grahigh frequenciesabove 1 THx at which the characteristic
static deflection, column buckling, resonant frequencies agghyelength of vibrational modes is just a few times the outermost
modes, and sound-wave propagatifh10]. In particular, the giameter of MWNTs. For instance, for a shorter 1.4 nm dia
single elastic-beam model, which ignores intertube radial dia'ouble-wall carbon nanotul®WNT) of aspect ratio between 10
placements and the related internal degrees of freedom, has bg 5 20, the wavelength of the higher-ordsay, third, fourth, or

used to study static and dynamic behavior of multiwall nanotub(ﬁﬁh) modes are just a few times the outermost diameter and the

(MWNTSs) [11-14. As shown in[15] for column buckling of . Sl . ; .
MWNTs and[16,17 for vibration of MWNTs, such a simplified associated vibrational modes are substantially noncoaxial. In this
' ' case, the existing single-beam model of coaxial vibration fails,

model is adequate for MWNT of larger aspect rafiength-to-
diameter ratid. and a more relevant model that considers noncoaxial intertube
Many proposed applications and designs of CNTs, however, d@glial displacements of MWNTs is required. These results, first
involved with short CNTs of aspect ratio down to 10, or periodipredicted by a simple linear multiple-beam mod&6,17, are
cally supported CNTs with finite spans. Such examples includeund to agree well with more recent atomistic simulations
suspended crossing CNTs with spans about 20(hInCNTs as [21,27 on noncoaxial vibration of MWNTSs. Since noncoaxial dis-
single-electron transistors of length down to 20 2l MWNTS  tortion could significantly affect some important physitsich as
of aspect ratio around 20about 300 nm long and 10-20 NMglectronic and opticalproperties of MWNTS, the study of nonco-
%’mg): ’\T_Is_ ﬁ;i%:ﬁ;if;%uosrw?ggggofb;c')si)kesctlTagin;iljr?[tjrl%%cs axial vibration is relevant to terahertz vibration of short MWNTSs.
’ - X . . Another relevant issue to be clarified is the effect of rotar
and CNTs of aspect ratio about 10-25 as AFM§8,20. Owing inertia and shear deformation in terahertz vibrations of sho):t

— CNTs. It is well known that rotary inertia and shear deformation,
To whom correspondence should be addressed. . . . .
Contributed by the Applied Mechanics Division of AMERICAN SocieTy oF ~ Which are ignored in the classical Euler-beam model, would be-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  come substantial for vibration of elastic beams when the charac-

CHANICS. Manuscript received by the Applied Mechanics Division, April 16, 2003; . _+: P . . . R
final revision; May 15, 2004. Associate Editor: A. A. Ferri. Discussion on the papg’\rlstIC wavelength is just a few times the diameter of their cross

should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appli&ection[23—26. For this reason, the relevance of the classical
Mechanics, Department of Mechanical and Environmental Engineering, Univers@yyler-beam model to short CNTs is questionable. To clarify this

of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep . . . . . .
until four months after final publication of the paper itself in the ASMEJBNAL OF E%ue' vibration of short DWNTs is studied in this paper based on

APPLIED MECHANICS. the double elastic-beam model developellif—17. Unlike pre-
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vious work [15-17, however, CNTs in the present paper ar@bout 0.6—0.7 for thin-walled circular cross-sections and 0.9 for
modeled as Timoshenko beams, instead of classical Euler beaswdid circular cross-sectiof5,26|.

The major goal of this study is to identify the cases in which the Let us apply Eq(1) to each of the inner and outer tubes of a
Euler-beam model leads to substantial errors, and thus, the mBM/NT. Thus, transverse vibration of a DWNT, of lendthand
relevant Timoshenko-beam model is required, and also to coouter diameterd (Fig. 1), is described by the following four
pare the Timoshenko-beam effects with the double-beam effeetguations
studied in[15-17. To this end, detailed results are demonstrated

X 2 2
based on the Timoshenko-beam model, as well as the Euler-beam —KAG %_ 97, +p=pA 974
model. As will be shown below, the results show that the rotary 1 X 9x? P ot2
inertia and shear deformation have a substantial effect on higher-
order resonant frequenciéwithin terahertz rangeof DWNTs of 9@, aYq 9@,
smaller aspect ratio(between 10 and 20 Therefore, the Ely 2 —kAG| o1 — | =pl 2
Timoshenko-beam model, rather than the Euler-beam model, 2)
should be used for terahertz vibrations of short CNTs. A e Y, A Y,
22\ Tox o2 P=pAz 12

2 Double Timoshenko-Beam Model Por oY, Py

Many prior studies showed that the classical Euler elastic beam Ely P kAZG( ¥ W) —Pl2 at2

offers a reliable model for overall mechanical deformation of
CNTs when its characteristic wavelength is much larger than théereY;(x,t) ande;(x,t) (j=1,2) are the total deflection and the
diameter{10]. For example, static deflection of CNTs under poinslope due to bending of thigh nanotubej; andA; are the mo-
load is found to be well predicted by the beam mofdel], and ment of inertia and the area of the cross-section ofjthdube,
resonant frequencies and vibational modes of CNTs given by there the subscripts 1, 2 are used to denote the quantities of the
cantilever-beam model are in good agreement with experimeniaher and outer tubes, respectivetyjs the van der Waals inter-
data[13]. In particular, because elastic-beam models give simpéetion pressure between the two tubes per unit axial length, and
general formulas in many important cases, such as critical strése two tubes have the same Young’s moduks 1 TPa and
for column buckling, resonant frequencies, and sound speeds, esbgar modulu§ = 0.4 Tpa(with Poisson ratiov=0.25, with the
which clearly indicate major factors affecting mechanical behaeffective thickness of single-walled nanotubes, 0.35 nm. In addi-
ior of CNTs, they have the potential to identify key parameteition, the dependence of the shear coefficierdn the radius is
and predict new physical phenomena. neglected for DWNTSs, and we take=0.8. Here, it should be

So far, to our knowledge, all elastic-beam models used fonentioned that a mass densjiy=1.3 g/cn?, based on a slightly
CNTs are based on the classical Euler-beam model. The presdifferent definition(p. 724 of[30]), has been used in our previous
paper studies vibration of short DWNTJ27-29, as shown in Fig. papers16,17. To be consistent with the definitions of the effec-
1, based on the Timoshenko-beam model. In addition, unlike tkige thickness and the Young’s modulus listed above, the mass
single-beam mod¢ll1-14 which assumes that all originally con-density of graphite is used in the present paper. Therefore,
centric tubes of a MWNT remain exactly coaxial during vibratiothroughout this paper, we shall use the mass depsit.3 glen?
and thus can be described by a single deflection curve, the predémt graphitg.
analysis considers interlayer radial displacements within thelt is noticed that the deflections of the two tubes are coupled
MWNT and assumes that each individual tube of MWNTSs has dhrough the van der Waals intertube interactrSince the inner
individual deflection curve, which is not necessarily coinciderind outer tubes of a DWNT are originally concentric and the van
with the deflection curves of other nested tubes of the MWNTer Waals interaction is determined by the interlayer spacing be-
Thus, each of the inner and outer tubes of DWNTSs is modeled &geen two tubes, the net van der Waals interaction pressure re-
a Timoshenko-elastic beam. It is known that the total deflectionains zero for each of the tubes if they vibrate coaxially and, thus,
Y(x,t) of a Timoshenko beam, and the slopéx,t) of the beam share the same deflection curve. Hence, the van der Waals inter-
due to bending deformation alone are determined by the followimgtion plays no role in the single-beam model for isolated

two coupled equationg23—-26: DWNTs. For the double-beam moddl5—-17, however, the inner
p 2 22y and outer tubes are described by two individual deflection curves,
—KAG 9% _) p=pA— which are not necessarily coincident. Therefore, for small-
)4 2 t2 amplitude non-coaxial linear vibration, the van der Waals interac-
@) tion pressure at any positiox between the two tubes depends
7 P linearly the difference of their deflection curves at that position,
P(X)=c[Y2(X)=Y1(X)] 3)

wherex is the axial coordinaté, is time,| andA are the moment
of inertia and the area of the cross-section of the bgais,the wherec is the intertube van der Waals interaction coefficient. In
distributed pressure per unit axial length,and G are Young's particular, the coefficients can be estimated based on an effec-
modulus and shear modulus, respectivelys the mass density tive interaction width (2) of the tubegwherer is the inner radius
per unit volume, and is the so-called shear coefficient which isof DWNTSs) as[15,17]

~200%(2r) erg/ent
0.16D2

7 Thus, substitution of3) into (2) leads to four coupled equations
[()P d for four unknownsY;(x,t) and¢;(x,t) (j=1,2).

3 Resonant Frequencies of DWNT

, (D=0.142 nm 4

L . . .
! ! Here, to isolate the effects of shear deformation and rotary in-
ertia on resonant frequenciésather than resonant modesve
Fig. 1 Vibration of a short doublewall carbon nanotube consider the case in which the inner and outer tubes of the DWNT
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are simply supported. In this case, vibrational modes of thwherea; anda, represent the amplitudes of deflections of the

DWNT are of the form[21,22 inner and the outer tubes, abg andb, represent the amplitudes
ot . n7X of the slopes of the inner and outer tubes due to bending defor-
Yj=a;e'“ sin mation alone, respectively. In addition, integer n is the mode-
L
_ nex =12 () number, andw is the circular frequency. Substitution () into
@j=b;e'! cos—— (2) with (3), one has
|
i nar\? nw 7
pA 0’ —KkAG| —| —c kAG| — c 0
L L
n 5 na\? a,
kAl L p|1w _Ell T _kA]_G O 0
by
) =0
nm a
o 0 pA,w? —kAZG T —C kA,G T b,
na\2
0 0 kA,G plo,w?>—El, T —kA,G
) ) ©)

Thus, the resonant frequencies are determined by the eigenequa-DT: the double-Timoshenko beat®T) model described by
tion obtained by setting the determinant of the coefficient matrix (2), which gives fourn-order frequenciesf,;<f,,<f.3

of (6) to zero. It is readily seen that for given order numbgethe <foa;

present double-Timoshenko-beam model gives feorder reso- « DE: the double-Euler beatDE) model described ih16,17]
nance frequencies, in contrast to twarder resonant frequencies which treats each of the inner and outer tubes of the DWNT
given by the single-Timoshenko-beam modi28], two n-order as a single Euler beam and gives twarder frequencies,
resonant frequencies given by the double Euler-beam model 1<foo;

[16,17], and the singlerorder resonance frequency given by the , gT- the single-Timoshenko beaf8T) model that treats the

single Euler-_beam model._ In particular, the singJerder resonant DWNT as a single Timoshenko beam described By with
frequency given by the single Euler-beam modé|l1ig] I=1,+1, and A=A, +A,, and gives twon-order frequen-
cies,f 1 <f..;
wn1 , )\ﬁEI e SE: the single-Euler beat8E) model that gives the single
fru=2_" ©n1=,A)" (1) n-order frequencyf,; (7).

The n-order frequencies given by the different models are dis-
tinguished by DTXDT2<DT3<DT4, DEI1<DE2, STKST2, or

SE, when necessary. All nine-order frequencies given by the
St'our different models are shown in Figs. 2—7 for a DWNT of the
inner diameter 0.7 nm or 7 nm and aspect ratio 10, 20, or 50,

DWNT. . respectively. All frequencies are shown as a function of the mode
In what follows, the resonant frequenéy- w/(2) .Of simply numbermn, fromn=1 ton=10, whereL/d is the aspect ratio. It is
supported DWNTSs is calculated based on four different EIas?ound from Figs. 2—7 that:

beam models:

where\,=(n/L) for simply supported beams

wherel andA are the total moment of inertia and the total cros
sectional area of MWNT. Thus=1,+1, andA=A;+A, for a

13.2 [ Log(fHz) . .
3 ¢ © © o -
......................... IV "SR

128 0T O O T e ST VM M N N M X X

—6—DT1 —8—DT2
—4A—DT3 —©—DT4
cecpe- ST1 --X-- ST2
--+--DE1 --=--DE2
—»—SE 4

——DTl —5—DT2
—A—DT3 —6—DT4
-+ STI ==X+ ST2
-+ DEl --=- DE2
—»—SE

11

11.2

1 2 3 4 5 .8 7 8 9 10 * 2 3 4 5 . ® ’ 8 4 10

Fig. 2 DWNT frequencies for the inner radius 0.35 nm and Fig. 3 DWNT frequencies for the inner radius 0.35 nm and
L/d=10 L/d=20
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Fig. 4 DWNT frequencies for the inner radius 0.35 nm and
L/d=50
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1. The lowesh-order frequencyf,; increases quickly with in-

12.1

‘L Log(f/Hz)

creasing mode numbar, while other highern-order fre-
quenciesf,, (k>1) are not sensitive to the numberespe-
cially for n smaller than 3 or 4.

. For all examples considered here, the four lowest first-order

frequencyfy, given by the four different models are very o
close to each other and almost indistinguishable. For ex-
ample, for DWNT of inner-diameter 0.7 nm and aspect ratio
10, the lowest first-order frequendy; given by the four
models DT, DE, ST, and SE are 0.0728 THz, 0.0745 THz,
0.0731 THz, and 0.0746 THz, respectively. On the other
hand, for DWNT of inner diameter 7 nm and aspect ratio 10,

1.7

1.3 ¢

10.9

10.5

10.1

Fig. 5 DWNT frequencies for the inner radius 3.5 nm and

=10

—o—DT1 —8-—DT2
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~-+-- ST1 --X-- ST2
--+--DE1 --=--DE2
—»—SE
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1.5 1
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Fig. 6 DWNT frequencies for the inner radius 3.5 nm and

=20

—o—DTl —5—DT2
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--+--DEl --#--DE2
—»—SE

1

2 3 4 5 6 7 8 9 10
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Fig. 7 DWNT frequencies for the inner radius 3.5 nm and
L/d=

50

the lowest first-order frequendy; given by the four models
are 0.141 THz, 0.144 THz, 0.141 THz, and 0.144 THz, re-
spectively. In addition, the small differences of the lowest
first-order frequencies given by the four different models
further diminish with increasing aspect ratio of DWNTSs.

For the mode-number=1, beside the lowest first-order fre-
guency, the DT model gives three higher frequencies, while
the ST model and the DE model give another higher fre-
quency, respectively. It is seen that the second first-order
frequencyf,, given by the DT model corresponds to the
second first-order frequency given by the DE model for
smaller radii(Figs. 2—4, and the third first-order frequency
f13 given by the DT model is close to the second first-order
frequency given by the ST model for larger ragigs. 5-7.
These higher first-order frequencies={1) are character-
ized by substantial shear deformation or noncoaxial deflec-
tions of the inner and outer tubé¢as will be demonstrated
below) and are at least one order of magnitude higher than
the lowest first-order frequency. Hence, if only the single
lowest resonant frequendy; is concerned, the lowest first-
order frequency given by the SE mod@) for n=1 is ac-
curate enough, and any double-beam model or Timoshenko-
beam model is not needed.

. This conclusion remains qualitatively true even for the first

few higher-order frequenciem &3, 4, 5, or even higher
when the aspect ratio is largésay, =50). Indeed, when
L/d=50, it is seen from Figs. 4 and 7 that the four lowest
n-order frequencies given by the four different models for
the mode-numben up to 10 are very close to each other.
Hence, it is concluded that the lowesbrder frequencyf ,;

for n up to 10 can be estimated satisfactorily by the SE-
model(7) provided that the aspect ratio of DWNTs is suffi-
ciently large(say, =50).

. However, when the aspect ratio is relatively small, say be-

tween 10 and 20, it is seen from Figs. 2, 3, 5, and 6 that the
lowestn-order (such an=3, 4, or 5 frequencied ,; given

by the DT, ST, and DE models are substantially lower than
that given by the SE modé¥). For example, for DWNT of
inner diameter 0.7 nm and aspect ratio 10, the lowest fourth-
order frequency r{=4) given by the four models DT, DE,
ST, and SE are 0.861 THz, 1.00 THz, 0.940 THz, and 1.19
THz, respectively, and the lowest fifth-order frequeney (
=5) given by the four models DT, DE, ST, and SE are 1.18
THz, 1.37 THz, 1.34 THz, and 1.86 THz, respectively. In
addition, for DWNT of inner diameter 7 nm and aspect ratio
10, the lowest fourth-order frequencyn£4) given by the
four models DT, DE, ST, and SE are 0.177 THz, 0.231 THz,
0.178 THz, and 0.231 THz, respectively, and the lowest
fifth-order frequency(n=5) given by the four models
(DT,DE,ST,SE are 0.252 THz, 0.360 THz, 0.252 THz, and
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0.361 THz, respectively. Therefore, the single Euler-beam  (with inner diameter 0.6—0.9 nm and outer diameter 1.3-1.6
(SE) model (7), used widely in the literature, leads to sub- nm, sed27-29), the double-beam effects are significant for
stantial errors for the lowest-order resonant frequencies short DWNTSs.

fo1 for n>1, (such asn=3, 4, or 5 of short DWNTs of

aspect ratio below 20. 4 Shear Deformation and Noncoaxial Deflections

6. Finally, because both the Timoshenko-beam mé2ie+-24 Let us now discuss the effects of the Timoshenko-beam model,

and the double-beam modl0,16,17 are significant only 5" \vel| as the double-beam model, on the deflection curves of

W_hen the character_ist_ic _Wavele_ngth is just a few times .ﬂB\NNTs. The contribution of shear deformation to the total deflec-
diameter of CNTs, it is interesting to compare the relat|Vﬁ0n slope is defined by

importance of the Timoshenko-beam effect and the double-
beam effect. It is anticipated that the role of intertube dis- dy L

placements of MWNTs is more significant for small- 0=¢— dx e cosT ®
diameter than large-diameter CNT46,17 (because the

amplitude of the intertube radial displacements is of the owhere y represents the amplitude of shear deformation. Obvi-
der of magnitude of the intertube spacing, they are signifously, for the single-Euler-beat®E) model, the deflection curves
cant only compared to the deflections of small-diamet@f the inner and outer tubes are exactly the same and the shear
CNTs, but not to the deflections of large-diameter CNTsdeformation 6(x,t) is identically zero, thusa,=a,, b;=b,
Indeed, it is seen from Figs. 2 and 3 that the lowestder =a;(n=/L) and y,=vy,=0. However, when the Timoshenko-
frequencied ,; (for n>1) given by the double-beam mod-beam model is adopted, shear deformation and rotary intertia are
els (DT and DB for small-diameter DWNTs are signifi- taken into account, which given rise to nonzero shear deformation
cantly different from those given by the single-beam modelg. On the other hand, the double-beam model accounts for inter-
(ST,SB. For larger-diameter DWNTs, however, it is seerube radial displacement between the inner and outer tubes and
from Figs. 5 and 6 that the double-beam mod@&3) and thus can quantify the difference between tmoncoaxial deflec-

(DE) give almost the same lowestorder frequencies,; tion curves @;#a,). Therefore, the effects of the Timoshenko
(for n>1) as those given by the single-beam modelseam and the double beam can be studied by examining the ratio
(ST,SB. On the other hand, the effects of the Timoshenka; /a,, which indicates the degree of the noncoincidence of the
beam are significant for all DWNTs of smaller aspect ratideflections of the two tubes, and the rajig/b,, which indicates
(Figs. 2, 3, 5, and 6 regardless of their radii. Therefore, it isthe relative amplitude of the shear deformation of the outer tube
concluded that both the Timoshenko-beam effects and thé DWNTSs (the result for the inner tube is qualitatively similar
double-beam effects are significant for CNTs of smaller asnd thus not included herdt follows from (2), (5), and(8) that

pect ratio(around or below 20 while the double-beam ef- the deflection amplitude ratio of the inner to the outer tubes and
fects are further restricted to small-diameter DWNTs. Dehe ratio of the outer tube’s shear deformation to its deflection
spite this, because the radii of DWNTs are usually smadlope due to bending deformation are given by

a (KAGB)?— (pArw? —kAG B~ ) (pl r0*— El, 87— KAG)

a 2_ 2_
2 , ) C(p|2w Elzﬁ kAzG) ’ (B:n’ﬂ'/l_) (9)
2 _la(po”™—EBY)
P2 kAG
[
In what follows, the rati@, /a, given by the DT model and DE curves of the inner and outer tubes are no longer coincident
model for the lower twan-order frequencies are shown in Figs. 8 in these cases. However, for larger aspect r&t) or larger

and 9 and Figs. 10 and 11, respectively, for the examples consid- inner radius(3.5 nm), it is seen from Figs. 8 and 10 that the

ered in Figs. 2—7. Here, because the seasodder frequency ,,
given by the DT model corresponds to the secorarder fre-
qguency given by DE model only for smaller radiiee Section )3

the results for the seconatorder frequencies given by the DT
model and the DE model are demonstrated only for small radius
0.35 nm(Figs. 9 and 1 Related data for the ratig, /b, given

by the DT model and the ST-model for allorder frequencies are 1s
shown in Figs. 12—-15 and Figs. 16 and 17, respectively. It i
found from Figs. 8—17 that: "

1. The amplitude ratioa;/a, corresponding to the lowest
(first-ordep frequencyfq,, as shown in Fig. 8 for the DT
model and Fig. 10 for the DE model, are always very close
to unity for all examples considered here. This indicates the
the deflection curves of the inner and outer tubes for the
lowest (first-orded frequencyf;; are almost coincident and
thus the vibration of the DWNT is almost coaxial at the *
lowest (first-orde) frequencyf ;.

amplitude ratica, /a, for the lowest-order frequencie$,;
with n>3 is still very close to unity and thus the deflection
curves of the inner and outer tubes are still almost coinci-

Amplitude ratio(a,/ay)

—e—r=0.35nm,L/d=10
—8-r=0.35nm,L/d=20
——r=0.35nm,L/d=50
—¢r=3.5nm,1/d=10
—%—r=3.5nm,L/d=20

—+—r=3.5nm,L/d=50 r=0.35nm L/d=50,

r=3.5nm L/d=10,20,50

2. For the lowesn-order frequencie$,; with n>3, itis seen ¢

from Figs. 8 and 10 that the associated amplitude ratio '
a, /a, is no longer close to unity for small-diameter DWNTsrig.

3 4 5 6 7 8 9 10

8 DWNT amplitude ratio (a,/a,) for f,; using a double-

of aspect ratio 10 or 20, which indicates that the deflectiofimoshenko-beam model
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o

Fig. 9 DWNT amplitude ratio (a,/a,) for f,, using a double-
Timoshenko-beam model

Fig. 10 DWNT amplitude ratio
Euler-beam model

0

Amplitude ratio(a,/a,)

—o—r=0.35nm,L/d=10
—&-r=0.35nm,L/d=20
—#— r=0.35nm,L/d=50

0

2 3 4 5 6 7 8 9 10 -4

dent. Consistent with Section 3, these results also confirm

that the effect of the double-beam model is significant only
for small-diameter CNTs of smaller aspect ratio. Here it is
noticed from Figs. 8 and 10 that the ratig/a, for the
lowest n-order frequency withn>1 of small-diameter
DWNTs given by the DT model and the DE model are quali-
tatively similar, but quantitatively different.

. On the other hand, the amplitude radip/a, of other higher
n-order frequency f(, with k>1) is not close to unity. For
example, for small-diameter DWNTS, it is seen from Figs. 9
and 11 that the amplitude rate, /a, of the second-order
frequencyf,, is always negative, which indicates that the
deflection of the inner tube is simply opposite to the deflec-
tion of the outer tube, and thus vibration of the DWNT is
substantially noncoaxial. It is seen that from Figs. 2—7 that

Amplitude ratio(a,/a,)

N

—o—r=0.35nm, L/d=10
—8-r=0.35nm, L/d=20
—&—r=0.35nm, L/d=50
—r=3.5nm, L/d=10
—%—r=3.5nm, L/d=20
—+—r=3.5nm, L/d=50
r=0.35nm,L/d=50,

r=3.50m, L/d=10,2@E

1 2 3 4 5

(ay/a,) for f,; using a double-

Amplitude ratio(y,/b,)
0

——~r=0.35nm,L/d=10
—8~r=0.350m,L/d=20
——r=0.35nm,L/d=50
—¢r1=3.5nm,L/d=10
—%—1=3.50m,L/d=20
~—+—r=3.5nm,L/d=50

1

2 3 4 5 6 7 8 9 10

Fig. 12 DWNT amplitude ratio (y,/b,) for f,; using a double-
Timoshenko-beam model

the seconahr-order frequency ,, for all examples discussed
here is always within terahertz range. Hence, this also indi-
cates that the effects of the double-beam model are essential
for terahertz vibration of MWNTSs.

4. Now, let us discuss the relative amplitude of shear deforma-

tion. For the lowesh-order frequency ,;, the ratioy,/b,,
which represents the relative amplitude of shear deformation
of the outer tube, is negligible only for=1, or forn>1

with larger aspect ratio 50. This indicates that the shear de-
formation is significant provided that the wavelength is suf-
ficiently short, consistent with the common concepts of the
Timoshenko bean}23,24. For example, it is seen from
Figs. 12 and 16 that the six curves can almost be classified
by the wavelength, only slightly affected by the radius.

[ Amplitude ratio(y,/b,)

A -
——r=0.35nm,L/d=10 M
—&-r=0.35nm,1./d=20
—&—r=0.35nm,L/d=50
=% r=3.5nm,L/d=10
=% r=3.5nm,L/d=20
—+—r=3.5nm,L/d=50

2 3 4 5 6 7 8 9 10

Fig. 13 DWNT amplitude ratio (y,/b,) for f,, using a double-

Timoshenko-beam model

Amplitude ratio(a,/a,)

. Amplitude ratio(y,/b,)

—o—r=0.35nm, L/d=10

——r=0.35nm, L./d=20
——r=0.35nm, L/d=50

1 2 3 4 s 6 7 8 9 10

Fig. 11 DWNT amplitude ratio
Euler-beam model

(a,/a,) for f,, using a double-

Journal of Applied Mechanics

—o—r=0.35nm,L/d=10 —8-r=0.35nm,L/d=20
—4—1=0.35nm,1./d=50 —¢ r=3.50m,L/d=10
—%=r=3.50m,L/d=20 ——r=3.5nm,L/d=5

1

1 2 3 4 5 6 7 8 9 10

Fig. 14 DWNT amplitude ratio (y,/b,) for f,; using a double-
Timoshenko-beam model
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by the DT model for small diameter 0.35 nm and smaller
order numbem (up to n=4 or 5. In the latter case, as

mentioned before, the secomdorder frequencyf,, given
/ by the DT model corresponds to the secamdrder fre-
3s | e o ——e——e— quencyf ,, given by the DE model in which shear deforma-

b ) N B tion is neglected. This explains why the shear deformation is

43 Amplitude ratio(y,/b,)

—o—r=0.35nm,L/d=10 —&~r=0.35nm,L/d=20

—8r=0.35nm L/d=50 —r=3 5nm,L/d=10 negligible in this case. _ o
=3 51mL/d=20 ——r=3 5nm,L/d~50 7. Except for the above case, all other cases described in Figs.
25 * 13-15 and 17 exhibit substantial shear deformation charac-

w terized by large absolute values of the rajig/b,. In par-
ticular, it is seen from Figs. 13—15 and 17 that the six curves

shown there can almost be classified by the radius, only

s s ; . p p ; s s " moderately affected by the wavelength. This indicates that,
unlike the vibration of the lowesh-order frequencyf

Fig. 15 DWNT amplitude ratio (y,/b,) for f,, using a double- which largely depends on the wavelength, the vibration of

Timoshenko-beam model the highern-order frequencies$,, (with k>1) is not sensi-

tive to the wavelength. This conclusion is consistent to simi-
lar results obtained in the analysis of resonant frequencies

5. For small aspect ratitl0 and 20 and higher mode number given in Section 3.
n>3, it is seen from Figs. 12 and 16 that the shear defor-
mation has a substantial effect on the deflections even for the
lowestn-order frequencyf,,;. For example, it is seen from
Figs. 12 and 16 that the absolute value of the ratidb, is
larger than unity for small aspect ratigd= 10, and is about 5 cgnclusions
25% for moderate aspect ratidd= 20, almost regardless of o ) ] )
the radius. In these cases, the shear deformation, which id-ree vibration of short DWNTs is studied using a double-
neglected by the classical Eulerbeam model, is significahtmoshenko-beam model, which considers intertube radial dis-
and cannot be neglected. placements between the inner and outer tubes and treats the inner

6. It is seen from Figs. 13—15 and 17 that almost all highend outer tubes as two individual Timoshenko beams. The results
n-order frequenciesf(, with k>1) are characterized by indicate that both the Timoshenko-beam effect and the double
substantial shear deformation, with the only exception dé&eam effect are significant when the wavelength of DWNTSs is just
scribed in Fig. 13 for the secomdorder frequency ,, given a few times larger than the outer diameter of DWNTSs. In particu-

lar, it is the case when the higher-order frequencieihin the
terahertz rangeof short DWNTs(of smaller aspect ratio around
Amplitude ratio(v/b or below 20 are considered. Furthermore, th_e r_e_sults show that
plitade ratioQ®) the effects of the double beam are more significant for small-

diameter than for large-diameter DWNTSs, while the Timoshenko-
beam effects are significant for both large-diameter and small-
diameter DWNTs. This is attributed to the fact that the double-

beam effects become significant only when the amplitude of
interlayer radial displacementg/hich are of the order of the in-
terlayer spacing is comparable to the overall deflections of
MWNTs (which are of the order of the radiuBecause the radii

—o—r=0.35nm, L/d=10
—&-r=0.350m, L/d=20
——r=0.35nm, L/d=50
2 —¢r=3.5nm, L/d=10

—%—r=3.5nm, L/d=20 of DWNTSs are usually small, the double-beam effects play a sig-
—+—r=3.5nm, L/d=50 nificant role in free vibration of short DWNTSs. Hence, the effects

of the Timoshenko beam and the double beam are relevant for
-3 terahertz vibration of short MWNTs of aspect ratio below or

1 2 3 4 5 6 7 8 9 10

around 20. On the other hand, if only the single lowésst-

Fig. 16 DWNT amplitude ratio (y/b) for f,, using a single-  ©Ordep resonant frequency is concerned, the classical single Euler-
Timoshenko-beam model beam model is accurate enough, any double-beam or Timoshenko-
beam model is not needed even for short MWNTSs.

Here it should be stated that the present work is limited to
small-amplitude linear free vibration of simply supported
DWNTs. Although there is evidendas stated in the present pa-
pen that noncoaxial vibrational frequencies and modes first pre-
dicted by the simple linear double-beam model are found to agree
well with more recent atomistic simulations, the nonlinearity of
the intertube van der Waals interactiomhich is not considered
by the present linear modelould play a significant role in mod-
11F erate or large amplitude noncoaxial vibration of MWNTSs. In ad-

dition, further study is needed for the effects of the Timoshenko-
____, beam model on the natural modes of MWNTs with other end
conditions(such as clamped or cantilever MWNTSs, or different
end conditions for the inner and outer tupesnd forced vibra-
tions of MWNTSs, especially under impulsive loading. Finally, the
Fig. 17 DWNT amplitude ratio (y/b) for f,, using a single- role of internal damping in ultrahigh-frequency noncoaxial vibra-
Timoshenko-beam model tion of MWNTSs is also of interest for future work.

13 | Amplitude ratio(y/b)

—o—r=0.35nm, L/d=10
—~8-r=0.35nm, L/d=20
—&~1=0.35nm, L/d=50
12 - —er=3.5nm, L/d=10
—%=r=3.5nm, L/d=20
—+1=3.5nm, L/d=50

1 3

1 2 3 4 s 6 7 8 9 10
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MS231, This study is motivated by the need for an efficient and accurate tool to analyze the wave
Hampton, VA 23681-0001 field produced by localized dynamic sources on the surface or the interior of isotropic
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1 Introduction be found in[11]. An extensive review of published research on
Elastic waves generated by foreign object impact and initiati Iovr\g \éeel(?gﬁﬁ;?,{vlvg]lf as ballistic impact on laminated composites
or growth of fatigue cracks in aircraft, aerospace, and civil struc- The exact solution of three-dimensional problems consisting of
tures carry useful information about the nature of the damaggultilayered, angle-ply laminates of finite thickness and large lat-
associated with these events. A clear understanding of the quastal dimensions subjected to various types of surface loads, has
tative relationship between the waves and their sources is esserigegn given if6—8]. In these papers, the response problem was
in developing algorithms for detecting and characterizing tHermulated using triple integral transforms involving one in time
damage. Model-based analysis of the wave form signals recordtl two in space, leading to an exact representation of the elasto-
by surface mounted or embedded sensors located in the vicinitydnamic field in the transformed frequency—wave number do-

the sources can lead to the development of an effective hedf§IN- The inversion of the transforms required numerical evalua-
monitoring system for a variety of structures. tion of a double wave number integral followed by frequency

The general features of elastic waves that can be transmitted PE>10N UsiNg the fast Fourier transform algorithm. The main

. h : ) Lo computational effort in this approach involves the accurate evalu-
isotropic and anisotropic plates have been studied in great detcﬁ|[:]p PP

; ) n of the double wave-number integral. The evaluation of this
over the past several decadés?]. These studies were motivated,iniagral is extremely difficult due to the presence of singularities

in part, by the need to understand the nature of ultrasonic wavgghin the integration domain and the highly oscillatory nature of
that can be transmitted in structural compondBis In contrast, the integrands at higher frequencies and large distances between
the literature on the response of anisotropic plates to buried the field and source points.

surface sources that are representative of imapact or fatigue damAlthough several efficient and accurate methods are available to
age is relatively sparsp4—8|. Approximate thin-plate theories, evaluate the single wave-number integrals which arise for two-
such as classical plate theof@PT, under Kirchoff-Love kine- dimensional problemd;13,14, no such algorithm is available to
matic assumptionand shear deformation plate thed§DPT) or date to evaluate the double wave number integrals that appear in

Mindlin theory have been developed to obtain the analytical solfl€ corresponding three-dimensional problems. The conventional

tion to a variety of problems involving the dynamic response A?tegratlon schemete.g., Simpson, Gaussian, Clenshaw-Curtis,

- . . : ) etc) require millions of function evaluations, resulting in ex-
thin isotropic and anisotropic laminated plaf€s10]. A compre- tremely slow turnaround time. An “adaptive surface-fitting

hensive review of recent research on guided waves in composi§eme” using material dissipation was used 8] to evaluate
plates and their use in nondestructive material characterization ¢ga double integral for dissipative media. However, the computa-
tional effort is still quite large to achieve the desired degree of
*To whom correspondence should be addressed. accuracy due to its two-dimensional nature and the presence of
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be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechagnalyze this class of problems and a dynamic finite element code

ics, Department of Mechanical and Environmental Engineering, University ; ; el
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepTS{e%S been developed by NIST for the calculation of acoustic emis
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and analytical predictions for a variety of source conditions ky
and plate dimensions in isotropic materials. Although the

FEM can handle complex geometries and has the capability to A
accommodate reflections from the lateral boundaries, it is compu-
tationally much more intensive than the analytical methods
discussed above.

A method for relatively rapid calculation of the wave forms
generated by localized dynamic sources in isotropic as well as
anisotropic composite plates is presented in this paper. The ASO
method involves a new scheme, in which the double integral is (g2=0)
transformed, using contour integration, into a single integral, S0
which is then evaluated numerically using conventional integra- (221=0)
tion schemes. This reduces the computational effort significantly.
The method is used to calculate the surface motion in a unidirec-
tional graphite/epoxy composite laminate due to a localized dy-
namic surface load. The results are compared with those obtained
from FEM for their mutual verification. > ik

kOrl k0r2

> Problem Formulation Iljllg_.lélz p‘ll';r:eelocus of the real roots, k,(k;) of g(ki,k;) in the
A detailed formulation of the exact and approximate theories,
SDPT and CPT, for wave field calculations in composite lami-
nates can be found elsewheg10], and will not be repeated
here. The typical wave number integral representation of the sur-
face dlsplacement in three-dimensional problems can be ex+or a given frequency, the real roots, (k;), of g(k; .k, )
pressed in the form =0 describe closed symmetric curves on kje-k, plane due to
the fact thatg is an even function of botk,; andk,. Each curve
corresponds to a fixed propagating mode. In Fig. 1, the first sym-
f(Ky,kp o) ik +ox) dk,dk 1) metric and antisymmetriCASO) modes are drawn in the positive
0 kl,kz,w) 2 quadrant for simplicity. It can be assumed, without loss of gener-
ality, that these curves are defined @py(k,,k,) =0 (symmetrig,
0s(kq,ky) =0 (antisymmetrig, where bothg, and g, are even
wherek,; and k, are the wave numbers in 1 and 2 directiondunctions ofk; andk,, and are obtained from the decomposition
respectivelyw is the circular frequency, anxh, x, are the coor- of g in the formg=g,9,. Let us assume that the functiogs
dinates of the field point. The functiofi@ndg are obtained from =0 andg,=0 cut thek; axis at the pointstky; and = kg, as
the solution of a system of linear equations of ordhl, GvhereN  shown in Fig. 1. For a givek, , the rootsk,(k;) can be expressed
is the number of layers. This integral must, in general, be the form
evaluated numerically for a large number100 of frequency
points. As indicated in the Introduction, the integrand undergoes
highly irregular and rapid oscillations at higher frequencies ko= \/m: Koy
and larger propagation distances, and its denominator vanishes at
the “poles” on the integration path associated with the guided
waves in the plate. If7], the poles were removed from the .
path of integration through the introduction of dissipation in the [kq| <Korn=iVtn(ky) —Kom=Koc, [ki|>kon, n=12
medium, and the double integration was carried out using an )
adaptive quadrature scheme to reduce the number of function
evaluations. Although the method produced accurate results, th
computational effort is still quite high, especially for thicker""
laminates.

ﬁere ¢, and ¢, are even functions df; and are obtained from

'the equationg); =0 andg,=0, respectively, after expressnhg

in terms ofk,. The functiony,, must be equal tdem whenk;
2.1 ANew Integration Scheme. As an alternative to evalu- equals+ kg, . In Eq. (2), ky can be pure imaginary or complex

ate the double integral numerically, it is proposed that one integ@épending on the material properties and the range @hosen,

in Eq. (1) be evaluated by contour integration analytically, usingnd the real and imaginary parts kj,=0, for (x;,x,)>0. In

the residue theorem. For example, K3eintegral in Eq.(1) can be reality, analytical expressions fgy; andg, cannot be found di-

evaluated by contour integration in the complex plane, keeling rectly from g using the general plate theory, and for given k,

fixed, resulting in residue contributions at the rodétgk;) of in Eq. (2), must be obtained numerically by settigg=0. The

g(ky,k). The remaining integral with respect kg can then be integration of Eq.(1) on k, can now be carried by contour inte-

integrated numerically. At a given frequengyk, ,k;) has afinite gration as

number of real roots, and an infinite number of complex roots.

The real roots represent the propagating guided waves in the plate,

while the complex roots represent nonpropagating modes that de= f(k, k,,w)

cay exponentially with propagation distance from the source. f kKoo &

has been showl8] that the amplitude of the nonpropagating ~=8(ks Kz, @)

modes become negligible in comparison with the propagating

modes at distances from the source larger than about only a few )

multiples of the plate thickness. Since this condition is satisfied in  |kq| <Ko =2 G (K; ,Kpe , )€ X1 TkeX2): |k |>kor,  (3)

most nondestructive evaluation applications, the residue contribu-

tions from the complex roots can be ignored without significantly

affecting the accuracy of the results. where

gi(kaxa+kaxo) g ko= 27iF (Ky Ko, 'w)ei(klxl+k2rx2);
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f(ky Ky o) The integral in Eq(5) can be evaluated numerically by using

F(ky ko, 0)= dg(ky Ky, @) any suitable integration scheme. However, it should be noted that
9tke K its integrand is highly oscillatory, especially at high frequencies
dk, Ky =Ky, and large distances from the source. In addition, there is an inte-
and grable singularity ak,;=Kkq,, that appears from the derivative of
g; it is best handled by expressiffgandG in terms of polynomi-
f(kq, Ky, @) als in (korn— k1) and k1—Ko), respectively, near this point, and
G(ky koc,w)= dg(ky,ky, @) integrating out exactly. Furthermor€, is a decaying function of
di( : k, and the exponential term associated with it gives additional
2 Ko=kpq decay for nonzerx,. As a consequence, the contribution of the

cond integrand for large values lof is negligible. It will be
own later that the contribution of the second integral in(BY.
is concentrated within a very small region beydag, for large
valuesx,, and one need not even calculate the complex roots.

Thus, the double integration is transformed into a single integ ?
in k; and can be explicitly written as

2 Korn ) Thus, one major advantage of the present scheme would be to
=2 — f F(ky ko )€ fvateraddlky split the positivex;—x, plane into two halves by the liné=45
4 0 deg, whered is measured counter clockwise from thegaxis. The
Korn ) integration onk,; can then be performed as described earlier for
+ f F(—ky kop )€ TRoatkeradl the observation points located #~45 deg. In order to obtain the
0 solution for the field points located i#<45 deg, the order of the
% ) integration needs to be reversed. The basic procedure remains
+f G(Kyq Ky, w) el krxatkeca)dle same. The current integration scheme will work both in presence
Korn and absence of material dissipation. In a mildly dissipative mate-
% rial, the real roots will have a small imaginary part, which can be
+f G(—Kq ,kye ,w)e'(Tkrxatkeca) g, (4) obtained by means of a number of available technigleeg.,
Korn Muller’'s method.
Sincef, g, ky, , ko and the derivatives af with respect tck, are In the next section, we use the new method to calculate the

all even functions ok, F andG are also even functions df,. response in a number of simple model problems.
Therefore, the four integrals in E¢4) reduce to

2 i Korn " 2.2 Guided Waves in a Thin Anisotropic Plate (CPT).
=> a2 2] F(Kq Ko ,)e™2r2 cog kyx;)dky Assuming that the material of the plate is transversely isotropic
noam 0 with its symmetry axis along its surface, the vertical surface dis-
o i placement of the plate due to a normal concentrated fbfeat
+2f G(Kq ko, w)e 22 cog kyx;)d kl} (5) the origin can be expressed in the foffD]
Korn
|
_ Flw 1 )
U3(X1,X2,0,(D): ( ) f f 4 2 2 2 el(le1+k2X2)d kldkz (6)
2 J - ) —wDyK]+2(D 1o+ 2Dsg) kik5+ Dok — pw?H
[
where,D44, D1y, Dyy, andDgs are functions of the elastic con- K2= — pK2+ /—b2k4—ck4+ck3 )
stants of the plate material aff{ @) is the Fourier transform of 2 ! ! ! rt
the load. whereko,=[pw?H/D,]"* gives only one propagating mode.
Thus, Thus, Eq.(9) can be expressed in the form
f=1, g=Dik{+2(D1p+2Dsg)kiks+ Dok~ pw’H (7) Ko — (ke (10)
Settingg=0, where
e bi b2 okt pw?H o P1(ky) =kG;1 +bKi— Vb?ki— cki+ckg g
=—bki+ —cki+ .
2 ' LT Dy ® Using Eq.(3),
where 1
F(ky ko, 0)= :
Dyy+2Deg Dy, ' 4D 5p0(Ky) VK 1 — 1 (Ky)
= —, C: —
D22 D22 1

G(ky kye,0)= (11)

In order to obtain the real roots, for a giv&n, the positive sign
must be chosen for the second term in the right-hand side of Eq.
(8). Hence, where

4D gpa(Ky)i iy (Ky) — K5y
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source Table 1 Material constants of graphite  /epoxy composite mate-
\ rial
90° 0-~sensor

. Thickness  Density  Cyy Ci, Cy Cas Css
45 ' (mm) (glcm®)  (GP (GPa (GPa (GPa (GP
1 1.578 160.73 6.44 13.92 6.92 7.07
Fiber direction
s
_ , o , Us(X1,%2,0,0) =F()iAH(Kor1r) (13)
Fig. 2 Schematic of a loaded unidirectional composite plate 1. . ) _ ——
showing position of the sensors with respect to the fiber direc- whereH} is the Hankel function of first kind and= \}+x2. It
tion can be further shown that the surface displacement in the fre-

quency domain obtained using exact thel@}; and following the
same procedure, has the same form as([Eg. However, a sum
on all propagating modeg&q,,, wheren is the number of propa-

a(ky)=[K5 1~ i1(ky) + k] gating modes, should be taken in Efj3) andA will be a function
The rest of the calculation can be carried out in a straightforwa; ko”i)ar.'d tg‘e r?aterlal pf)rop(_artles. The t'mg do_maln respf)onse can
manner starting from Eq4) of Sec. 2.1. e obtained after performing inverse Fourier transform on

If the plate is isotropich=c=1, so that,(k;) = kf. Thus, the Eq.(13).

first of Eq.(2) produces an equation of a circle in tke-k, plane .
with radiuskg,, centered at the origin. Thus from Ed.1), 3 Numerical Results
Numerical results are presented for a unidirectional graphite/

epoxy composite plate subjected to a vertical dynamic point

A
F(ky ko, 0)= I Gk kac, @)= i\/kz—kz (12) load on its top surface. A loaded unidirectional composite plate
ort ™ 1ol with surface mounted sensors is shown in Fig. 2. The elastic prop-
where erties of the material used in the calculations are given
1 in Table 1.
A= 4D K2 3.1 Typical Behavior of the Integrand of Wavenumber In-
22€0r1 tegral. The integrand of the approximate solution given in Eq.
Thus, from Eqs(5) and(6), (10) is plotted in Fig. 3 for propagation at 45 deg to the fibers for
08
" @
00 0.l05 0:1 0.I15 0?2 0.‘25 0:3 0.‘35 0.4 [} 0.2 0:4 0..6 0‘.8 1 1.2
15 0.8
_ o8} 1
g | 2 )
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£ | i
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0 0.05 0.1 0.15 0.2 025 03 0.35 0.4 0.65
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Fig. 3 Kernel behavior for a unidirectional graphite  /epoxy composite plate of thickness 1 mm for propagation
along 45 degh for two cases: (a) at a distance 10 mm from the source at 0.1 MHz and  (b) at a distance 50 mm from
the source at 1.0 MHz (CPT). (i) Locus of real (k,,) and imaginary roots (k,.) of g(ky,k,) in the k,—k, plane, (i)
absolute plot of Eq. (3), and (iii) real and imaginary parts of the integrand in Eqg. 5).
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¥y
'
0.8} }|| ]
b
T ol ool F(x1,%,1)= (1) 5(x1) 8(%) (14)
= I (ii)
'S
L4 :...,\\ / ; where
o2t \ ———" \ | (2t (A4t
. [oiem e f(t)=sinl—|—-0.5sin —|, 0<t<r (15)
" had TN -uo..,_.. ——— “s... 7 T
0 - o o % e o aug ey N
0 01 0.2 0.3 04 0.5 06 The time dependence of the loddt), and its Fourier transform,
F(w), are plotted forr=1 us in Fig. 5. The source spectrum is
2 . , . . . - maximum around 1.1 MHz and becomes negligibly small beyond
3 MHz.
151 The new integration scheme has also been implemented on the
1 exact theory to obtain the time histories of the vertical surface
05 (iii)  displacement. The results are compared with those from FEM for
2 propagation along 0 deg, 30 deg, 60 deg, and 90 deg with respect
E o ' to the fiber direction at a number of field points in Fig&)6-6(d).

2 05 i Since the displacements calculated from the CPT diverge greatly
- 7 : from the exact and FEM solutions, the results are omitted for
-1 — Re ' brevity. A third-order elliptic digital filter[19] with a pass band
T m ' 0f0.05-0.65 MHz is applied to all calculated spectra to eliminate

. _ ‘ . R high frequency numerical noise. The agreement between the re-

B48 o485 049 0495 05 0505 051 sults from the two models is excellent in almost all cases. The
time histories of surface motion from the exact theory show the

ks strong influence of the higher order modes at high frequencies,

Fig. 4 Kemnel behavior for a unidirectional graphite  /epoxy which are absent in those from FEM. This requires further inves-

composite plate of thickness 1 mm for propagation along 90 tigation. The. ar.nval time of the peak in the two s_ets of signals,

deg at a distance 50 mm from the source at 1 MHz  (exact ~however, coincides. A recently discovered behavior of the wave

theory ). (i), (i), and (i) are the same as that of Fig. 3. forms, namely, phase reversal of the main pulse with propagation
distancg 20] caused by the strong dispersion of the ASO mode is
also present in the results.

two cases(a) at a distance of 10 mm from the source at 0.1 MHz,
and(b) at a distance of 50 mm from the source at 1.0 MHz. From
the first plots of caseg) and(b), it can be seen that, is purely 4  Concluding Remarks
imaginary within a small region beyoriq,,, and becomes com-
plex afterwards. An increase in the amplitude of the functi®h
(Eg. (15)) is observed in both casdsecond plotswhenk, be-
comes complex. However, as shown in the third plots of Fig.
the contributions from the complex valueslgfare very small at
all frequencies of interest. The contribution is negligible for larg
distances and high frequencies as shown in ¢asé\s indicated
earlier, the integrand is highly oscillatory at higher frequencies.
A typical plot of the behavior of the integrand in E&), using
exact theory[6] is presented in Fig. 4, for the same plate at
MHz, for propagation along 90 deg at a distance of 50 mm fro

The time histories of the vertical surface displacement calcu-
lated from FEM and exact theory show excellent agreement. The

0 methods can be combined for efficient and accurate calcula-
lon of the wave forms in both near and far fields. The new inte-

ration scheme for the evaluation of the double wave-number in-
egral representation of the field involves the numerical
computation of only one of the integrals, thus reducing the com-
putational effort significantly. Another major advantage of the cur-
jent method is that the integration scheme can be exploited to
ﬁptain the solution for any specific propagating mode by using a

the source. The complex roots are not shown in the plots. THHItaPle numerical approach. As an example, if only the ASO
same features are found in this case as well. It can be seen {P}'%Pe is chosen for evaluation, the computational effort will be
I

most of the contribution towards the integral comes from the AStemely small. The approach can be used for rapid calculation
mode only. of the elastic waves generated by impact and fatigue damage in

plates and should be useful in real time heath monitoring of criti-
3.2 Evaluation of the Wave Number Integral. The calcu- cal structural components. Extension of the current work to
lations are carried out for a concentrated vertical surface loadtimnicker laminates and laboratory experiments are currently under-
the form[8] way.
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Steady Mechanics of Belt-Pulley
Lingyuan Kong SVStems

Research Assistant

Robert G Parker1 Steady state analysis of_a two-pu_lley belt_ drive_ is conducted where @he belt is n_"lodeled as
" ; a moving Euler-Bernoulli beam with bending stiffness. Other factors in the classical creep
e-mail: parker. 242@osu.edu theory, such as elastic extension and Coulomb friction with the pulley, are retained, and
Mem. ASME belt inertia is included. Inclusion of the bending stiffness leads to nonuniform distribution
Department of Mechancial Engineering of the tensio.n and speed in the bglt spans ar}d alters the belt.dep.artur.e points from the
The Ohio State University’ pulley. _Solutlons for these quantities are ob_tamed by a numerical iteration methoql that
206 W 18th Avenuey generallzes to n-pulley_systems. The governing boundary value prob]em (_BV_P), which has
Columbﬁs OH 43210’ undetermined _boundarles due to the u_nknowr] belt-p_ulley contact points, is first converted
' to a standard fixed boundary form. This form is readily solvable by general purpose BVP

solvers. Bending stiffness reduces the wrap angles, improves the power efficiency, in-
creases the span tensions, and reduces the maximum transmissible moment.
[DOI: 10.1115/1.1827251

1 Introduction alters the wrap angles, and influences performance criteria such as
rrrlaximum transmissible moment and efficiency. When bending

Belt-pulley drives have been widely used to transmit power fQrc . appreciable compared to tension stiffriespecially

hundreds of years. The power is transmitted from the driver pull : ; .
to the driven pulleys through friction between the belt and th?é{r thick, low tension, or short span belishe effects of bending

: . o . iffness are more significant than the inertia terms introduced in
pulleys. The belt-pulley mechanics are important in industrial aps 8]. The main concern of this study is to investigate the influ-
plications as they impact belt tension, belt life, power transmi 'r{cé of bending stiffness on the steady motion while keeping belt
sion efficiency, maximum transmissible moment, and noise. Con, ia

siderable research has been done in the field of belt mechaniCsrg oy is modeled as a moving Euler-Bernoulli beam. Even in
Fawcet{1] gives a comprehensive review of belt mechanics up ige ey spans, the distributions of tension and speed are no longer
1981. Two different theories have been used to describe the q‘fgform and there is no explicit analytical solutions for the ordi-
behavior. One is known as creep theory, which assumes that y differential equation$ODE9 governing the belt spans, in
belt |s_elast|(_:ally extensible, friction is developed due to the rel%‘ontrast to the string mode|3,8]. Furthermore, inclusion of the
tive slip motion between the belt and pulley, and a Coulomb lag,ging stiffness makes the contact points between the belt and
describes _the belt-pulley frlctl_on. Another_model is the she ulleys (boundaries for the ODEsnot known a priori. Conse-
theory, which addresses shearing deformation of the belt and gggntly, the steady motion analysis is governed by boundary value
sumes that the belt is inextensible. The shear theory is developgghiem with unknown domain. This presents one of the main
recently in[2,3]. Alciatore and Travef4] give a comparison be- opstacies. By suitable transformation using ordinary differential
tween these two different theories. In this paper the creep theiy ation conversion techniques, however, this probiem is formu-
is adopted with the refinement of incorporating belt bendingieq as a standard BVP with fixed boundaries. This form is ac-
stiffness. _ _ _ cepted by general-purpose two-point BVP solvers. No spatial dis-

Johnsor{5] gives a review of the classic creep theory. Gerbegetization (e.g., Galerkin, Ritz is used; the final result can be
[6] analyzes a symmetric system with no belt bending stiffnegfewed as numerically exact. Although the iteration method is
where the driver and driven pulleys have the same radius. Reasented for two-pulley belt drives, it can be readily extended to
cently, by considering inertial effects, Bechtel et[all update the tj-pulley drives.
classic creep theory to include belt inertia and present a completgn, re|ated works, Wang and Mof®] and Hwang and Perkins
solution for a two-pulley belt drive. Independently, Rub8i in-  [10] consider belt bending stiffness while investigating a band/
vestigates the effects of the same inertia terms and presentyifeel system with two identical pulleys. The steady state analysis
method to find solutions for general multi-pulley systems. Al this work and those ifi7,8] are different in spirit from those in
though the derivations ifi7,8] seem different, the analysis and[g 10], where calculation of the steady state is mainly for subse-
main conclusions are essentially the same. The main contributigjent linearized free vibration analysis. The problems discussed
of these two papers is that they include belt inertia terms amg@re, like the nonuniform tension and speed distributions, belt slip
determine the relative errors of prior creep theories that negle{ the pulleys, power transmission efficiency, and maximum
these terms. transmissible torque, are not addressel®if0]. Correspondingly,

In both [7,8], the belt is treated as a string and belt bendingome simplifying assumptions are adopte@grﬂ_o] For example,
stiffness is not considered. Bending stiffness introduces adgie pelt speed is assumed to be uniform throughout the system,
tional,_ nonuniform tension in the belt due to the induced CUrvamariations of belt tension a|0ng a span and on the pu”eys are not
tures in the spans, leads to nonuniform speed along the belt spa@wsidered, friction between the pulley and belt is neglected, and
- no energy is dissipated during steady power transmissiof9]Jn

e oy o oeted s ot o Ao socrery o U1 boundaries of he spans are fed at the beltpuley contac
MECHANICAL EN)élNEERpseor publication in the ASME QURNAL OF APPLIED ME- points .Of the string .mOdel' IfL0], althoth the belt-pulley Co.n_
CHANICS. Manuscript received by the Applied Mechanics Division, July 1, ZOOS'FaCt points are not fixed, the belt is assumed to be inextensible.
final revision; February 19, 2004. Associate Editor: M. P. Mignolet. Discussion on Note the present analysis is only an approximation for V-belt
Appicd Mechanics, Department of Mechanical and Environmental Engineern oo Pecause V-belt systems have deep grooves that generate
Ugﬁllersity of Califorhia—F)Santa Barbara, Santa Barbara, CA 93106-5070, snd will eeatmg. and unseating zones not .mOd(?IEd he.re' .
accepted until four months after final publication in the paper itself in the ASME S€ction 2 presents the governing differential equations of the
JOURNAL OF APPLIED MECHANICS. moving Euler-Bernoulli beam in the steady state. Section 3 intro-
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whereEl is the bending stiffness and is the curvature of the
beam.« equals the varying rate of inclination of the beam

xk=do/ds ©)

where the inclination anglé is measured from the due east direc-
tion (Fig. 2). The balance of angular momentum with respect to
the center of mass of the control volume vyields

dM—-Qds=0, Q=dM/ds=EIl(d«/ds) 4
Balance of linear momentum projected in the tangential direction
leads to
dT—fds=GdV—-Qd# 5)
Substitution of(2)—(4) into (5) leads to
(T-GV)' +Elkk'=f (6)

where( )’ denotes differentiation with respect to the arclength
Balance of linear momentum projected in the normal direction
yields

nds=(T-GV)d6—dQ (@)
Substitution of(4) leads to
Fig. 1 Free body diagram of a moving curved beam (T-GV)k—Elx"=n 8)

The above derivation assumes thath<1, cosf/2)~1,

duces techniques to transform the unknown boundary BVP $§/d0/2)~d6/2, and products of infinitesimal quantities are
fixed-boundary form. These techniques are presented for the cAggligible.

where a single belt span wraps around two pulleys. This solutionor the belt in the spans, the contact forteadn are zero, and

is a fundamental building block for the overall belt-pulley systerfrds-(6) and(8) become

solution. Section 4 presents the steady state analysis for a two- (T-GV)'+Elxkk'=0, (T-GV)k—EIx"=0 9)
pulley belt drive system. Two different problems are considered.

One finds the steady motion when the moments on the pulleys dfis converges to the string modél] when the bending stiffness
specified. The second problem finds the maximum transmissilifezero. Because the curvature is constant for the belt on the pul-
moment that can be exerted on the pulleys. Section 5 presei§tés, Eqs.(6) and(8) in these contact regions become

numerical results corresponding to these two problems. (T-GV)'=f, (T—GV)/R=n (10)

2 Nonlinear Equations of a Moving Curved Beam The governing equationd.0) are the same as for a string model

Figure 1 shows the free body diagram of an extensible beﬁt,’g'
which is modeled as a moving Euler-Bernoulli beam. Rotary in-
ertia and shear deformation are ignored. An Eulerian formulation
is adopted for the control volume. The radius of curvaige) is 3 BVP Solver Based Method for Problem With Un-
a function of the arclength coordinati(:s) andn(s) are contact known Boundaries
forces per unit length exerted on the belt.

For steady motions, conservation of mass requires that Figure 2 presents a single belt span stretched between two fixed
pulleys. This boundary value problem has unknown boundaries;
G=m(s)V(s)=const (1) the belt departure points from the pulleys are determined in the

analysis. This case is a key step in the subsequent solution for
general belt-pulley systems. Furthermore, it shows the techniques
for converting the problem with unknown boundaries into a stan-
M=Elx (2) dard form[11] that can be solved by general purpose BVP solvers.

where m(s) is the belt mass density per unit length. Euler
Bernoulli beam theory requires

-~

1

Fig. 2 Single span boundary value problem with unknown boundaries

26 / Vol. 72, JANUARY 2005 Transactions of the ASME



For this reduced problem, the belt speed is zero. This redudegplement with minimal programming.)3t not only gives the

(9 to

T'+Elkk'=0, Tk—EI«"=0 (11)

tension and curvature of the belt but also gives the contact
points and explicit positions of the entire bé¢ht(s) and y(s)]
simultaneously.

Three boundary conditions are needed. For reasons to be eviderturther, the method can be extended to other problems that do

later, the tension at the start point is assumed to be known
T(0)=T, 12)

not seem amenable to a general-purpose BVP solver at first sight.
In Section 4, two additional required ODE conversion techniques
are presented. One shows how to incorporate an integral term in

The curvaturex at the two boundaries are specified by the gedhe BVP system. The other shows how to incorporate an algebraic

metric relationgFig. 2)

k(0)=—1R,, x(s=L)=—1/R, (13)

whereL is the total arclength of the belt in the span. What mak

the problem unusual is thatis not known a priori. The geometric
requirement is that the curved belt should contact and be tangen

with both pulleys.

By applying ODE conversion techniques, the above system

transformed into a standard form defined on the intef@al).

This formulation is readily accepted by most general-purpo
BVP solvers. First, the following nondimensional variables a

introduced
2
P=Er

>
w
x
| <
>
>

S= =, §(=T, §I=ﬁ,

L L L (a4

equation.

4 Steady State Analysis of Belt Pulley Drives:

€&n Iteration Method

in this part, the steady motion analysis is presented for a gen-
eral two pulley belt drive with different pulley radii. Following
[ig], the specified parameters are driver pulley radiys driven
pulley radiusR,, center distance between the two fixed pulleys

ﬂglt longitudinal stiffnes€E A, constant rotation speed; of the

river pulley, coefficients of frictionu, and x, on the two pul-
leys, static tension of the bel;,; of the reference statéwhere
there is no moment exerted on the pulleys and the belt speed is
zerg, and belt mass flow rat&. Due to consideration of the
bending stiffness, the reference state tensions are no longer uni-
form along the beltT;,; is assumed to be the tension at the mid-

wherex(s) andy(s) are the rectangular coordinates of belt parpoints of the spangNote that in the string model 8], instead

ticles (Fig. 2. Substitution of(14) into (11) yields
dp . dk d’x .
E‘FKE:O, @—DKZO,
The boundary conditionél2) and (13) become
P(0)=T,L¥El, #(0)=—-L/R,, x(1)=—L/R, (16)

0<s<1 (15)

The unknown constart is defined as the function= I:(é), gov-
erned by

of specifyingw, andG, the undeformed belt mass per unit length
m, andc=G/m, are the chosen parameters. In Section 5.2 and
the Appendix, these definitions are shown to be equivalent.

Two problems are consideredt) If the momentM, on the
driven pulley is specified, one finds the driving moment, distribu-
tions of tension, speed, and friction along the belt as well as the
slip and adhesion angles on the two pulleys, €2)dhe moments
on the pulleys are not specified, and one first finds the maximum
transmissible moment and then calculates the corresponding
steady state mechanics; the implicit condition here is that one or
both of the adhesion angles vanishes and no additional moment

dL A can be transmitted.
g5 =0 O<s<1 (17) The governing equations for the spans &g In the contact
zones, the governing equations df®). On the boundaries be-
Geometric relations lead to tween the spans and contact zones, the tension, curvature, and
40 ds s speed must be continuous. To complete the problem, a constitutive
=k _2(:0039 —Y:sine 0<8<1 (18) law is needed. Following12], a differential belt element with
ds ' ds " ds ' undeformed lengthi's, has deformed length
The corresponding boundary conditions are ds=(1+T/EA)ds, (21)
[L(0)X(0)]2+[L(0)J(0)]?=R?, L(0)X(0)=—R;sing(0)  and the mass density per unit lengtifs) becomes
R ~ (19) _ meds, Mg
[L(DX(1)~LI2+[L(1)J(1)2=RE, M= "4s ~T+T/EA (22)
—R,sinA(1)=Lx(1)-L (20) Substitution of(22) into (1) leads to
whereL is the known distance between the centers of the two _ AL
fixed pulleys(Fig. 2). Equationg19) and(20) ensure that the belt G=m(s)V(s)= 1+T/EAV(S) (23)
contacts and is tangent to the bounding pulleys. Tangency is ig- h itutive law i
posed by the angles on the pulleys to the contact points beirg: € constitutive law is
equal to the span inclination anglé&) and — &(1). T=EA(V/V,ei—1), V,e;=G/m, (24)

The seven boundary conditiori$6), (19), and (20) equal the

total order of the six differential equatiori45), (17), and (18).

as used if7]. Note thatV,.¢ is not known a priori because only

Equation(15) involving higher derivatives can be reduced to starRN€ 0fmMo and G is specified,V,.; is determined in the solution.

dard first order form with the definitiong;(S)=x(S), g,(S)

=k'(8S), q1(8)=Y2(S). The problem is cast entirely on the inter-
val Se (0,1) even though the problem involves unknown bound-

Finally, the system must satisfy the compatibility condition
(0) Ly (0) 11 (0) 4 [ (0) 4 | (0) | (0)_| (0)
LP+LY + L) L + LY+ LY=L (25)

aries. This standard form is readily accepted by general-purpoggereL(” andL{? are the unstretched lengths for the tight and

two-point BVP solvers.

There are several advantages of the BVP solver based method:
1) Because there is no spatial discretization and because of #&"

slack spans..” andL{? are the unstretched lengths of the adhe-

zones on the driver and driven pullei 01) and LfBOZ) are the

high quality and robustness of state-of-the-art BVP solver codeg)stretched lengths of the slip zones on the driver and driven
the results can be viewed as numerically exagtltds easy to pulleys, and.(9 is the unstretched length of the total belt when it

Journal of Applied Mechanics
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Tight Span Vi(Sy

Driven pulley

Slack Span Vi(S)
—

Fig. 3 Two-pulley belt drive with inclusion of belt bending stiffness

is removed from the pulleys.(?) can be calculated from the ref- For the belt in the belt-pulley contact zones, the governing
erence state. Physically, the compatibility equati@) means equation(10) is the same as for the string models. All relations for
that the unstretched length computed from the steady state shdhieise segments of the belt derived from prior string mofig8
equal that computed from the reference state, guaranteeing tidt hold. For the adhesion zones, the tension and speed are con-
the same belt is consider¢d]. stant. For the sliding zone on the driver pullesee Fig. 3, (10)

The compatibility equatioki25) is that used ii8] and prior belt andf=un lead to
drive analysig13]. In [7], the compatibility equation is mistak-

enly omitted and this makes the derivation inconsistent. Equation 1 T,(0)—GV4(0)

(17) in [7] leads toT,— T.=M/r. This contradicts their equation ,31:; nm (32)
(3), which requires that, after integration,T,&GV,)—(Ts ! 2 2

—GVy)=M/r.

whereT,(0) andV,(0) are the as yet unknown boundary values
4.1 Regular Moment Transmission Problem. In this prob- Of tension and speed for the slack span. For steady operation, the
lem, the momenM,, exerted on the driven pulley is a specified®@lance of angular momentum on the driver and driven pulleys
value less than the maximum transmissible moment. leads to
To find the driving moment and distributions of tension, speed,
and friction along the belt loop, an iteration method is used. The
iteration starts from the tight span, which has the following gov-

erning ODE
9 Assume T4(0)=T, ,
(T;—GVy)' +Elkik1=0 (26) F -
(Tl_le) K1— ElK’iZO (27) Calculate me
where the subscript 1 represents the tight s{samscript 2 repre- ‘
sents the slack sparFirst, the tension at the left boundaigon-
tact point between the driver pulley and the tight Sparassigned Solution for tight span
an initial guess )
T(0)=T 28 N . 1
1l )_ 10 (28) Solution for sliding zones
At the same boundary of the tight spasy € 0), the speed of the
belt is the same as the driver pulley l
V1(0)=w1Ry (29) Solution for slack span
Substitution of(28) and(29) into the constitutive law24) leads to l
Voo (30) Solution for adhesion zones
1+ (T, o/EA) )
Thus the relationship between the tensignand speed/, can be
completely determined frort24) (for the assumed, o), andT;  |Calculate L, =([_(,93l-[_(g4[_(g +L(|§)2+ © +L(32)-L(°)
—GV; can be treated as one unknown field variable. Equation !
(28) and(29) give the boundary condition for this unknown field
variable. The other two boundary conditions for the governing - No.ift®. <0. red 7.0
o Bl e 113
- ’ ] 1
Kl(o):_llRl, Kl(Ll):_l/RZ (31)
Yos

wherel is the total arclength of the tight span, which is to be
determined. This single span problem with unknown boun&qry End
is of the form discussed previously. By adopting the ODE conver-

sion techniques presented earlier, the solution for the tight speig. 4 Flowchart of the iteration for the regular transmission
can be found. problem
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Fig. 5 Steady solutions for the system properties specified in Table 1.

B1Ry
M1/R1:f f1ds=[T1(0)—GV,(0)]-[T2(0)—GV,(0)]

0

The governing equations for the slack span are

(T,—GV,)' +Elk,k=0,
Two boundary conditions fof35) are

ko(0)=1/Ry, Ka(Ly)=1/R,

where I:2 is the total arclength of the slack sp&o be deter-

mined.
Integration of(26) and the first of(35) yields

Journal of Applied Mechanics

driven
pulbv\

(T,—GVy)ky—Elk4=0 (35)

slack span

(33)
2

tions, and usind31) and(36) gives

(a) EI=0.0015, (b) EI=0.015, and (c) E/=0.05N-m?2.

(To(s2) =G V,(sy)]— [ (T1(s1) —GVi(s1)]

1 1
R R R R =——Elx? —Elk? D
Ma/R=[Ty(Ly)— GVy(L )]~ [Ta(Lo)—GV(ly)] (34) g Bl g Elals)

whereD is a constant. Taking the two choiceg=0, s,=0 and
thens,=L,, s,=L, in (37), subtracting the two resulting equa-

(36) Table 1 Physical properties of the belt drive with two identical
pulleys
R;=R,=0.05m L=7R;=0.1571m EA=25kN pu,=pu,=0.6

Tini=50 N (midspan w,=500rad/s
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Table 2 Numerical results for the belt drive specified in Table

1 L(O) PRy 1 ds*
B~ ), 1+T(s)EA®®

6.(0)  —0,0)

El - B=B a=ap [-6(L)] [0:(L)] (1 GVret| Ry

(N-m9  (deg (deg (deg (deg L,/L  L,/L EA | u;

0 1094  70.60 0 0 1 1

00015 100.2  64.67 5.645 9503 1.063  1.106 1+EA[T1(0)~GV4(0)— M, /Ry] 41)

00150 87.18 50.05 16.86 25.02 1189 1.293 1THEA[TL(0)—GV,(0)]

00500 9026 1591  29.82 4400 1339 1511
L“’):(l— GVref)& n 1+EA/[T1(L1)—GV;y(L) —M;,/R;]
P2 EA | o 1+EA/[T,(Ly)—GVy(Ly)]

[Ta(La) = GVa(Ly) 1= [Ta(Ly) = GVi(Ly)] (42)

=[T,(0)—GV,(0)]—-[(T1(0)—GV;(0))] (38) Wheres* is the local arclength for the slip zone of the belt. The

) . unstretched length of the tight span is
Comparison of(33), (34), and (38) yields M;=(R;/R,)M,, for
steady operation. 0) L, 1
Using (28)—(30), (33), M;=(R;/R,)M, and the constitutive L :f mdsl (43)
law (24) gives two equations foF,(0) andV,(0), fixing the field 0 =1
variableT,— GV, ats,=0. This gives a third boundary condition,.l. ; ; ; ;
) . . . o calculate this term, direct integration method could be used
In addltlon_ t°(3.6)’ for the governing equation@9) of the sl_ack because the distribution of the tensidn(s;) and the total ar-
span. Again, this boundary value problem has the form discusse . ~
previously for the single span case and can be solved by a gen&t&ndth of the tight spah, have been calculated. Instead we use
purpose BVP solver. The sliding ang on the driven pulley is 20 alternative method that integrates the integral term into the

calculated from (10) and f=u,n as /32=(1/M2)|n{[T1(|:1) standard BVP form for the tight span with little additional effort.

~ ~ We definel(s)=[3{1[1+T.(s;)/EA]}ds, and add an addi-
_le(Ll)]/[TZ(LZ)._GVZ(LZ)]}' tional ODE and boundary condition to the corresponding BVP
For the adhesion zones of the belt on pulleys, the adhe&ggmdard form for the tight span
angles are
_ _ r r di+(s) 1 -
ar1=7m—B1—01(0)+65(0), ar,=7—pPLr+0,(L1)—6x(Ly) LA ; —
1 1~ 01 2 2 27 Uiy 2 (239) s 1+ T,()/EA’ 0<s<L; with 1{(0)=0 (44)
Thus, the steady motion has been calculated for the assu Py : L ) :
tensionT, . This includes the torque on the driver pullay; rq%%an(Ll) is equivalent to the desired integral tetrf?) and is

. a natural product of the BVP solution. Although the added ODE
the span lengthsl(;,L,), the deflected belt shapes in the spang,q poundar

(%2(52).1(50) %a(S2).9(S,)). the tension and speed distribu y conditiofd4) are written in the dimensional form
1\21/): Y1\ 21/, A28 =2/, Y 2\92) ) » - S .
tions aiong the belt T1(S;) Va(S1),Ta(S5).Va(S,)), the belt- over the range_(Q_,l), (14 tr_ansforms them into the necessary
I . 0 6-(L) 000 6oL d the ad form on (0,1). Similar operations can be performed on the BVP
Egsfoyncgr?éagﬁppgggzgjé Cz E( 113),) 2(0).02(L2)), and the ad- ¢, e glack span to obtain the unstretched belt legfh.
1 &2,P1,P2)-
The calculated result for the assumed tenSign is a possible Lhi error b(letween thhe Lénlstret??r;e((jj_length E)rbtr:e "?‘SS‘md
steady state that can physically exist. But whether or not it is t9d the actual unstretched lendth” (discussed belois
same belt specified in the reference state, which has the un- () /1 (0) 11 (01 (01 (0,1 (0, (O 10
stretched length.(?), depends on if the system satisfies the com- Lermor=(LT HLs Ly +lp +La +la))—L (45)
patibility equation(25). To check the compatibility condition, one . <1 (0) .
must find the unstretched length of the total belt for the assumBgYsically. if Lerro <0, the assumed, , is larger than the true
T,00)=T; 0. T,(0) and should be reduced in the next iteration sﬂe@{o,
For the adhesion and slip zones, the unstretched lengths are>0 impliesT, o is smaller than the tru;(0). Lg?)ror is a mono-
tonically decreasing function of the assumed tensigry. This
(40) Property allows use of the bisection method in the iteration loop.
This gives rapid convergence of the iteration to the true solution.

Lo @R g @R

= , LY)=——
“1 1+T1(0)/EA 2 1+T,(L,)/EA

90 50 .
~ 88} EF0.05 — a8l EF0.05
2 2,
g m_ b
e [—4
§. asl § 44,
A EM=0.015 42! EF0.015
E & -§
'Og, 80 @ 40! /k \
5 78} ‘S 28l
2 2 .
© 78 g 3
B EF=0.0015 = EE=0.0015
S 741 g 34
F 7 EE0 Nom? F 82 EF0 NP
oy 005 01 Y R T 005 01 015 02
x coordinate (free tight span) x coordinate (free slack span)

Fig. 6 Variations of tension in the tight and slack spans for the belt-pulley drive in Table 1
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Fig. 7 Deflections of the spans for two different belt-pulley models. (a) and (b) correspond to the current

model (symbols denote span endpoints ); (¢) and (d) correspond to the fixed boundary model in [15]. The
system is specified in Table 1.

In this study, the results converge such tHdf), /L(®|<0.1%.  As in the specified moment case, the tensig(0) changes in
The above iteration procedure is summarized in the flowchart @ch iteration loop. The first step is also the same, namely calcu-
Fig. 4. lating the steady mechanics for the tight span using the single

The unstretched length of the total bef®) must be calculated SPan BVP building block. After this step, _instead of addressing the
from the reference state when the analysis follows thoge@,8] DPelt in the contact zones and the belt in the slack span succes-
and the reference state tensip; in a chosen span is specifiedSively, we address both of them simultaneously to filig ., (for

(instead ofL(?)). Because the span tensions are nonuniform in tHB€ assumed, o) as follows. _ .
reference state when bending stiffness is modeled, this condition' '® UNKNoWnM; may is defined as a field variabll pax
is modified such thaT,,, is given at an arbitrary point in the belt — Mzmad{S2) governed by

loop. A similar iteration method as already presented can be ap-

plied to obtainL© with the only difference that during the trial- dM; max(S) ~o
and-error process, instead of checking the compatibility condition ds, B

(25), one checks if the calculated tension at the appropriate point

equals the specified valtig,; . In practical applications, the more forcing M, . to be a constant. This ODE is added to the BVP
appropriate problem formulation provides the unstretched beljith unknown boundarigsfor the slack span. Correspondingly,
lengthL(® instead ofT;,; . In that case, the iteration to determineone additional boundary condition is needed to make the ODE
L is not necessary. system complete. Becaudé, ., is constant along the domain,

. . the boundary value oM, ,,,{0) ats,=0 equals the maximum
4.2 Maximum Transmissible Moment Problem. The yangmissible  moment.  Substitution of(33 and M,

above iteration method is valid for the case of specified pulley ; ;

moments. How is this extended to calculate the maximum mo-(Rl/RZ)'\AZfrnaxlnto (32) yields

ment that can be transmitted? One obvious solution is to first B

specify a small momenM, exerted on the driven pulley and B,—— 1 In[l— Mzmeu&szo)/Rz} 7
calculate the steady motion by using the above iteration method, ! M1 T.1(0)—GV4(0)

then increase the specified momeéwit, towards the unknown

maximum transmissible momem, ., until one of the adhesion Similarly, for the belt on the driven pulley,

angles reaches zero. This method is feasible, but it involves two

iteration loops. In the following analysis, a modification of the 1
above iteration method is introduced that only involves one itera- Bo=——1n
tion loop. M2

(46)

B M2 maS2=0)/R;

1 = =
Ti(L)—GVi(Ly)

(48)
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Table 3 Physical properties of the belt drive with two different pulleys

R,=0.01m R,=0.05m EA=40 kN 1= po=1
Tini =800 N (midspan mo=p% A=0.0056 kg/s L=0.1m Cer=374m/s

Without loss of generality, we assume that full slip appears first drarker{ 15]. Comparison of results from these two theories shows
the driver pulley @,=0). Substitution of(47) into the first of that as the bending stiffness increases, the differences are
(39) yields pronounced.

1 Mj mad(S2=0)/R;
L 1 Inj 1— T,(0)-GV4(0) | 01(0)+6,(0)=0 (49) |, Following [8], the data are specified in Table &, is the
) ) critical speed for the string model, that is, the speed where the belt
where#,(0) h_as been calculatgad in the last step when s_olvmg t'%‘i‘(pands such that the maximum transmissible moment vanishes.
BVP for the tight span. Equatiof9) serves as the required ad-Note that in the string model ¢8], instead of specifying; and
ditional boundary condition for the ODE4E). The rest of the G m andc (or C=c/c,,, 0<C=1) are specified. This does not
iteration process is the same as discussed previobslmac change the definition of the problem becauseV,; and mg
emerges naturally as part of the solution along with all other quan-gy, ., [see Eq.(24) and the Appendix for the reasonijigror
tities giving the mechanics fdvl,=M, ax-
Since most general-purpose BVP solvers can not directly
handle coupled BVP/algebraic equations, this conversion tech-
nigue is useful in general for addressing such coupled systems. )

5.2 Example of Maximum Transmissible Moment Prob-

tight span
5 Results and Discussion

Two example two-pulley belt drives are examined. The first is
for the regular moment transmission problem. Except for the294:
bending stiffness, all specified data of this driffég. 5) are the
same as for the string model exampld . The second example
is for the maximum transmissible moment problem. Except for the38.83°
bending stiffness, all specified data of this drifiég. 8 are the
same as ii8]. The uniform reference state span tensions specified
in [7] and [8] are taken to be midspan tensions in the present
analysis where span tension is nonuniform.

Three different belt bending stiffness values are considered in
the examplesH|=0.0015,0.015,0.05 Nn?). All are within prac-
tical estimates for poly-ribbed belts. For V-belts, the bending stiff- b)
ness can be much larger.

5.1 Example of Regular Moment Transmission Problem.

The data for this system are specified in Table 1. The calculatec
results for slip/adhesion zones, belt-pulley departure points43.9
01,(0), andspan lengths are presented in Table 2 for three values
of bending stiffness. The deflected belt shapes are shown in Fig. &
where the strokes of the belt in the spans are thickened. Bendinigg gs®
stiffness decreases the wrap angles. For appreciable bending stif
ness, the adhesion angles are reduced significantly. Notice that th
belt transverse deflections are significantly increased for large
bending stiffness. Figure 6 shows the tension variations in the
spans. WherEl =0, this converges to the string model where the
tension and speed are uniform throughout the spa/&@. Large
percentage increases in belt tension result with increased bendin C)
stiffness, and this impacts belt life. Comparing line lengths in Fig.

6 shows the increased span lengths for increased bending stifi
ness. Note the variations of speed in the spans, which are easil
calculated from(24), are low(<0.04% because&A is very large.

In the adhesion zones, the tension and speed are uniform; in th R
sliding zones, the tension and speed are exponentially distributec8-58
similar to the string models.

Figures 3,b give the span deflections. The boundaries of the \
spans change as the bending stiffness changes. In the literature, 7792
alternative theory concerning bending stiffness in belt-pulley sys-
tems has been usd®,14-164. These works assume that the
boundaries of the spans are fixed at the belt-pulley contact point:
of the string model, the speed is uniform throughout the system,
the tensions are uniform throughout the spans, and at the bound-
aries the beam displacement satistid® ,,|zc=+=EI/r, wherer  Fig. 8 Steady solutions for the system properties specified in
is the radius of the pulley. Figureg,d give the deflections of the Table 3. Full slip occurs on the driver pulley. (&) £E/=0.0015, (b)
spans derived from the fixed boundary analysis of Kong ar#l=0.015, and (¢) E/=0.05N-m?,
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Fig. 9 Comparison of maximum transmitted moment Mmax=My max I TiniR>, power efficiency
1, Tt midaspan ! Tini » @nd T migspan | Tini between the string and beam models for the belt drive
in Table 3

any assumed 3, ¢c andmg can be obtained fro® andw,, or the effects of belt spee@ on the steady motion; variations of the
vice versa. For example, supposeand m, are specified. Then nondimensional variables over the same rang€ afe decreased

G=myc and, using(30), for increasing bending stiffness.
Viet Tio C ( Tio
=R (Y EA TR\ EA

Figure 8 depicts the steady states of the belt drive transmitti .
maximum moment at=c,/2; full slip occurs on the driver pul- & Conclusions
ley, «;=0. WhenEI=0, the results are for the string model. Belt bending stiffness is included in the steady state analysis of
Especially for pulleys of small radius, the wrap angle is reducdetlt-pulley systems where belt inertia is also modeled. An iterative
significantly with increasing bending stiffness as shown by theolution is presented to determine the deflections of the belt, belt-
belt-pulley departure angles listed on the figure. Because gengwley contact points, span lengths, and the distributions of speed,
ally it is the small pulley that first reaches the full slip state, anténsion, and friction along the belt. Inclusion of bending stiffness
this determines the maximum transmissible moment, inclusion lefads to initially unknown belt-pulley contact points, yielding a
the bending stiffness can greatly reduce the maximum transmggverning boundary value problerfBVP) with undetermined
sible moment, as shown in Fig. 9. boundaries. This requires a transformation of the governing equa-
In Fig. 9, four nondimensional variables are plotted with retions to a standard ODE form with fixed boundaries. This form is
spect toC=c/c,, at different bending stiffness valuedl ., readily accepted by general-purpose BVP solver codes. The main
:Mzimax/(TiniRZ)v TtimidspanITini ’ Tsfmidspan/Tini , and », where conclusions include:
Tt midspan@NdTg migspanare tensions at the midpoints of the tight

and slack spans, respectively, and the power efficiepdy de- 1. Inclqsior_\ of bending stiffness leads to nonuniform speed and
fined as the ratio between the power of the driven pulley and the ~tension in the spans and reduces the belt wrap angles on
driver pulley pulleys, especially for small radii. Span tensions, which di-
R R rectly impact belt life, increase markedly with bending stiff-
Mowy,  Vu(Ly)  14+(Tu(Ly)/EA) ness.
= Mo, = V1(0) = 1+ (T,(0)/EA) (50) 2. Bending stiffness decreases the wrap angles, causes earlier

full slip of the belt on the pulleys, increases the power effi-
Figure 9 shows that increasing the bending stiffness significantly ~ciency », and decreases the maximum transmissible mo-
decreases the maximum transmissible moment and increases the ment. Some of these effects are pronounced for appreciable
power efficiencys. The significant overestimation of the maxi- bending stiffness and may cause poor performance in sys-
mum transmissible moment using the string model can lead to tems designed based on string model analysis.
poor performance and unanticipated full belt slip, especially for 3. The effects of belt speed on the steady motion are reduced as
belts with appreciable bending stiffness. Bending stiffness reduces the bending stiffness increases.
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An Electric Node Concept for
Solid-Shell Elements for
Laminate Compaosite Piezoelectric
Structures

The eight-node solid-shell finite element models have been developed for the analysis of
laminated composite plate/shell structures embedded with piezoelectric actuators and
sensors. To resolve the locking problems of the solid-shell elements in laminated materials
and improve accuracy, the assumed natural strain method and hybrid stress method are
employed. Introduction of the concept of the electric nodes can effectively eliminate the
burden of constraining the equality of the electric potential for the nodes lying on the
same electrode. Furthermore, the nonlinear electric potential distribution in piezoelectric
layer is described by introducing internal electric potential. The developed finite element
models, especially electric potential node model, are simpler over other models but can
still obtain same accuracy as exact solution described. Several examples are studied and
compared with exact solution and other predicted results to illustrate the accuracy of the

present model, and efficacy and effect caused by nonlinear electric potential distribution
on frequency and electric fields in smart structure model{20Ol: 10.1115/1.1827249

finite element models. It is unfortunate that solid elements, when
Bplied to plate and shell analyses, can be plagued by the largest
imber of finite element deficiencies which include shear, mem-
gne, trapezoidal, thickness, and dilatational lockings. Hence,

ezoelectric materials are coupled with mechanical and electri lid-to-plate/shell t i | t h to be adopted
properties. Recent advances in design and manufacturing tegfjrd-to-plate/snell transition elements may have to be adopte
If]ereas excessive aspect ratios of the solid and transition ele-

nologies have greatly enhanced the use of advanced findh ¢ tb ided. Alt tively. t it | ; b
reinforced composite materials in aircraft and aerospace struct nts must be avoided. Alternatively, transition elements can be
oided by introducing numerical constraints to tie up the rota-

applications. As a consequence, the integration of composite ) . ; : .
P g 9 b Jigns in plate/shell elements with the translations in the solid ele-

terials and adaptive structures with the smart system could pot Thi ice is tedi dal d v aff h
tially result in significant improvement in the performance ang;_'?nts' f |shpract|ce Is tedious an I‘;’IASO a vers;ay a _ectstl e con-
reliability of aircrafts, space structures, satellites, and other agfion of the system equation. Moreover, for piezoelectric

vanced structures. Such materials will combine the superior nfd€ment, most of researchers use simplified approximations at-

chanical properties of composite materials as well as inherent d&Pting to replicate the electric field generated by a piezoelectric

pability to sense and adapt their static and dynamic respons@€r under an external electric field or applied load. Very often
However, this effort requires the development of admissible mi1€ €lectric potential distribution is assumed to vary linearly in
chanics entailing capabilities to model the unified electromechaffi"ough-thickness of piezoelectric layer. An exact solution for pi-
cal response of sensory/active structures including the couplifgo€lectric laminate plates has shown that the distribution of elec-
between sensors and actuators. For smart structures, experimdffafield given by Heyliger and Saravangs2] is often poorly
models, and prototypes are limited to relatively simple structuregodeled using simplified theories. According to the results of this
such as beams and plates. Thus, in practical applications, firféact solution, the electric field distribution in piezoelectric layer
element techniques provide the versatilities in modeling, simulig not constant. For the finite element model reported by Sara-
tion, and analysis of engineering designs in modern smav@nos et al[3], each layer is modeled using independent approxi-
intelligent material and structures. mations for the in-plane displacement components and the elec-
There have been many theories and models proposed for tr@static potential in a unified representation, as mandated by the
analysis of laminated composite plates containing active and pégear theory of piezoelectricity. The predicted results reported by
sive piezoelectric layefd —19. Owing to the geometric complex- Saravanos et aJ3] are well closer with exact solution, indicating
ity of surfaces bonded with sensors and actuators which are migt electric field distribution through-thickness in piezoelectric
conveniently be modeled by continuum elemefts rotational layer is not constant.
d.o.f), many of the developed finite element models are con- In this paper, an eight-node hybrid stress and assumed strain
tinuum in naturd 7—11]. However, strict considerations of locking (ANS) solid-shell element for laminate composite structures is
deficiencies are often lacking in the course of developing theased. Since piezoelectric patches are always coated with electrons,
which constitute equal-potential surfaces, the concept of electric
1To whom correspondence should be addressed. e-mail: mpeluli@nus.edu.sgnodes is introduced. The introduction of the electric nodes can
ME%zT'L‘r’C‘ﬁLEdE%mEEAR’JS’;gfd mﬁggzgffn?;]"ésfghﬂoggﬁéﬁi‘COAFNAﬁE'E;YM(;F effectively eliminate the burden of constraining the equality of the
CHANICS. Manuscript receivepd by the Applied Mechanics Division, July 1, ZOOS?IECU!C p_OIentlal for the_ nodes I_ylng_' To mOde_I the distribution o_f
final revision, March 15, 2004. Associate Editor: B. M. Moran. Discussion on thélectric field through thickness in piezoelectric layer, the electric
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journalpbtential distribution is assumed to vary second-order or to be
Applied Mechanics, Department of Mechanical and Environmental Engineeringnaor instead of constant through thickness in the piezoelectric

University of California, Santa Barbara, Santa Barbara, CA 93106-5070, and will be . . . | el . ial of pi I .
accepted until four months after final publication in the paper itself in the ASM Iyer by introducing internal electric potential of piezoelectric
element.

JOURNAL OF APPLIED MECHANICS.

1 Introduction

Piezoelectric materials have attracted significant attention d
to their potential application in sensors and actuators because
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Fig. 2 The solid elements modeling the same piezoelectric

patch /film share the same electric node, i.e., connectivity for

I.Lh. element: [a,c,,h,b,dk,i,p ]; connectivity for rh element:
[c,f,m,j,d,g,nk,p ]

Fig. 1 An eight-node thin hexahedral solid element

3 Solid-Shell Element for Piezoelectric Patches

- : . : Although it is often assumed that the distribution of electric
2 Geometric and Kinematic Interpolation potential varies linearly through thickness in piezoelectric layer,
Figure 1 shows an eight-node hexahedral element in whigh an exact solution for piezoelectric laminate plates given by Hey-
and{ are the natural coordinates. L¢be aligned with the trans- liger and Saravanogl2] has shown the nonlinear distribution of
verse direction of the shell; the geometric and displacement inteflectric potential. Moreover, the electric potential distributed in

polation can be expressed as: piezoelectric material is generally function of place space. Practi-
4 cally, electropolar direction is perpendicular to in-plane of the
X(&7 §):2 N (& n)(ﬂxf+ ﬂx_—) piezoelec_tric patch as sensor and/or actuator. Thus, the same pi-
v = > 2 ! 2 ! ezoelectric patch/filnti.e., it has the same electrodeas the same

electric potential on its same surface. For generic piezoelectric
=(agtaé+aynét+agny)+{(bptbié+bné+bsn)  solid elements, each node is equipped with three translations and
=Xt £X 1 one_electric pot_ential as the npdal d.o.f.s. It is necessary to con-
0 n strain the equality of the electric d.o.f.s of the nodes on the same
4 1+ g“ 1-¢ electr'ode.. To avoid this task, the electric d.o.f.s are sgpqrated from
U(g n,0)= E N (£, ,7)( R —Uf) the kinetic nodes. It should be noted that unlike kinetic nodes,
= 2 electric nodes have no coordinates.
Figure 2 shows two elements modeling the same piezoelectric
=N(& 7)do+ IN(E,7)0n=Uo+ LUy, @ patch in which two elements only need three electric d.o.fs
where N;=(1—§&)(1— »)/4, N2=(1+§)(1 n)/4, Ng=(1+§&) grouped under the electric node “p.” To model real through-
X(1+ 7)/4, Ny=(1—&)(1+ 7)/4, X, X;", andX; are the coor- thickness electric field distribution in piezoelectric layer, the elec-
dinate vectors, its value at the andi nodes of the element, tric potential distribution is assumed to vary with second-order
respectively. UU;" , and U~ are the displacement vectors Wlththrough thickness by introducing internal electric potential of pi-
respect to the globéll Cartelsian coordinates, its value dtthed ezoelectric element. Electric potentiglcan, hence, be expressed

i~ nodes of the element, respectively, as:
Up +U; 1 1 e
1 U;‘FUE d’:§(1+§)¢top+E(l_§)¢bottom+(l_g )d’in
N(&,7)=[Nal3,Nal3,Nsl3,Nal 3], Go=5 Ui+U; [
+ - 1+¢ 1-¢
Ua+Us =l S| @+, (4)
Uy —U;
FE—
qn:E U2+_ Ug , where®e:{¢mp,¢bonon}T is the electric potential of nodep;”
2| Uz —-Us brop: Protom: N ¢, are the top, bottom, and internal electric
U;—U; potential of the piezoelectric patch. The electric field in the trans-

verse direction with respect to the local Cartesian system is de-

wherel ,, is themth order identity matrix. . : ;
ged from the above potential expression as:

To resolve the trape20|dal and shear locking in the eight- nod
elemen[5,20-24, ANS is employed. Truncating the first- and

second-ordef-terms in transverse shear strains and the tangential 1 1 1 . .
strains, respectively, the physical strains can be expressed as: E;=— ¢ =~ xi\z "2 2§¢.n =—B®°— {Beidiy,
n
Ex =Ec+(E 5
(g:] ., [em-‘r(sb] [Bm+§Bb} ) ct B ®)
= = = q s
i Yxy & By whereB, is the electric field—electric potential matrix in the trans-
€z verse direction.
Yaox Furthermore, transverse shear response is assumed to be un-
y:{y ]:the, (3) coupled from the others. Since two of the electric field compo-
zy

nents vanish and the poling direction is always aligned with the
whereB’s are independent afandg® is the element displacementtransverse direction, the piezoelectric constitutive relation can
vector. therefore be expressed as
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o_ C. Cy -—e e 0':={O'X,0'y,7'xy}T, £:={ex,ey,7xy}T,
o p=|Ck C —egml{ey, So Sx} C- Cx}l
DZ €. e33 K§3 EZ S;r< S‘ CL CH
e S. s, dl] o in which _e::(e3_11_9321936)v €33, d-=(d31,d3;,d3e), d33 i§ Pi_'
| g d - ezoelectric coefficient, anB, and 55 («35) are the electric dis-
ory e =S 3 B %I placement and the permittivity coefficient in the transverse direc-
D, d_ ds3 k&3 E, tion, respectively.
T:{:zx] =Ct( sz} _Cy, 6 4 Solid-Shell Element for. Laminated Materlals. )
zy zy The average thickness strain can be calculated by first rewriting
where Eq. (6) as:
|
o A B G](g st —-sCt's, ~S2'S e5—el .
ey j=| ~B" D Flioy= SS7 S-SiS-'s, (S-S.S'Sess || o W)
P) L-6" F RILE) |gisilete (S-Sisi'Soes wipt(S-SISi'Soed] LB
I
Note, thate,,, &,, €,, andE, [see Eqs(3) and(5)] are indepen- o £ —
dent of ¢, and the element thickness strasg is assumed to be —! R D= Dc E.— Ec
independent of. To achieve higher computational efficiency, the = E” ’ 1D’ 1B
second-order terms in the in-plane strain are often truncated b b
whereas only the zero ordérterm is retained in the Jacobian Ag+BoBl/D, By/Dy A;+BBl/D,
determinant that following will turn up. From Eg§3), (5), and _ T T
(7) we have C = By/Dyg 1/Dg B,/Dyg ,
. A,+B;B}/D, B,/D, A,+B;Bi/D,
o 1 +1 = o
suzzf ([—BT D F]{ o )dg 8={—Gg+FoBy/Dy Fo/Dg —G]+FoB{/Dg},
Y E -
‘ e,={—GI+F,Bl/D, F;/Dy —G}+F;Bl/Dg},
Em J— J—
1 1 O-H KSZRO_FOFOIDOY K(S)]_:Rl_FOF]./DOY
:Eﬁ [-B D —{B F {F]d{-{ &, k5=R,—FF, /Dy,
1 EC
EL 1 +1 ,
[Ag.ALAz]= 5 [1.4,¢7]Adg,
— -1
On [
L Y [Bo,B ]—lf+l[1g]Bdg D —1J+1Dd§
De 2., D, [% om0t B P
D. b, 1 (+1
i A B gA G gG [G()!GerZ]:Ef 1[11§1§2]Gd§1
1+ ¢A (B A G G
= — T T dg 1 +1
2Ja| -6 F —iG R (R [FoFil=5 | [L4IFdZ,
| —{GT (F G (R R o
1 +1
[RO 1R11R2]: E f [1:§xg2] Rdgv
-1
and from Eq.(6), obtain
. l +1 1 +1 _
TZEJ Td§=§f CdZ-v=Cry, ©)
-1 -1
wheregl , a , €s, andk®’s are termed as the modified general-
T ized laminate stiffness matrices which are associated with the gen-
€ ( “’] eralized element stress and strain, the generalized piezostrain co-
# ||E))’ (8) efficients, and the generalized permittivity coefficient in the

where
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transverse direction, respectively. It is worth noting two ca&®s:
the element only contains laminated material where piezoelectric
coefficients are assumed to be zero and permittivity coefficient of
each layer is the saméb) the element only contains one layer
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piezoelectric material. In both cases, the generalized stiffness ma- i1 r+1f —1[s _qTl( =
trices in the Eq(8) can, respectively, be reduced to: I —1[ 7 ] oL d [ - ]+Hr
) y . HR= - - 2 _E” _d— F"' —E” g &
1 1
1—r_fl— puy
—57 Ci 7+ 7 y|Jodédn—P® (13)

whereS, =C; %, d=eC, ! andw’ =+ +ed".
The following orthogonal constant and nonconstant stress

nodes are chosen in a way similar to that of Pian's eight-node
element [26,27:
_ p= Bne
[ f"} _ Um 4 Oaxs Pau Oax2|) Buc
D, == '
e e 0 K2, 0 oy O3x4 I3 Osx5  Pun [ﬁ%,::
0 0 - G| 0 1R Br
-3 3 — C
L 3 3 i 7=[l> PTH]{ﬂ ] (14)
TH
Using the following generalized elementwise potential energyhere
function: _ _
_ X, X, O XX 0 0
1 (+1(+1 e |TIC, e € 5_77_7, ﬂ_g_g
me== . o 1(&y,y, 0 nysy: 0 O
2), )4\ "EB) | e -w¥|l-E NH=T | —— — ,
Jo| éx,y, O #mxy, O O
— 0 0
+ ‘yTCT‘y 2Jodédn—PE, (11) o __f 7
EX X, X eXe 116K <
where P¢ is the element load potential due to mechanical force Pun==—| &YYy mYYe|, Pr=— T e ,
and surface chargdy=J|,_ in which J is the Jacobian determi- Jo| — — Joléy, my:
nant, from Eq.(11), the following static equations of the piezo- EXYy XY

electric elementwise can be derived: J0=Iepreor Xe=Xelemnezmor  Ye=Yelemp-i-o
—g={=01 =y=(=0> =9=(=0>

e e e J— J—
Kinm Kmeo  Kmer q° ff Xﬂ=xn|§= 7={=01 yﬂ:yﬂ|§:ﬂ:{:0'
e T e e
(Kmeo) " Keex O (I)e =151, (12)  substituting Eq(14) into Eq. (13), and condensing’s with the
(kme)" O el bin 0 stationary conditions ofl; with respect toB’s, Eq. (13) can be
expressed as:

where
+1 (41 AR kim  Kneo  Kie q°
— — 1
kemmzzf f (B]C, B, +B{CB)Jodédn, Mfe=5 1 ° (Kheo)T Kep O |{ @°
-1J-1 e e
i) [ (key)T 0 Koy |\ %in
+1 (+1
Koo =2 J f B &BeJodéd, ANE
o —1fop 12 (15)
HLpe 0 in
e —
kme_l_zj71 f—l B, €;BeJodédn where
+1 [+1 e _ T Gne| = | Gne IV T —1 IV T~
:eO:_ZJ lf leBe\]odgd% K= Gwmc Guc) T G ™ G| T 5 BeCTCe
o +GuHT Gy
kge]_:_zf f BeiKiBeiJOdgdﬂv Bl:(Bm,B”,Bb)T, 1 GNC T__ GNH T B
-1J-1 K eo=— C,Ecct H 'E
me0 v GMC L=CC GM 1 CH»
f? is the elementwise mechanical force due to the body force and 1 T T
surface tractionfg, is the elementwise electric force vector due to e :_(GNC] CE +{GNH] HlE
x mel G L=HC G 1L =HH:
the charge density. v 1 Bm M

e 1= T 41
Keeo=7 EccC1Ecct EcuHL "Ech=Apo.
5 Hybrid Stress Solid-Shell Element for Laminated

. 1

Materials _ . KSe1=—EfcC. Epct EfgH T *Eny—Apy,
To apply hybrid stresgHS) formulation to the above ANS v

solid-shell element to improve the latter’s in-plane response, the Y1 a1

following elementwise modified Hellinger—Reissner functional v:gf f Jodédy,

can be used25]: -1J-1
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The elementwise static equation having the same form aglPy.

can be obtained from Eq15).

6 System and Eigenequations

Assembling the elemental matrices gives the global system

trices. The resulting dynamic equation becomes

M 0 0]( g Co 0 0] 4
0 0 0ffd;+[0 0 oOff @
o o oflen [0 o olén
Kom  Kneo Kmal( g F,
+| (Kmeo)"  Keeo 0 P ={Fqr, (16)
(Kme)T 0 KegJl®n) L0

whereM is mass matrixC,, is proportional passive matrixj, ®

M 0](d] [Cp O](a] [Kmm Kmel(q] [F
o olal dlel L cellel-le
7
and
#n=—KeaKnad, 18)
where,

Kmnm=Kmm— KmeOK;ellK-lr;el
If the actuators and sensors are embedded in a structure, it is
convenient to partition the system vector of electric poternbal
into ®* of the actuators an®® of the sensors. Since there is no
electric loading applied to the sensors, ELj7) can be written as:

MG+ Cpa+ K+ K DA+ KS ®S=F, (19)
A= (K ~[Fo— (Ko dl, (20)
=— (K2 (KRoa, (21)
where
fii%a (K&t 0
[(I)S]: s \-1|=Kea:
0 (Kgo)

A
[Kﬁvame] Kme()v [o]ZFQ'

In particular,K . is block diagonal because the host structure is
nonpiezoelectric, i.e®” and ®° do not couple. Substitution of
Eq. (21) into Eq. (19) results in:
ae(KeSF)_l(KaP)T]q:Ff_Kﬁweq)A'

(22)
With the control algorithm known and by virtue of E@1), ®*
can be expressed in terms @fand thus all the electric d.o.f.s in

Eq.(21) can be condensed and a standard eigenvalue equation can
be obtained as

[(Knmn— KmeoK e o) — @?M1g=0, (23)

wherew is eigen frequency. Eigenvalues and mode shapes can be
calculated and defined accordingly.

MG+ Cpd+ [K mm— K

7 Numerical Examples

7.1 Laminated Simply Supported Square Plate

7.1.1 Modeling. The plates used in this simulation are
square in shape with simply supported edges. Three different
lamination schemes are considered. The first is layUd@f2/1],

1d secondl2/1/1/2), where digitals 1 and 2 denote the orthotropic

DF and the transversely isotropic PZT-4, respectively, as
shown as Table 1. Each layer has equal thickness ohQ.&bere
his the total thickness of the laminated plate. The both lamination
plates are composed of two dissimilar materials with a mismatch
in both elastic and electric properties. The third one is a five-ply
laminate [p/0/90/0/d. The laminate configuration consists of a
[0/90/0] Gr/Epoxy, denoted as 4 in Table 1, cross-ply sublaminate
with composite plies each h8 thick. Two continuous PZT-4's,
denoted as 2 in Table 1, layers of thicknesshOehch are also
bonded to the upper and lower surfaces of the laminate. To com-
ply with the reported results of exact solution, all layers were
assumed to have equal dendjpy=1 kg/nT). Two aspect ratios of

and ¢, are, respectively, the system vectors of nodal displactiick plate @/h=4) and thin plate ¢/ h=50) are considered,
ment and electric potentials, akd andFq are, respectively, the where lettera denotes the length of the square plate. The outer

system vectors of mechanical force and electric force.

surfaces of the piezoelectric layers were forced to remain always

Since the internal DOR®,, does not have physical significance grounded. Based on this, two sets of electric boundary conditions
it can be condensed from the system equations in order to impravere considered for the inner surface of the piezoelectric layers:
the computation efficiency. One can obtain the modified matrix (a) a closed-circuit condition, with the electric potential forced

equations as

Journal of Applied Mechanics

to remain zerdgrounded, and
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Table 1 Material properties (&,=8.8510"?farad/m, electric permittivity of air )

Property 1(PVDF) 2 (PZT-4 3 (PZT-4) 4 (Grlepoxy 5 (Gr/epoxy

Elastic properties:

E, (GPa) 237.0 81.3 63.0 132.38 150.0
E, 23.2 81.3 63.0 10.756 9.0
E, 10.5 64.5 63.0 10.756 9.0
Gus 2.15 25.6 24.231 3.606 7.1
Gss 4.4 25.6 24.231 5.6537 7.1
Ges 6.43 30.6 24.231 5.6537 7.1
V1o 0.154 0.329 0.3 0.24 0.3
V13 0.178 0.432 0.3 0.24 0.3
Vo3 0.177 0.432 0.3 0.49 0.3
Piezoelectric -0.13 -5.20 44.367 0 0
coefficient(C/nm?):

€31 —-0.14 —-5.20 44.367 0 0
€3 —0.28 15.08 50.182 0 0
€33 -0.01 12.72 14.151 0 0
€24

Electric permittivity: 125 1475 1728.8 0 0
e11/eg 11.98 1475 1728.8 0 0
eanl€g 11.98 1300 6362.7 0 0
ea3leg 1800.0 7600.0 7600.0 1578.0 1600.0

Mass density (kg/m°)

(b) an open-circuit condition, where the electric potential revalues of the exact solution depending on the type of electric
mains free (zero electric displacementsThree elements are boundary conditions for both thicka(h=4) and thin @/h=50)
meshed through thickness direction. plates. The differences between D and HS in all results are very

7.1.2 Fundamental Natural FrequencyThe normalized small. The natural frequency is little higher under the case of ND

natural frequencies for three laminated schemes plates are shd _Of LD. _The frt_equency differences between ND and_ LD are
in Tables 2—4. In the tables, the exact results reported by Heyligd® highest in the first laminatdd/2/2/1] among three laminated
and Saravano§l?] are nondimension by,a%/(hp*210%). The plates, about 1%. The dlfff_srences in case of another two laminated
letters ND and LD in these tables denote about through-thicknd¥gtes are very small. This shows that the effect on natural fre-
electric potential nonlinear distributions and linear distribution§luéncy caused by through-thickness nonlinear electric potential
respectively. That is, the electric potentia), in Eq. (4) is con- distribution is generally very small. However, this effect should be
sidered for nonlinear distribution and not considered for line&onsidered when the piezoelectric layer is thick and its electric
distribution. FER in Table 4 denotes the finite element resulpsoperties are strong. On the side, although predicted natural fre-
reported by Saravanos et 4B] in the case of three discrete-quencies are very good in most cases, the predicted results are
layers. According to the Tables 2—4, the predicted natural frequdawer than the exact solution in the case of aspect radiths

cies by means of both displacement elem@)tand hybrid-stress =50 and closed-circuit electric boundary condition, as shown as
element method&HS) consistently converge above and below th&ables 3 and 4. This reason remains a subject of investigation.

Table 2 The normalized natural frequencies of three layers piezoelectric plate (1/2/2/1)
Aspect ratios alh=4 a/h=50
Closed circuit Open circuit Closed circuit Open circuit
Mesh Method ND LD ND LD ND LD ND LD
4x4 D 1.0464 1.0362 1.0465 1.0363 1.0740 1.0640 1.0741 1.0642
HS 1.0446 1.0343 1.0447 1.0344 1.0719 1.0620 1.0720 1.0621
8x8 D 1.0056 0.9963 1.0057 0.9963 1.0140 1.0051 1.0141 1.0052
HS 1.0052 0.9958 1.0053 0.9959 1.0136 1.0046 1.0137 1.0047
12x12 D 0.9983 0.9891 0.9983 0.9891 1.0035 0.9947 1.0036 0.9948
HS 0.9981 0.9889 0.9982 0.9889 1.0033 0.9945 1.0034 0.9946
Exact 183.791 183.834 252.029 252.057
Table 3 The normalized natural frequencies of three layers piezoelectric plate (2/11/1/2)
Aspect ratios alh=4 a/h=50
Closed circuit Open circuit Closed circuit Open circuit
Mesh Method ND LD ND LD ND LD ND LD
4x4 D 1.0207 1.0145 1.0319 1.0259 1.0040 1.0019 1.0534 1.0515
HS 1.0184 1.0123 1.0297 1.0238 0.9994 0.9973 1.0489 1.0470
8x8 D 0.9874 0.9819 0.9985 0.9933 0.9482 0.9463 0.9939 0.9923
HS 0.9868 0.9814 0.9980 0.9927 0.9472 0.9453 0.9928 0.9911
12x12 D 0.9813 0.9760 0.9924 0.9872 0.9384 0.9365 0.9831 0.9815
HS 0.9811 0.9758 0.9921 0.9870 0.9379 0.9361 0.9825 0.9809
Exact 148.329 148.597 288.556 288.565
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Table 4 The normalized natural frequencies of five-ply composite piezoelectric plate (p/0/90/0/p)
Aspect ratios a/h=4 a/h=50
Closed circuit Open circuit Closed circuit Open circuit
Mesh Method ND LD ND LD ND LD ND LD
D 1.0402 1.0398 1.0576 1.0571 1.0204 1.0202 1.0601 1.0599
4x4 HS 1.0383 1.0379 1.0559 1.0554 1.0164 1.0162 1.0561 1.0560
FER 1.0273 1.0634 1.0314 1.1230
D 1.0053 1.0050 1.0225 1.0221 0.9635 0.9633 1.0003 1.0002
8x8 HS 1.0049 1.0045 1.0220 1.0216 0.9626 0.9624 0.9993 0.9992
FER 1.0064 1.0453 0.9743 1.0641
D 0.9990 0.9986 1.0160 1.0156 0.9535 0.9533 0.9896 0.9894
12x12 HS 0.9988 0.9984 1.0157 1.0154 0.9531 0.9529 0.9891 0.9890
FER 1.0023 1.0423 0.9643 1.0558
Exact 145.339 145.377 245,941 245,942

7.1.3 Electric Potential Distribution. Figures 3—6 illustrate in these figures have very similar shape with the exact solutions
the through-thickness electric potential fundamental mode for theported by Heyliger and Saravand®] and part FE results re-
laminated 1/2/2/1] and[2/1/1/2] plates for two aspect ratios underported by Saravanos et 4B]. As seen from Figs. 7 and 8, it is

open-circuit condition, respectively. The linear electric potentidhteresting to note that electric fields exist in the piezoelectric
distributions are also included in the figures to compare purposayers even with the closed-circuit conditions. Although the elec-
Plots of through-thickness electric potential fundamental mode foic potential in piezoelectric layer is much lower in closed-circuit
laminated[p/0/90/0/g for both electric boundary conditions arecondition than in open-circuit-condition, it should not be ne-
shown in Fig. 7 fora/h=4 and in Fig. 8 fora/h=50. The curves glected when the piezoelectric layer is thicker. It can be seen that
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Fig. 3 Through-thickness electric potential distributions for Fig. 5 Through-thickness electric potential distributions for

three-ply [1/2/2/1], alh=4 (—) nonlinear distribution, (- - - -)  three-ply [2/1/1/2], aslh=4 (—) nonlinear distribution, (- - - -)
linear distribution linear distribution
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Fig. 4 Through-thickness electric potential distributions for
three-ply [1/2/2/1], alh=50 (—) nonlinear distribution, (- - - -)
linear distribution

Fig. 6 Through-thickness electric potential distributions for
three-ply [2/2/1/2], aslh=50 (—) nonlinear distribution, (- - - -)
linear distribution

Journal of Applied Mechanics JANUARY 2005, Vol. 72 | 41



1.0

Normalized Thickness
o
o

0.0 ‘ ‘
0.0 0.5 1.0

Normalized Electric Potential

Fig. 7 Through-thickness electric potential distributions for
five-ply [p/0/90/0/p] for a/h=4 (——) closed-circuit; (- - - -) open-

circuit
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Fig. 9 A cantilever composite plate with thirty surface-bonded

piezoelectric actuators

edges, respectively, ar@is the width of the plate. For compara-

tive purpose, the experimental results of Crawly and Lazgz8k
and the finite element predictions of Ha et[&l] are also included
in the figures. The element models developed by Ha df7akare

eight-node solid elements with nine incompatible displacement
modes. These incompatible elements suffer from shear locking

the electric fields in piezoelectric layers have considerable diffashen the elements are not in the form of rectangular pris@if

ence between linear distributidiD) and nonlinear distribution Despite the regular geometry of the elements in this example,
(ND), especially, for electric field in middle piezoelectric layerWr predicted by the incompatible models are apparently smaller
However, the difference is very small for the third laminated platéhan that obtained by the present model and the experimental

7.2 Cantilever Composite Plate With Distributed Actua-

measurement.

tors. Figure 9 shows a composite cantilever plate with twenty8 Conclusions

two square and eight nonsquare surface bonded piezoelectric cap this paper, an eight-node hexahedral solid-shell element for
ramic patches, material properties denoted as 3 in Table |dminated composite structures is employed. The generalized
Stacking of the composite plate [§°/=45°%s and the plate is |aminate stiffness matrices are derived by the assumed natural

made of graphite/epoxy unidirectional laminate, material proper-
ties denoted as 5 in Table 1. The geometric size of the plate and

the corresponding meshes are shown in Fig. 9. The deflections ev~q.0s
induced by an applied uniform electric field of 394 V/mm, of
opposite polarity at the upper and lower piezoelectric patches. Tt
following nondimensional deflection parameters are computed kg
the present element mod@tS) and shown in Figs. 10-12:

W =w,/C, Wr=[w,y—(w;+WwW3)/2])/C
and WR: (W3_Wl)/C,

which correspond to longitudinal bending, transverse bending ar=
lateral twisting deflections. In the above equations, w,, and
wj are the transverse displacement along the midline and the tw

1.0 —_—

Normalized Thickness
o
[3,]

0.0 —

0.0 0.5 1.0

Normalized Electric Potential

Fig. 8 Through-thickness electric potential distributions for

five-ply [p/0/90/0/p] for a/h=50 (——) closed-circuit;
open-circuit
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Fig. 10 Nondimensional longitudinal bending deflection of
cantilever plate in Fig. 9. (——) present results; (----) Ha et al.
[7]; (O) experiment [Crawly and Lazarus [21]].
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Fig. 11 Nondimensional transverse bending deflection of the
cantilever plate in Fig. 9. (—) present result; (- - --) Ha et al.
[7]; (O) experiment [Crawly and Lazarus [21]].
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Axisymmetric Plane Stress States
of an Annulus Subject to

Yuwei Chi D L] I = Sh T f t-
momas s renze | DISPIACive Shear Transformation
Hungyu Tsai We study the equilibrium stress field in an annulus composed of a material that admits
stress-induced displacive phase transformation that preserves volume. A standard ex-
Department of Mechanical Engineering, ample is the austenite to martensite transformation in shape memory alloys. Attention is
Michigan State University, restricted to isothermal and axisymmetric load increase. The constitutive model follows a
East Lansing, MI 48824 standard J formulation appropriate for small strains and incorporates a single internal

variable (the martensite phase fraction). A plane-stress boundary value problem is ana-

lyzed so as to determine the partitioning of the annulus into regions of (pure) austenite,

(pure) martensite, and austenite/martensite mixture. Structure maps are presented, giving
concise descriptions of the phase partitioning as the loads increase.
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1 Introduction each other provided that the loading is not reversed. Loading is

. . I . sociated with what is typically referred to as the forward trans-
This paper presents a det_aned_ exar_nlnatlon c.’f axisymmet Iogrmation (austenite to martensjte Such equivalences break
stress, strain and phase fraction fields in an equilibrated annu

composed of a material that undergoes displacive shear trans %-Nn in unloading after full or partial completion of the forward
P S 9 P {Pinsformation. This is due to the different treatments in the vari-
mation. This includes the case of shape memory alloys, wh|%h

> A ; s models for the hysteresis associated with the reverse transfor-

accounts for the basic interest in this problem. In view of stand : -
. ; ation (martensite to austenjte

notions of plane stress, we regard the annulus as a thin, flat pla

> . - . or more complicated loading geometries, similar close equiva-
Attention is restricted to isothermal load increase at a temperatyif ces occur in loading so long as only the forward transformation
for which the more ordered crystal structuaistenitg is either

i iv . Here the work of Bondaryev and W Vi-
stable or metastable at zero stress. In the context of shape me 3 activated. Here the work of Bondaryev and Waynhdhe

. i Mtly provides the first useful and general multi-dimensional
materials this corresponds to temperatures abovg the martensiGe| of such thermomechanical behavior. Their work gives what
start temperatur® . The plate is traction free on its upper an

| f d subiect t " | traction— an be viewed as tha,-style flow generalization of an infinitesi-
IOWEr Taces, and subject to unitorm normal tractigfi=—=p; ON ) strain uniaxial treatment. In particular, so long as unloading is
its inner edge =r;, and uniform normal tractiob,, = — p, on its

0™ - . > not at issue, this provides a conceptual setting that in effect would
outer edge =r,. This type of problem for the case of an infinite;n .y 15 many currend,-style models for displacive shear trans-
shape memory plate subject to far-field equi-biaxial load and¢grmation. For multi-axial load, the utility of,-based models as a

traction free inner edge was recently the subject of Birfddmnd ,qef| first approximation is apparent from experiments on shape
so corresponds to the specializations{c,p;=0) for the prob- ooy alloys by Gall et al[5] and Lim and McDowell[6]

lem considered here. In addition to generalizing the geometry ag ong others.

the loading conditions of Birmafi], we utilize a more standard Isothermal loading response of shape memory materials has

model for the determination of transformation strain. This MOfgaqn extensively studied and modeled in the one-dimensional set-
standard model does not constrain the radial normal transforngﬁf

i ) ) . tifg of uniaxial tension such as is appropriate for thin wires. As
tion strain to be equal to the azimuthal normal transformatiog),

. d is in keepi ith . e f | own by the schematic diagram in Figajl the stress-strain
strain and so is in keeping with conventionBl style formula- ¢, ;re for loading is then characterized by a loading plateau as the

Cmaterial converts from austenite to martensite. This conversion

fracthns require a numerlca[ treatment, howeyer by employlngtgkes place over a relatively small stress interval fr@fﬁ(T) to
Nadai transformation we achieve a more concise analytical formugy ;
(T) which depends on temperatufieence the argumern).

lation that in turn gives rise to certain efficiencies in the numeric&lf . . -
treatment of the resulting two-point boundary value problem. he SUperscripET denotes “forward transformation,” while the
Engineering scale models for shape memory behavior typicaffyPScripts refer to “start” and *finish.” This 5 referreg to as
introduce one or more phase fraction internal variables in orderR§eudoelastic behavior. The threshold stresselsand of ' in-
track the transformation between the austenite phase and the régase with temperature at an essentially constant rate, as indi-
tensite phase that is responsible for the shape memory effect.cafed in Fig. 1), so as to be consistent with the Clausius-
present there exist a variety of such models, and the readeiCigpeyron relation. The associated modeling considerations are
referred to one of the various reviews on this subjea.,[2,3]). reviewed, for example, if3].
For a simpler geometry corresponding to uniaxial load, many of Again with reference to Fig. (&), the stress-strain curve for
the most common models can be put in close equivalence wiRAloading in uniaxial tension at> Ay is also characterized by a
pseudoelastic unloading platedhelow the loading plateawas the
Contributed by the Applied Mechanics Division ofif AMERICAN SociETY oF ~ Material converts martensite back to auste(tite reverse trans-
MECHANICAL ENGINEERSTor publication in the ASME OURNAL OFAPPLIEDME-  formation). Let O'ET(T) andngT(T) denote the associated thresh-

CHANICS. Manuscript received by the Applied Mechanics Division, July 8, 2003; : RT, _ . .

final revision, August 16, 2004. Associate Editor: K. Ravi-Chandar. Discussion c91|d stresse;. In partlculao;f (Af)_o' which 'S, due .tO the fact
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, JournafBgt unloading at temperatures beldw results in an incomplete
Applied Mechanics, Department of Mechanical and Environmental Engineeringeverse transformation. The temperature ordefihg<M <A
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will b : : RT, RT, FT
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Fig. 1 (a) Typical one-dimensional stress-strain curve for T>A;. (b) Temperature dependence of

threshold stresses %7, of7, oF7 and of7.

Since the stress is essentially uniform in a thin wire, the cog-upon effective stress. No additional assumptions are introduced,
version of austenite to martensite takes place over a relativalych as the assumption {i] which postulates that the ratio
small load interval. For more complicated geometries, such as g /oy, , as a function of, shares the same formula as that of the
plate geometry considered in this paper, the conversion of thkstic solution. Indeed we find that such an assumption is not
entire structure from the austenite to the martensite state may takeyed, due to a significant redistribution of stress associated with
place over an appreciable range of load. Over this load range, itli® martensitic transformation.
necessary to describe the partitioning of the structure into regionsAdditional analytical simplification follows by employing a
of austenite, martensite and their mixture. For this purpose, itdhange of variables due to Nadd&l]. The associated boundary
standard practice to employ a field variable, héréor the volu- value problem admits simple closed form solutions for the case in
metric phase fraction of martensite within a general mixture afhich no transformation takes place anywhere within the plate. In
austenite and martensite. From the viewpoint of continuum maHl other cases we find it necessary to employ a numerical proce-
chanics,¢ is an internal variable as it describes additional micradure to obtain solutions. However, in all cases it does follow ana-
structure features at each point in the continuum. At each radiglically that the effective stress is a nonincreasing functiom. of
value r, the phase fractiorg is determined from the effective Thus the martensite phase fraction is also nonincreasing rnwith
stress. If the temperature is not constant, then the phase fractiohhe most general phase distribution involves a plate that is parti-
is determined from both effective stress and temperature. tioned into an inner martensite ring;&r <r ,,), an intermediate

It is to be noted that certain shape memory models further réng involving phase coexistence (,<r<r 4), and an outer ring
fine such a phase fraction field variable so as to distinguish dif austenite  ,<r<r,) as shown in Fig. 2. Less complicated
ferent types or different variants of martensite and to properfhase arrangements involve only one or two such rings. In this
account for the directionality of transformation strain. The same
effect can typically be achieved iy theories without such refine-
ment by specifying transformation strain in terms of the stress
deviator[4].

We do not consider unloading issues associated with the reverse
transformation from martensite back to austenite even though the
present modeling framework is sufficiently general to accommo-
date this extension. If both forward and reverse transformations
occur, then the phase fractighdepends not only on the current
values of effective stress and temperature but also on their past
history. It is at this juncture that the various models exhibit
marked differences in the treatment of the associated phase frac-
tion hysteresis. Further brief commentary on such extended mod-
eling is presented in the next section.

In the next section we also formulate the boundary value prob-
lem for the annulus. Similar boundary value problems have been
considered for materials that admit dilatational martensitic trans-
formation [7] instead of the shearing martensitic transformation
considered here. Dilatational martensitic transformation is respon-
sible for transformation toughening in certain ceramic materials
[8]. On the other hand, the martensitic transformations associated
with shape memory behavior in metal alloys have little, if any,
volume Ch"?‘”ge ar_ld the associated contmut_Jm models 'nvoflﬁs. 2 Generic phase distribution within the shape memory
transformation strains that are volume preserving. alloy annulus. The inner ring M. (r,<r<r,,) consists of mar-

The boundary value problem of interest here reduces to twhsite. The outer ring A (r 4<r<r,) consists of austenite. The
ordinary differential equations; one follows from the stress equitermediate ring C (r,<r<r4) consists of an austenite /
tions of equilibrium and the other follows from the dependence afartensite mixture.
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setting a quasi-static program of increasing loagls [§,) results The plate is composed of a material capable of transforming
in the original austenite ring forp{,p,) =(0,0) giving way to a between the two distinct phases of martensite and austenite. The
two-ring structure via the emergence of the mixture zone at tineartensite phase fraction is denotedgsso thaté=1 corresponds
inner boundary. The emergence itself corresponds to the spetiaimartensite and=0 corresponds to austenite, while<g<1
case whereim 4=r;. The particular combinationg(,p,) asso- indicates a state of austenite/martensite mixture. In gegerai-
ciated with the emergence of the mixture zone can be computed with radial location. The strains are additively decomposed
analytically. into two parts, the elastic part which can be expressed in terms of
Further increase ing,p,) causes the interface=r 4 to ad- stresses, and the inelastic part consisting of the transformation
vance from the inner radius into the interior of the plate. Eventstrains that result from phase transformation:
ally the loads p;,p,) may increase to values such that the inter- tran
facer=r 4 encounters the outer boundary:r,. The loads may e =(0—vog)E+e™,
also increase to values such that the second interface,, = (0 pg— )/E + gan )
emerges at the inner boundary:r; , heralding the conclusion of Eoo=To6™ VOrr g0 >
the austenite to martensite transformation at that location. Contin- ,= — (01 + 0 yg)|E+ N
. . 72z rr 60 z
ued load increase now also advances the second front into the
plate. At a fixed radius, passage of the first front initiates thewhere E is the Young's modulusy is the Poisson’s ratio, and
austenite-to-martensite transformation and passage of the seceff, st,,”"” and " are the transformation strains. In the present
front completes this transformation. analysis, the elastic moduli are taken to be the same in both aus-
Values of (;,p,) associated with either scenarig=r, or tenite and martensite. Conventional thermal expansion is not con-
r,«=r; can be obtained numerically. Either scenario may occsidered here as the analysis is isothermal.
first, depending on the geometfyharacterized by; andr,) and Let 7 be the stress tensor arddbe the identity tensor so that
on the constitutive parameters. Similar ring shaped zones desct#ser—1/3(tr 7)1 is the deviatoric stress tensor and,
configurations associated with dilatant phase transformations, aad/2tr(S'S). The transformation strain tensef?" is taken to be
the work of Giannakopoulos and Olspf]| shows how the devel- in the same direction &S and proportional ta&, specifically
opment of such zones is sensitive to various modeling assump-
tions on the nature of the dilitant transformation. For the displa- wan S
cive shear transformations considered here the partitioning of the € :m \/3_/20‘5- (6)
plate into various pure and mixed phase regions is described with
the aid of structure maps in th@;(,p,) plane. The structure map Note that te"@"=0, indicating that the phase transformation by
is completed by determining the loads associated with the disagelf is volume preserving in the present small strain setting. The
pearance of the second frontr ,, at the plate outer boundary material constant in (6) corresponds to the axial transformation
r=r,. Thus a general structure map consists of four closed curvsigain under uniaxial load for complete conversion of austenite to
in the (p;,p,) plane associated with the conditiong=r;, r4 martensite. Namely if r=0e,®e, then £?'=af(ee,
=ro, I y=ri, andr =r,. Examples of various structure maps_ 12,5 e, 1/25,® ;) so thate""=« if the forward transfor-
are presented in Sec. 6. mation is completg¢é=1). The expressiori6) is a deformation
version of the flow rule in the model of Bondaryev and Wayman
[4]. Namely, their model gives the specification of"® rather
2  Problem Statement than €"". The present deformation version follows closely the
. . recent formulation of Briggs and OstrowsKil]. It is expected
Following a standard developmefiit0] we consider a plate of 515 style theories Woulggzlggenerally involve either afo?mulation
constant thlck_ness in the shape of an annulus with inner rad'uﬁike (6) or else an associated rate versisee for exampl¢3.25
and outer radius, (Fig. 2. It is held at a constant temperatureof [12]). Recently, for example, Briggs and Ponte Castarié@h

and prior to loading is everywhere in the austenite phase. Itd$e employed such a model to estimate the effective behavior of
subject to uniform edge thrusts described by shape memory alloy fiber composites.

on=—p, atr=r, Specializing(6) to the case of plane stress gives
’ @
on=—p; atr=r;. wran_ 2911~ Tap
. . . . L T T o0 a,
There is no shear traction on the boundaries. This setting is con-
sistent with axisymmetric radial displacemenfr) and vanishing 2049— 0
azimuthal displacement,= 0. A plane stress solution of the plate sga”:T aé, @)
involves onlys,, ando,,, both functions ofr only.
The equilibrium equations reduce to the single equation T oot O
tran_ __
do op—0 z - 20 ’
I T, @) _ _ _
dr r whereo is the effective stress given by
Attention is restricted to infinitesimal strains. The polar coordi- _ \/ﬁ
A S - . . = - + 0%, 8
nate system provides a principal frame in which the in-plane TN = T To0 Too ®)
strains are given by The effective strese for general three-dimensional analysis is
du u V3tr(S'S)/2= /37, and so reduces t(B) for our problem. Note
S”Zd_rr and SMZT', (3) from (7) thate;*"# e§™" if o, #04y. This differs from the con-

stitutive assumptions"=¢%2" employed in[1] [Eq. (5)]. The

The out-of-plane strair,, need not enter the problem formula-effective stress can be regarded as a scalar representation of the
tion, but can be determined from the constitutive description afear character resident in the stress tensor. That this dictates the
shown in what follows. To maintain compatibility, the in-planemartensite phase fraction is consistent with experiments on shape

strain components if8) must satisfy memory alloys showing for these materials that shear is the pre-
dominant factor in stress induced martensitic transformdtigih
e :d(rsg,,) 4) For J,-style theories the dependence&bn 7 is only through
" dar J, or equivalently only througlr. Starting from a state of pure
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austenite(¢é=0), let g""(o, T) give the phase fractiog for unin- tion starting from a state of pure martengiée-1). An example of
terrupted forward transformation. Anls-style theory will define such ao-¢ curve for T>A; is shown in Fig. 3. Such envelope
such a function, which for our purposes is referred to as the fdunctions play a role that is analogous to yield surface functions in
ward envelope function. In a similar fashion, the reverse envelopaditional plasticity theory. A useful approximation fgf (o, T)
function gR™(o, T) gives ¢ for uninterrupted reverse transforma-andgR™(o,T) is then(cf. [15])

1 for o=t T(T),

FT0 o T)— 11_ { O'*O'ET(T)
R e P U
0

} for ot T(T)<o<of(T), ©)]

for o< O'ET(T) ,

with similar construction fogR™(o,T). This framework is suffi- =<g(o)<1. This definition of¢ together with(5) and (7) implies
cient for the description of complete transformation behavior, btgnsion/compression symmetry for such purdlystyle models. A
incompletely posed for the description of partial transformatiopseful extension that allows tension/compression asymmetry in an
behavior associated with subloops. Extensions that allow for théherwise initially isotropic setting involves the refinememnt
description of subloops due to partial transformation followed by g(o,J3), where J;=detS as considered, for example, in
transformation reversal can be accomplished in this framewofl.2,17].

but such extensions are highly model dependent. For exampleThe framework presented above is sufficient for the determina-
Duhem-Madelung hysteresis models extend the above framewdidn of how the plate transforms from austenite to martensite due
using history dependent kinetic rules framed in terms of differetie change in the thrusts; andp,. If the applied thrustsi; ,p,)

tial equations that depend on the envelope functid@. Other are regarded as functions of time, then the stresses, strains and
models, such as those using a Preisach algorithm, are not quitgphase fraction are also functions of time. It is assumed that the
conveniently describefB]. As the present study restricts attentiorthrust loads change slowly so that the effect of inertia on the
only to the forward transformation starting from pure austeniteleformation and phase transformation can be neglected. This al-

such considerations are not germane. lows for the interpretation in terms of quasi-static phase evolution
In this paper, attention is restricted to the case of isothermalthin the plate as discussed in the Introduction.
loading beginning from pure austenite as may occurTiorMy . In the present treatmeg(r) is a continuous function afobey-

Loading here refers to conditions such that effective sttess ing O<&(r)<1. For fixedp; and p, the plate can be in one of
each location is increasing with timeéor keeps the same value three broad phase states: a fully austenite state denoted by
whereupon the reverse transformation is never activated. Unaeganing that(r) is identically zero, a fully martensite state de-
such circumstances, temperature can be dropped from the notatioted by M meaning thatt(r) is identically 1, or some kind of
and only the forward transformation need be considered. Heneembined state denoted through the us€ ofeaning that there is

Eq. (9) is rewritten as at least one value af such that 8<&(r)<1.
1 for o=oy,
1 og—0g .
g(o)={ 5|1-co 77 for os<o<oy, (10) 3 A Useful Reformulation
Ot~ 0g

Equations(5) and (7) lead to the following expression for the
0 for o<oy in-plane strains

by employing the following replacement: 1

(e, T)—=g(e), ot (M—os, of(T)—oy. (11) en =g (T~ vog) +

1 1 1
Ew Bl
In this convention, we havé=g(o) with {&=0 if c<ogandé=1 1 1 1
if o=0¢. In general the martensite fraction functigfo) is a ego== (0 gs— va,r)+(—— _)(069_ _U”),
continuous, differentiable and nondecreasing function, obeying 0 E Es(o) E 2

whereE4(o) is the secant modulus given by

g 1 1 >
[ RS- ) = T atlo ~ TE+ag(o)lo” (13)

Substituting from(12) into the compatibility conditior{4) now
gives

d 20'39_ (o d

g (Tt 00— o) O

in which the equilibrium equatiof2) has been used to eliminate
the terms involving the Poisson’s ratio. The absence of the Pois-

Ey(0)=0, (14)

0 . son’s ratio is not unexpected for the case of plane stress as dis-
G?T s T ch Gy cussed for example by Budiansky8] in the context of what is
known as the extended Michell's theorem. This theorem gives that
Fig. 3 Martensite phase fraction as a function of effective the stress field for a traction boundary value problem is indepen-
stress for T>A; dent of Poisson’s ratio for the type of problems under consider-
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ation here. Rather than directly substituting fré8ninto (14), we mixture zone on an intermediate rimg,<r<r 4, and a marten-
introduce the following change of variables due to Nd@ site inner ringr;<r<r,,. These are the same type of structures
as obtained if1].

20 ™ From the first equation afL7), it follows that a constant effec-
"rr:ﬁs'” B+5) tive stress field requires eithgd==/2 or B=3m/2. These corre-
(o>0) (15) spond to uniform equi-biaxial stress solutions, (r)= o y,(r)
20 [ 7 =—p so thate=|p|. Such solutions occur if and only ff,=p;
Too~ \/gsm B 6/’ and are the only solutions with effective stregs)=const. Here

pPi=pPo,=p>0 gives B=3n/2 and p;=p,=p<0 gives B=mu/2.
whereg is a function ofr and for convenience is taken as obeyinghe phase distribution for uniform equi-biaxial stress is respec-
0<pB<2m. Notice that the stresses given b¥5) automatically tively of type A, C, M according to whethefp|<og, o<|p]
satisfy (8). <o, |p|=o;.

By virtue of the definition ofEg(o) given in(13), the equilib- For the generic casp,# p;, it follows that (19) holds with
rium (2) and the compatibility14) can be written in terms of  strict inequality. To obtain the effective stress distribution requires
=o(r) andB=p(r) as integration of(17). Note for example that, if€* (r), 8% (r)) is a
solution of (17) corresponding to boundary conditions,,

Sin(lg+ T EJFUCOS(BJF T %:_ LOSB’ =—pf atr=r; and o, =—p} atr=r,, then @*(r),B*(r)
6/ dr 6/ dr r +a) is a solution corresponding to boundary conditioms
Ea(g—og') do 8 =+p} atr=r; ando,, = +p} atr=r,. Therefore in the§; ,p,)
sinB— ——sin(B— 77'/3):|—+0'COSB——0’ plane, two load pairs that are related to each other by a 180 deg
2(Eagto) dr dr rotation about the origin will produce the same distribution of
(o>0) (16) effective stress and hence the same phase configuration in the
plate. This symmetric property is inherent in the constitutive
where for simplicityg() is written asg andg’ =g’ (o) denotes Model in view of its tension/compression symmetry.
the derivative d/do. Solving (16) for do/dr and ¢3/dr gives Now if o and B are specified at some locationthen Eqs(17)
can in principle be integrated far=o(r), 8= B(r). However,
do a?cog B boundary conditions in the original ford) do not generate con-
a - T A ditions for (¢,B) at any one point. Generally, the iterated shooting
R (o>0) method[19] can be used in the case of two-point boundary con-
d_ﬁz TCosB| Msin(ﬁ—w/i%) ditions such ag1). The iterated shooting method can be avoided
dr ra 2(Eag+o) for the case of alternative boundary conditions wherein boind
(17) o, are specified at one boundary. In particular this provides a
with A given by direct procedure for studying the four special conditions-r;,
r4=rq, F\y=Tr;, I (=TI, that are associated with transitions be-
ATl Ea(g—0ag’) c02( B+ 7/6) (18) tween the different phase distribution types(20).
2 Eag+o e

Note that the dependence of governing equatid@sand(18) on 4 A Fully Austenitic Plate (LA Phase Distribution)

parameter& anda is solely through the produ@« which serves s section considers plates that are completely in the austen-
as a basic measure of complete transformation stress in the SQ@%hase and so correspond to a phase distribution of 4y

of a one-dimensional description. ; ; ; ,
20). This requireso<og everywhere in the plate, hence=
By definition 0>0 andE, «, g, andg’ are non-negative, there- (:0) A=Io'/2 ;#(Ij Eq (l%sreguc)g; to ! P g
fore A>0. It follows from (17) with A>0 that ' '
do 20 cog B d dB 2 sinpcosp

do 0" A
o <0. (29) dr r and Gr r (21)
. . The solution to Eq(21) is given by
Thus the maximum effective stress,,, occurs atr =r; and the ] i 5
minimum effective stresso,, occurs atr=r,. Accordingly osing=c; and sing/cosB=c,r* for cosp#0, 22)

dé/dr<0 whereupon there are six possible phase distributidns:

M, C, AC, CM, ACM, as follows:
. N _ where c;, C,, and cy are constants to be determined by the
An Er)=0so(r)=os, boundary conditions. Radial stresg and hoop stress ,, can be

AC: 13 E(r)>0, é(rg)=0e0;>a(r) >0, o(ry)<os, obtained by substitutin¢??) into (15) as

o=c5 for cosp=0

. _ _ c c

ACM: f(ri)_l. §(I‘0)—0<=>0'(I’i)20'f, U(ro)sosv(zo) o-rrzcl+\/§Tlrz and 0-60:(:17\/§T1r2 for COS,B?':O,

C: 1>&(1)>0, &r,)>00;>0(r)=0(ry)> 0., 2 2 (23)

o =04==*C3 for cosp=0
CM: &(r)=1, 1>&(rg)>0=0(r))=0¢, o1>0(ry)>0s, : . . . _
and it follows from this equation that cgs=0 if and only if p;

M E(rg)=1e0(ry)=01. =Po- )

o ) ) . If pi#p,, then the constants; andc, can be obtained from

The phase distributioniC involves an austenite outer ring onthe first equation of23) as

r 4<r<r, and a mixture zone on an inner rimg<r<r 4. The

separating interface=r 4 is associated with satisfaction of the pir 2= por2 pir 2= por
conditiona(r 4) = 0. The phase distributioM involves amix-  ¢1=——5——— and Cfﬁ for pi#po.
ture zone on an outer ring,,<r<r, and a martensite inner ring o~ N 3(Po=PiriTo

ri<r<r,,. The separating interface=r ,, is associated with (24)
satisfaction of the condition(r ) = 0. The phase distribution If instead p;=p,=p, then the second equation (#3) givescs
ACM involves three rings: an austenite outer ring<r<r,, a =|p| whereupon

2
[¢]
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ou(N=0g(r)==p, o()=|p| for pi=p,. (25) do  o®cosp

Equationg23)—(25) together retrieve the classical linear elastic dar rAy (32)
solution, with in-plane stress given by
) ) - d8  ocosg| Ea .
o :piri_p0r0+(p0_pi)rir0 E_ rAM Sln,B— 2(Ea+0') S|r(ﬂ_77/3)
Ut e _—
(26) whereA ,, is obtained from(18) as
Pirf=Pols  (Po—PIIIrS
To0= T2 2 2_ 22 M= 1= 5% cod(p+ i 33
ri-rt (d=rhr M= | 1= gt COS(B+ l) . (33)

The effective stress is given by ) ) ) )
A closed form solution td32) is not obvious, hence prompting a
R V(r2po—r2p;)2+3rira(pi—po)2/r? numerical approach. Such solutions are valid providdd,)
o=0(r):= 72 . (27) =0y .
Fo i As an example, Fig. 4 displays the radial variationpér,, and
The maximum and minimum effective stresses are given My, for a plate with E=50GPa, a=0.05, os=75MPa, o}

Tmax=01(r;) and o min=0(r,), respectively. =300 MPa,r,/r;=2, p,=50¢ and p;j=o. The corresponding
The validity of this solution requires . <os. The casarn,, Stress distributions for an elastic mater{al=0) subject to the
=0, is associated with parameter values obeying same edge thrustg andp, are plotted as dashed lines. Note that

4 a2 ma o o 42 2 2092 the o, distributions for these two materials are similar, but the
(ri+3rg)pi = 2rg(r{ +3rg)piPot+4rope=(rg—ri)“os. a4, distributions are quite different. In particular the two materi-

(28)  als give different ratiosr,, /4y, therefore raising questions with

Equation(28) defines an ellipse in thep(,p,) plane containing "&SPect to any assumption that such a ratio is preserved.
are associated with ad phase distribution. This ellipse will be thefully martensitic loop(FML) in the (p; ,po) plane. The FML at
referred to as théully austenitic loop(FAL) in the (p; ,p,) plane fixed o, Ea andr,/r; can be obtained from integrating E2)
and corresponds to the transitional conditiop=r;. The FAL is With boundary condition ¢(ro),8(ro)) = (o, B80) upon varying
symmetric with respect to 180° rotation about the origin, a cor3o from 0 to 2. Like the FAL, the FML is also symmetric with
sequence of the tension/compression symmetry in the modelfiggPect to 180° rotation about the origin. The FML corresponds to
description. In the sequel additional curves will be constructed {i€ transitional conditiom ,,=r,, and the region exterior to the
the (p;,p,) plane, thus giving rise to a fully articulatestructure FML corresponds to loadsp(,p,) that generate an\t phase
mapthat distinguishes between the phase distribution possibilitiéitribution. The FML will surround the FAL in the, po) plane,
(20). although unlike the FAL, the FML is generally not an ellipse. The

An alternative way of obtaining the FAL is to sol¢21) subject region between the FAL and the FML corresponds to loads
to a requirementr(r;)=os. If B(r;)=Bo# m/2, 3m/2, then ac- (Pi.Po) that generate one of the phase distributions containing a
cording to (22) ¢; and ¢, are given byc,=o.sinB, andc, Mixture zonec, AC, CM or ACM. _ _ o
=tanB,/r?, hence the stresses are given by Although the FML is usually detgrmlned .numerlcally,.lt will

! pass through [ ,p,) = = (o,05) which provides the uniform

o =04 sinBy+ ri2 cosBo/( \/§r2)], equi-biaxial stress solutions on the FML. More generally, the line
pi=pP, provides the uniform equi-biaxial stress solutions in the
T o= as[sinﬁo—rizcosﬁol(ﬁrz)], (29)  (pi,po) plane. On this liner, (r)=o,.(r)=—p, giving a uni-
form effective stressr(r)=|p| and hence a phase fraction field
o= 0g\Sir? B+ 1{ cog Bo/r. &(r) that is also independent ofand determined directly from

asé=g(|p|). Hence such loading results in a phase distribution of
either typeA, C or M.
( cos,BO) Figure 5 displays both the FAL and the FML for the parameters
pi=—| sinByt+ ——=—| 05 E=50 GPa,a=0.05, 0s=75 MPa, 0;=300 MPa, and,/r;=2.
V3 Note that the region enclosed by the FML is not convex for these
) parameters. Note also that the FML is highly elongated ingthe
Os

Applied thrustsp; andp, are then given by

_ cospBor?
and =—|sinBy+ ——
po ( BO \/§r2

o

(30) direction _compa_lr_ed with thp, dirt_aqtion. In this case the external
thrustp, is significantly more efficient than the internal thryst

. . . . . . in promoting anM phase distribution. For example, a traction

Equation (30) defines an ellipse in parametric form within thefree inner boundary requires an outer thrpgt=3.3% to fully

(Pi,Po) plane wherep, is the varying parameter. Solvin0)  martensitize the plate, whereas a traction free outer boundary re-

gives sinB, and cosB, as quires an inner thrugt; = 27.74s.
2 5 3 2 The FML is completely determined by the parametefs E«
o Pifi T Polo _V3(Po—Pilo andr,/r;. Figure 6 shows the effect of varying; at fixed E«
sin By and cosB, , (31) . S . .
(r2—r?) oy (r2=r?)oy andr,/r;. In particular, this figure displays a family of seven

FMLs corresponding to; /os=1, 2, 3, 4, 6, 8, 10, with the other

whereupon the identity sfiBy+cos’ B,=1 retrieves(28). The use parameters set @ =50 GPa, a=0.05, o.=75MPa andr,/r,
of g as a varying parameter in obtaining loops associated with tae2 As one would anticipate, the FMLs are nested with respect to
remaining transitional caseg=r,,  ,(=ri, I =TI, IS central to increasingo;. The small internal ellipse is the common FAL.
the remaining development. Note that the FML corresponding te /=1 intersects the FAL
at the uniform equi-biaxial stress solutiong; (p,) = = (o7 ,07).
Thus if os= 0, then equi-biaxial loading such that=p,=p
. T results in a uniform phase distribution of typé transitioning
5 AFully Martensitic Plate (M Phase Distribution) directly to a uniform phase distribution of typg&! as the com-

We now consider plates that are completely in the martensiteon thrust valugy passes through the common threshold stress
phase, whereupog=1 andg’=0, and Eq.(17) reduces to of=0s.
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2.0 r/rs

Fig. 4 Typical stress distributions
plate with M phase distribution
o=40,=300MPa, r,/r;=2 and (p;,p,)=(1,5)0. Solid lines
represent the case of a=0.05. For comparison, stresses for an
elastic solution (a=0) under the same boundary conditions are
plotted as dashed lines.

(normalized by o) for a
[o(r)=0/]. Here E=50GPa,

6 A Plate Containing Mixtures of Martensite and Aus-
tenite (Phase Distributions of Type: . AC, ACM, CM
and C)

We now turn to consider the remaining types of phase dist
tion given in(20). The structure map is useful in this discussi

The ADL is also external to the FAL except at the two points of
intersection p;,p,)= * (05,05 which are on the equi-biaxial
load line of the structure map.

The final curve for completing the structure map is tharten-
site emerging loogMEL) that is associated with solutions obey-
ing o(r;)=o0¢ or, equivalently,r;=r ,,. Martensite (unmixed
with austenit¢ can only be present at locations on the structure
map outside of the MEL. Outside the MEL the phase distribution
must be of typeM, CM, or ACM. Inside of the MEL the phase
distribution must be of typ&, AC, or A. The MEL is strictly
outside the FAL so long as;>o. The MEL is also internal to
the FML except at the two points of intersectiom; (p,)
==*(o¢,0¢) which are on the equi-biaxial load line of the struc-
ture map.

With the exception of locations on the equi-biaxial line, both
the ADL and the MEL are determined numerically. This is most
easily accomplished using the same procedure that generates the
FML upon replacing the FML conditionr(r ;) = o with either the
ADL condition o(r,) = o5 or the MEL conditiono(r;) = o . Like
the FML, both the ADL and the MEL are generally not elliptical.
Like the FAL and the FML, both the ADL and the MEL are
symmetric with respect to 180 deg rotation about the origin, hence
the symmetry of structure map follows.

Two examples of fully articulated structure maps are presented
in Figs. 7 and 8. Both correspond to material parameters
=50 GPa,«=0.05,04=75 MPa, andr;=300 MPa. Their differ-
ence is due to differing values of /r; , namelyr,/r;=2 for Fig.

7 andr,/r;=5 for Fig. 8. Each structure map is partitioned into
various regions by the four loops FAL, FML, ADL and MEL.
ribEach region corresponds to a distinct phase distribution type as

onalso displayed in Figs. 7 and 8.

as all such phase distributions occur in the region between theThe qualitative difference between these two structure maps is
FAL and the FML. The phase distribution in this region is ensuretat in Fig. 7 the ADL is strictly inside the MEL while in Fig. 8 it

to be of typeC on the line of uniform equi-biaxial loadp(,p,)

is not. We shall refer to the former adygpe | structure maand to

=(p,p), 0.<|p|<o;. However, off of this line it is not yet clear the latter as dype Il structure mapA type Il structure map has
what type of phase distribution occurs. To make this determintwo symmetric regions corresponding to dGM phase distribu-
tion it is useful to complete the structure map via the constructidion whereas a type | structure map does not involve this type of

of two additional curves.
The first such curve is thaustenite disappearing loofADL )

that is associated with solutions obeyingr,) = o or, equiva-

phase distribution. To within unit scaling, the structure map is
determined by the material parameter combinatiBas o;, o
and geometry parameter ratig/r;. For fixed material param-

lently, r 4=r,. Austenite(unmixed with martensijecan only be etersEa, oy, o5 one finds that the structure map is of type | for
present at locations on the structure map inside of the ADL. Insidenall r, /r; but is of type Il for larger,/r;. The conditionr,

the ADL the phase distribution must be of tyge AC, or ACM.
Outside of the ADL the phase distribution must be of tyheu,
or CM. The ADL is strictly within the FML so long as¢>o.

sufficiently greater tham; makes possible a situation supporting
the conditionr;<r ,,<r 4<r, that is associated with the phase
distribution ACM.

Do /s

10

L | 1
-40 -20 -10

8
6
4
/ -
. . . 7A

20

Fig. 5 The FML (fully martensitic loop ) and FAL (fully austenitic loop ) for E=50 GPa,

a=0.05, o/=40,=300MPa and r,/r;=2. Thrusts inside the smaller ellipse

duce a fully austenitic plate, while thrusts outs
martensitic plate.
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Do /0

Fig. 6 FMLs for various o values. Here E=50GPa, a=0.05, c;=75MPa and r,/r;=2.
The smallest loop is the common FAL, and the other curves are FMLs, each marked with
corresponding value of o¢/o;.

For givenEa andoy, o there is thus a special value of/r; k=K, is associated with the emergence of thé front r , at the
such that the structure map is of type | below the special value hiher plate boundary. This front proceeds through the plate as
of type Il above the special value. For the material parametergreases until it merges with the outer boundary whevk,.
associated with Figs. 7 and &{/0s=100/3, o1/0s=4), this TheCM frontr ,, then emerges at the inner plate boundary when
special transitional value is found to bg/r;=3.58. The structure k=ks and continued loading drives this front te-1.29; when
map forka/os=100/3,0¢/0s=4,1,/r;=3.58 is plotted in Fig. 9 | _ 1 " \rther loading will then drive this front to the outer bound-
shg\kl]véngtrrézvsv ctiri]sir/ioé)lalt_iozsggrl?theesgﬂgsl\éI(Ejli_étributions under disc&Y: resulting in a phase distribution of typel.
sion can be determined numerically on the basi&l@f using the Figure 11 shows t_he _stress distributions at the same _Ioad
iterated shooting method, in a similar fashion to this determinatidfli Po) = (5,0-5)s as in Fig. 10 but for the structure map of Fig.
for a fully martensitic plate. For example, Fig. 10 displays th&- In this case the larger value f (r,=5r;) gives rise to a phase
radial variation ofc, o, , o4y for the CM phase distribution distribution of type ACM with r ,=4.84; andr ,=1.24;. In
associated with the loadp(,p,)=(5,0.5)0 represented by the this case the proportional loading patlp; (p,)=(5,0.5)0ck
dot in Fig. 7 Eal/os=100/3,0¢/0s=4,1,/r;=2). A mixture of passes through phase distribution states of typeAdC, ACM
austenite and martensite obtains on the outer plate bourdaryith the transitions taking place at two spediaValues that are

=T,. This mixture becomes progressively richer in martensite @falogous tck,; andk, of the previous example associated with
r decreases to=r ,,=1.29; within which the plate is in the fjy 10.

martensite phase. This solution could in principle be obtained by

many quasi-static load paths in thp; (p,) plane so long as the

effective stress at each point in the plate remains nondecreasﬁ%{.;egggrgdgtg the XT‘CUIat'r?n point O.f ADILI W';h MF.L a‘:‘cp‘))h
In particular the proportional loading patip;(,p,) =(5,0.5)0sk, =77~ 5. Along the proportional loading line from the

wherek is a load path parameter, is associated with an initiQrigin through this point, this solution is associated with the dis-
phase distribution of typel. There will then be three values of appearance of the pure austenite phase at the outer plate edge
k<1, sayk,<k,<ks, associated respectively with transition{r 4=r,) that is simultaneous with the appearance of the pure
through the sequence of phase distributioAs:AC, C, CM. Here martensite phase at the inner plate edgg=r;).

A final set of stress distributions is shown in Fig. 12. These

-30 -20 -10 0 10 20 30
p; /Gs
Fig. 7 Structure map (type I) for r,/rj=2. Here E=50GPa, «=0.05 and o/=40,=300 MPa.

Note that there isno .ACM region. Thrust pair (p;,p,)=(5,0.5)0, marked as a dot, produces
a CM phase distribution. The resulting stresses are shown in Fig. 10.
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Po/cs OF

2k

4k

-10 -5 0 5 10
p; /G,

Fig. 8 Structure map (type Il) for r,/r;=5. Here E=50GPa, a=0.05 and o/
=40,=300 MPa. All six types of phase distributions are present. Thrust pair
(p;,po)=(5,0.5)0,, marked as a dot, producesa ACM phase distribution. The
resulting stresses are shown in Fig. 11.

&M

-10 -5 0 5 10
D /Us

Fig. 9 Structure map for the special value  r,/r;=3.58. Lower values produce
type | structure maps, while higher values produces type Il. Here E=50 GPa,
a=0.05 and o/=40,=300MPa. There is no .ACM region, and ADL contacts
MEL at two points. One of the two points  (shown as a dot ) represents (p;,p,)
=(3.565,0.995) o5, producing a C phase distribution with  o(r))=0; and o(r,)
=0 . The resulting stresses are shown in Fig. 12.

7 Conclusions point in the annulus may be either in a state of austeAitenar-
In this paper a boundary value problem is formulated a t8nsite/\/1 or their mixtureC. Transformation strain is assumed to
paper, Y P 56 proportional to the stress deviator. The properties of the solu-

solved for the equilibrium stress and strain fields in an annul . ; - oo
composed of a material undergoing displacive shear transfornl%l' ns to the governing equations are studied and the stress distri-

tion. The description allows for mixtures of austenite and marte%%tions are obtained when the annulus is subject to normal edge
site as described by a single phase fraction field variable. Ea dsp; andp, on the inner and outer boundaries. The effective

12

24

4

-6 -

Fig. 10 Stresses (normalized by o) fora C.M phase distribu- Fig. 11 Stresses (normalized by o) for a ACM phase distri-
tion. Here E=50 GPa, «=0.05, o/=40,=300MPa, r,/r;/=2 and bution. Here E=50GPa, «=0.05, o/=40,=300MPa, r,/r;=>5
(p;j,po)=(50.5)0s. An elastic solution (a=0) is shown for and (p;,p,)=(5,0.5)0. An elastic solution (a=0) is shown for
comparison (dashed lines ). comparison (dashed lines ).
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Experiment and Analysis on the
Free Dynamics of a Shallow Arch
ersan s | After an Impact Load at the End

e-mail: jschen@ccms.ntu.edu.tw

Chun-Yi Liao In this paper we consider a sinusoidal arch with one end pinned in space while the other
Graduate Student, end attached to a mass and supported by a spring. The supporting wall of the spring is
moved a distance quasi-statically to initiate preload in the arch and the spring. The
Department of Mechanical Engineering, assembly is then set in motion by an impact at the attached mass. The condition under
National Taiwan University, which the arch may snap to the other side dynamically depends on the initial speed of the
Taipei, Taiwan 10617 attached mass due to impact. Sufficient condition on the initial speed against dynamic

snap-through is formulated based on the concept of minimum energy barrier. The effects
of damping on the transient response of the assembly are also discussed. An experimental
setup is designed to measure the transient response of the arch following the impact and
the critical initial speed of the attached mass. The experimental results are in good
agreement with theoretical predictiongDOI: 10.1115/1.1827245

1 Introduction sified in two groupq9]. The first approach is to st_udy the total _
An arch subjected to lateral loads may become elastically ufneray agq_ the ]Phe:jse pla'ne ofbt_lhe systetr)n. By tbhll_shmgth%d ?_ufh-
stable. If the initial height of the arch is of the same order as t{eE"t conditions for dynamic stability may be established. The first
span of the arch, the buckling deformation is nearly inextension%.eore“Cal pred!ctlon of dyn.amlc.buckllng Ioaq was condypted by

On the other hand, an arch is termed shallow if the initial height &0 2nd Bruce in 195410], in which they studied the stability of
a sinusoidal arch under unit step loading and ideal impulsive load-

much smaller than the span. When the lateral load of a shaII(I)Hv% Hsu[11,12 and Hsu et al[13] studied the effects various

arch reaches a critical value the deformed shape may Llrlden;]oarameters on the stability of a flexibly supported sinusoidal arch

sudden jump called snap-through buckling. The buckling defols : . . .
mation of a shallow arch will be extensional rather than inexte%1der impulsive and other types of time-varying loads. Xu et al.
i

sional. Depending on how the lateral load is applied, the sn 4] considered a shallow arch elastically supported at both ends

through buckling of a shallow arch can be divided into two the lateral direction and under impulsive loading. This approach
rovides a lower bound of the dynamic critical load.

categories, i.e., static buckling and dynamic buckling. In the caBt

of static buckling, the lateral load is applied in a quasi-static man-The second approach is to solve the equations .Of motion nu-
merically to obtain the system response and identify the critical

ner. The first theoretical prediction on the static critical load W3S d for specified system parameters. This approach provides a
conducted by Timoshenko in 1934}, in which a pinned sinu- more accurate prediction of the critical load at the expense of

soidal arch was subjected to a uniformly distributed load. Fqurge amount of calculation. Humphrejs] performed both nu-

and Kaplan[2] extended the research by. considering a ﬂex'.b%erical and experimental studies on the dynamic snap-through of
supported shallow arch under various kinds of lateral Ioadlnﬁ.

Fung and Kaplan also conducted a series of experiments on gircular arch under uniform impulsive loading. Lddi6] used a

in-gnded arEhes having riaid simple s orts Gielsvik a erical integration method and an infinitesimal stability analy-
P 9 ng P upports. -©jeisv réf to predict the dynamic critical load of a sinusoidal arch under
Bonde_r [3] presented a complete theoretical and experlmentg tep loading. Huang and Nachta7] added the effects of geo-
analysls.on a clamped arch under a .centre.ll poncentr@ted Ioﬁ'l tric imperfection and viscoelastic behavior. Ariaratnam and
Franciosi et al[4] extended the conventional limit analysis to thPSanka|[18] studied the dynamic buckling of a shallow arch under
collapse of arches under repeated loading. Schreyer and &sur,

. stochastic loads. Fulton and Bartph9] introduced a different
analyzed a clamped circular arch and demonstrated that the e ISferion for dynamic stability. Sundararajan and Kumgg] in-
tence of a bifurcation of the equilibrium state is not an adequ :

i ) ; o %stigated the dynamic stability of a shallow arch under inclined
condition for the use of the asymmetric buckling criterion. Leads. Lo and Masuf21] presented a hybrid method for snap-

a_nd Murphy[6] considered the me_lastlc bugkllng_ O_f a Clampe‘iihrough stability analysis, which incorporates an integral equation

_C|rcular arch made of Wor_k-hardenlr_\g material. S_'m”@ﬂ“d' formulation in conjunction with a finite element method. Johnson

ied the effect of an elastic foundation on the critical loads of g4 Mclvor[22] investigated numerically the effects of the spatial

. . ! Qistribution of impulsive loads and dampifig3] on the dynamic

study the effect Qf small imperfection on the buckling of elas“@nap-through of a shallow arch. Huang and P[24] studied the

structures, including a laterally loaded circular arch. dynamic stability of a shallow arch under pulsating loads. Gregory
In the case when the lateral load is applied suddenly |nsteadé%/{d Plau{25] and Donaldson and Pla[26] discussed the stabil-

in quasi-static manner, the phenomenon is dynamic and muehhoundaries for arches that are loaded by two independent sets
more complicated. Generally speaking, the methodologies UsedoF‘dynamic loads.

estimating dynamic critical loads of elastic structures can be clas-; is noted from the earlier literature review that while theoret-

ical development on dynamic snap-through of shallow arches is

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i _ H i H i i i _
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- quite well-established, experimental mveSUgatlth] is rela

CHANICS. Manuscript received by the Applied Mechanics Division, July 15, 2003¥!VE|y r.are ComPared to the sta.tic case,.partly because of the.dif'
final revision, March 18, 2004. Associate Editor: N. Sri Namachchivaya. Discussidi€ulty in applying prescribed time-varying lateral force. In this
O? thelpa:jper Shr?uld be addressed to fthe Egitor, Plrof.geobert M. Mcheking, Jourpalper we will investigate, both theoretically and experimentally, a
of Applied Mechanics, Department of Mechanical and Environmental Engineerin, ; ; ; :

University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will @é’“fﬁm'c problem which involves an elag,tlce.llly supported arch
accepted until four months after final publication in the paper itself in the AsmBubjected to impact at the end, as shown in Fig. 1. One end of the

JOURNAL OF APPLIED MECHANICS. arch is pinned in space, while the other end is attached to a mass
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wall movement can be related to the arch shgpéx* ,t*) by

considering the equilibrium of the attached mass as
(p*—m*&*)L 1 [t 2k ik

a3, [0h) () @)

The first term on the right-hand side of E(R) represents the
effect of extensibility of the arch, while the second term represents
Fig. 1 Schematic diagram of a flexibly supported arch under the effect of shape changmainly due to rotation From Eqs(2)
impact at the end and (3) we can derivep* as

*

* -

P*(V= EATieL
and supported by a spring. The arch is not subjected to any lateral
load. After a quasi-static movement of the supporting wall to pre-
load the arch and the spring, the attached mass is subjected to an —(y:(*)z]dx*} (4)
impact and attains a substantial initial speed. The arch-mass-
spring assembly is then set in motion. The question we are intge parameters’ , p¥ , and functiony? (x*), which refer to the
ested in this paper is whether the arch will snap to the other sififass position, axial force, and deformed shape of the arch before
before it settles to a steady state position. Intuitively, if the impaﬁhpact’ can be calculated from qu_)l (3), and(4) by ignoring
is minor the arch will return to its original position after the vi-a|| the terms involving differentiation with respect to time.
bration following impact is damped out. On the other hand, if the Equa’[ions(]_) and(4) can be nondimensionalized to the forms
impact is more severe and the initial speed of the attached mass

5*

. EA (L
L &* +EAa — — | [(Ye)?
0

reaches a critical value, the arch may snap to the other side. The- Y=~ (Y= Y0) xoot (P=ME)Y ux (5)
oretical prediction of the critical initial speed will be presented K (7 .
and verified later by an experiment. By adjusting the stiffness of P=5- fo (Y3~ Y3, )dx+a+kms (6)

the supporting spring and the height of the arch, the assembly can
be used as a mechanical warning device against severe impagfhere

y* vs xX* wt*  [El

2 Equations of Motion Y= Yo X2 U Nap

Figure 1 shows a flexibly supported shallow arch, with one end p*L2 Kt
pinned in space while the other end attached to a massand = . k==
supported by a spring with spring constadit. We assume that mEl k*+EAL
both the arch and the spring are in unstrained state initially. The . _ .
initial shape of the arch when it is unstrainedyfs(x*) with the 5= Lo” , a= KLa , = (1=k)lm'm
two ends being separated by a distahc@®efore timet* =0 we mr?(1-k) wor? L3A%p
move quasi-statically the supporting wall of the spring a distance L3p*
a* to the right. The arch-mass-spring system is then in a stable vi:L \ﬁ
equilibrium position with the distance of the two ends of the arch x*r31-k) VE

being increased by an amourd’ , while the spring being As a general rule in this paper, a variable without asterisk is a
stretched a distanc& —a*. The shape of the prestressed arch idimensionless counterpart of the one with asterisk.the radius
denoted byy" (x*). The axial thrust throughout the arch and thef gyration of the cross section of the argi= 1 corresponds to
spring isp* . If the supporting wall of the spring is moved to thethe Euler buckling load for a perfectly straight simply supported
left then a* is negative. We assume that at titie=0 the at- beam. The dimensionless spring constantanges from 0K*
tached mass of the prestressed assembly is under impact by=® to 1 (K* —). The boundary conditions fgratx=0 andm

object and attains an initial speeff (0)=v’ . The arch-mass- &'¢

spring system is then set in motion with the shape of the vibrating Y(0)—Yyo(0) =Y xx(0) = Yoxx(0) =Y () = Yo(7)

arch being denoted by* (x*,t*). The equation of motion of the

arch can be written as =Yl ) = Yo ) =0 )

N % e ek The initial shape of the unstrained arch is assumed to be in the
PAY s x = —ENY* =Y5) sorsersomses 7 (P* =M*6")Y s (1) form

The parameterg, p, A, andl are Young’s modulus, mass density, Yo(X)=h sinx (8)
area, and area moment of inertia of the cross section of the arfihs e jinitial height of the arch. It is assumed that the shape of
The comma represents partial differentiation, while the overhe arch can be expanded as

dot represents the derivative with respect to time. In writing EqQ.

(1) we assume that the curvature of the arch is small and can be - ]

approximated by (y* —y§) ,xx+ . An arch is termed high arch y(X,t)=yo+nZl an(t)sinnx ©)
when its curvature cannot be treated as small. We also assume that o o .

the effects of rotary inertia and shearing deformations are nefter substituting Eqs(8) and(9) into (5) and (6) we obtain the
glected. Strains are assumed to remain within the elastic limit aRguations governing the generalized coordinatgs

Hooke’s law is valid. The ternp* —m* 5* is the axial thrust in a1=—ay—(p—md)(h+ay) (10)
the arch, whilep* alone is the axial force in the sprin . -
whiiep ! X ! pring ap=—n*a,—n%(p—mda, n=23,... (11)
p*=—k*(5*—a") @) where
We assume that the axial thrust is constant along the arch and is h 17
thus a function only of the time. The moving distangeof the p=k Sait ZE i2a? | +a+kmd (12)
attached mass from its initial rest position before the quasi-static =

Journal of Applied Mechanics JANUARY 2005, Vol. 72 / 55



It is noted that the parametérin Egs.(10), (11), and(12) is still 20
unknown. To obtain the additional equation of motion accounting

for & we substitute Eq(4) into Eg. (3), nondimensionalize, and
discretize by using Eq9): 15

. h 1 a
mé=—o6—| s ay+ = D, i2a? |+ — (13)
29 a4 1-k 0 L
N
Equationg10)—(13) are the discretized equations of motion of the

assembly.

5 }
3 Equilibrium Configurations
We first study the equilibrium configurations of the prestressec ®
arch-mass-spring assembly following the quasi-static wall move 0 0 120
menta. The shape of the prestressed arch can be determined fro
Egs.(10) and(11) by neglecting all the acceleration terms. There [rR:
are two different types of equilibrium configurations, i.e., one-
mode and two-mode solutions. It can be easily shown that Egs. Fig.2 a curves onthe kh%-a plane
(10) and(11) do not admit an equilibrium configuration with more /
than two modes.
One-Mode Solution 3 yy+ a4 SinXx. o
a, satisfies the following cubic equation The special initial height which rendeas = a; is denoted by, ,
@ , where
— 2 —
a(a,+h)= T(kal+3khal+2kh +4) (14) 2:2(1.2_1)3 =234 (23)
After defining parametea, as The values of some dfh2 arekh2=>54, kh2= 1024, etc. Figure 2
Kh? shows thea; curves in thekh2 a plane. These; curves divide
a=—g - Z(4kh2)l/3— 1 (15) thekh?-a plane into several regions. The black dohath, sig-
nifies the touching point betweeny anda, curves. For a given
we can make the following observations. set ofkh? and a, we can determine the number of equilibrium
1. If a>a,, then there is only one equilibrium configurationconfigurations. For instance, if the poirkiE,a) fall in the region
denoted byP,. 1, then there is only one equilibrium conflguratlaa For the

Parameter ranges in Fig. 2 there are seven regions, whose equilib-

2. If a<ay, then there are three equilibrium configuration
! q d rium configurations are listed in Table 1.

Po, P;, andP; , where

1/3
al(PI)<—h—(?) <ay(P])<—h<ay(Py) (16) 4 Stability of Equilibrium Configurations
First of all, the dimensionless total enerblyof any configura-

3. If a=a,, then the configurationB; andP; coincide. We tion can be calculated as

denote this special one-mode configuratiorPas Also - 2p%(1—k)
13 :_f [(y,t)2+(y,xx_yOxx)Z]dX+2(p_m5)2+T
ay(Py)=—h=| - (17) o

o
Two-Mode Solution ¥ Yo+ a; Sinx+a; sinjx. +2ms*(1-k) (24)
It can be shown that a two-mode solution always contains tfTée two terms in the integral represent the kinetic energy and the
first mode a4 sinx. For this case the solutions can be writterbending strain energy. The second term is the strain energy due to

explicitly the axial force. The third term is the strain energy of the spring.
5 The last term is the kinetic energy of mass. For an equilibrium
P —j‘h (18) configuration corresponding to a specified wall movengrihe
! j2—1 kinetic energy is zero and the total energy consists of only the
strain energyJ:
2 Ja—a
i 2
a=*— 19 2 W 2p
TEIN TR 49 U= | (Yo Yoxd?dx+ - (25)
0
where
(j?-2)j*h%k
= 4(J _ 1)2 - (20) Table 1  Equilibrium configurations in various regions of Fig. 2
These configurations are denoted By, and Py, which exist Region Equilibrium configuration Stability of P
only when 1 Po
2 P,, P* Stable
a<a, (21) 3 Pg. pi ) pli2 Stable
It is noted that in both Eqg15) (for a;) and (20) (for a;) the 4 Py, P1 Plz, P13 Stable
parameterk andh appear together in the forkch®. By compar- 5 Po, P1 Plz, P13, P14 Stable
ing Egs.(15) and (20) we observe that 6 Po, P1 . Piy, P33, Py, Pis Stable
7 Po, PI Unstable

a;=g; (22)
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For the two-mode configuratio;; andPy; the strain energy are quasi-static wall movements, which result in only one stable

equal, and can be written as equilibrium positionP,, the assembly will return to the original
position following impact. On the other hand, for those wall
N 1/ j%n? 4 o movements which render the existence of two stable positigns
U(Py)=U(Py) =1 2 1_21 —4j%a (26) andP; , then it is possible for the arch to snap and settl®fo

following the impact. It is the purpose of this paper to determine
For the one-mode solutions the strain energy is the lowest possible initial speed of the impacted mass, below
5 which the arch-mass-spring assembly is in no danger to snap. This
U=a2+ 2p° @7) lowest initial speed is called the critical initial speed.

k
wherea; andp are the generalized coordinate and the axial thruét Snap-Through Criterion

of the one-mode solution. The physica| total endeYand strain While it is in general difficult to determine the necessary and

energyU* are related tdd andU by sufficient condition for dynamic snap-through to occur, we can
establish the sufficient conditions against dynamic shap-through
4AL3H* 4AL3U* in terms of the dimensionless total enetdyf the vibrating arch-
p=Ta U= PEErY (28)  mass-spring assembly following the impact. The basic idea of the

shap-through criterion is that if the total energy gained by the
In order to study the stability of the equilibrium configuratiorassembly from the impact is smaller than the minimum energy
with shapey, we perturb the equilibrium shape by a small amourttarrier lying between the nearest stable equilibrium position and
ey to examine how the strain energy changeis. a small positive the distant stable one, then the arch has no chance to snap dynami-
number. The strain enerdy of the perturbed configuration can becally. The energy barrier can be proved to be the strain energy of
expanded in terms of as either the unstable configuratid®; or P;,, depending on the
4 (= o parameter, h anda [27]. The sufficient conditions against dy-
U(7+89)—U(7)=8:—f (Y xx— Y000 sxt py,xy,x]dx] namic snap-through fronP, to P; can then be stated in the
m™Jo following.
) Case (1) h<h, and a,<a<a,: The sufficient condition
T . + .
+82[; fo [(y,xx)2+p(y,x)2]dx against snap-through 18;<<U(P7), whereH; is the total energy

T

2k .
. Y xY xdX

+ —
772

3 2k[ (7 .
+e ? Y <Y xdX

immediately following impact.
Case(2) a<a,: The sufficient condition against snap-through
2 is Hi<U(P)).
Figures 3a), 3(b), and 3c) show the equilibrium positions and
strain energy contours for three typical situations. In Fig) &
m =0.4,h=10, anda=3, which falls in region 3 of Fig. 2. There
f (Q,X)de ] are five equilibrium positions in this region, among thex, are
0 0 the saddle points whose strain energy is the energy barrier pre-
K - 2 venting thg_ sys}em frqm snapping from positifg to another
+84[_{f (7 ,)2dx ] (29) stable positiorP; . In Fig. 3b) k=0.2,h=10, anda=0.6, which
2w Jo 7 falls in region 2 of Fig. 2. There are three equilibrium positions in
= ; PP - = this region, among therR; is a saddle point whose strain energy
E;EET;:;IELHCE%?B?;:Qumbnum configuration and can be serves as the energy barrier. In Figc)3k=0.8, h=10, anda
=13.8, which falls in region 7 of Fig. 2. There are three equilib-
. rium positions in this region, among theRy is the only stable
" ay+h (30) equilibrium position.P; becomes a saddle point in this case.
To prove that an equilibrium shapeis stable we have to show .
that the energy differenctl(y+ey)—U(y) is positive for any 6 Effect of Damping
y#0. On the other hand, to prove thats an unstable equilibrium  Figures 4a), 4(b), and 4c) show the deformation history of an
shape, we only need to find oge“0 which renderdJ(y+ey) arch withh=10, k=0.4,a=3, andm=0.001, which falls in re-
—U(y) negative. After integrating by parts and using the fact th@ion 3 of Fig. 2. In calculating the response we modify EL)
y satisfies the static equilibrium equations it can be shown that thg adding a damping parameter
coefficient ofe in Eq. (29) is zero. To determine the stability we . . -
next examine the second variation of the strain energy ay=—pay—a;—(p=mé)(h+ay) (32)
KT [ The relation betweep and its physical counterpagt* is
fo Y XY xdXx

0= 2 [ 19,007+ 3,020 0
T Jo XX X 772 _ M L \/E (33)
(31) K 2onr VE

In some cases?U is zero identically, and higher order variationThe initial speed; is set to be 110. The dampingused in Figs.
is needed. More details of the above energy method can be foufid), 4(b), and 4c) are 0.2, 0.3, and 0.6, respectively. The initial
in Ref.[27], and the conclusions are summarized in the followingonditions are

One-Mode SolutionsP, is always stableP; is always un-
stable. Ifh<h,, thenP; is stable if and only ifa<a,. On the
other hand, ifh>h,, thenP7 is stable if and only ifa<as,.

Two-Mode SolutionsPl*j andPy; are always unstable.

From the earlier analysis, we know that for any combination of ) .
aandkh? there are at most two stable configurations. One of them @i(0)=0, i=234...
is alwaysP,, and the other possible stable configuratiodis.  For the small damping case in Figad the energy gained by the
In Table 1 we also identify the regions with stali¢ . For those assembly is large enough to surpass the energy bar(ier,) and

2

a(0)=0, i=123...

. 2v;
(0=~ 3, (34)
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Fig. 3 Strain energy contours for (a) k=0.4, h=10, a=3, (b)
k=0.2, h=10, a=0.6, (¢) k=0.8, h=10, a=13.8 h[kai(Pf)—kai(Po)-i-2p2(Pf)—2p2(Po)]1’2

[2mhPk(1— k) +4k]?

Uer

(35)

a; can reachy;(P;). However, due to small damping, the arch ig(Po) and p(P;y) are the axial thrust of the assembly in the

snapped back and finally settles to positlg. For the medium equilibrium positionsP, andP; , respectively. For the case when

damping case in Fig.(8), the assembly not only gains enougha<a, the energy barrier itJ(P;,). From the conditiorH;(v ;)

energy to surpassd(Py,) anda; can reachy;(P; ), the damping = uU(Py) it can be found that the critical initial speed, for this

also prevents it from snapping backRg. The arch settles t8;  case is

eventually. In Fig. 4c) the damping is so large that it prevents the

arch from surpassing (P1), and the arch has no choice but to _ h[16kh?— 96— 48a—3ka3(Py) —6p?(Pg) ]2

settle toPy. The existent equilibrium positions are plotted as Ver™ [6mHPk(1—k)+ 12K] Y2

dashed horizontal lines for reference. These examples demonstrate

that damping plays an important role in dynamic snap-throughit is noted that the one-mode solutid®, and Py cannot be

when the total energy of the assembly gained from impact élved explicitly whena+0. Therefore, the parametess (Py),

greater than the energy barrier. a1(P7), p(Po), andp(P;) in Egs. (35 and (36) can only be

calculated numerically. On the other hand whar-0, i.e.,

. . the assembly is unstrained before impact, E§5) and (36) can

7 Critical Initial Speed be expressed in the following closed forms. For the case
Another important factor in determining whether snap-through8> kh?>16:

will occur is the end initial speed. Apparently, for very small

(36)

initial speed no snap-through is possible. Asincreases, on the _h*3—c)| 16+2kh*(1-c)? 12

other hand, snap-through might occur. It is therefore possible to Ver™ 4(1-c) | khmh(1—k)+2]

define a critical initial speed, below which no snap-through is

possible even if there exist two stable equilibrium positions. From 16

the snap-through criterion discussed previously, we can derive the where c=1/1— — (37)
expression of the critical initial speed as follows. kh?

For the case wheh=<h, anda,<a<a, the energy barrier is 5 .
U(P;). From the conditiorH;(v,)=U(P;), whereH,(v,,) is FOF the cas&h”>18:
the total energy of the system immediately after the attached mass h
attains initial spee@., from the impact, it can be found that the V==
critical initial speedv , for this case is 2

3%h%k—-192 |**

_— 38
3mh?k(1—k) + 6k 38)
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An experimental setup is designed to verify the earlier theoret
ical prediction. The schematic diagram of the setup is shown in
Fig. 5. The function of each component in the setup is explaings 7 Measured speed history of the attached mass following
as follows.(1) The arch is made of aluminum strip with Young'sihe impact. Parameters of the assembly are  h*=2.80cm,
modulus 70 GPa and mass density 2800 Kg/fine lengthL of  jx =357 N/cm, a*=0.
the arch is 40 cm and the cross section is 25Xind mm.(2)

Attached mass, which consists of a roller bearing and a linear

bearing at the end, is scaledrat =473 g. The roller bearing is impact. The initial speed is measured af =1.72m/s ¢,
installed to simulate the pinned condition, while the linear bearing 2866) and is signified by a black dot in the figure. The risel time
is to reduce the friction when the mass slides on the guiding ro%m impact to the speed peak is about 0.0005 s' In this experi-
(3. (4) Spring to support the arch in the axial direction, Whosg,ent snap-through occurs with the arch passing through the hori-
annk? constant can It()_e aclijustedslnAthIe rlflhgz 20|0_400 N./lf.m zontal position at 0.015 @he first crossing of thé* =0 line). For

y changing Its working ength(5) \ lock-and-release striking asy reference we present the results with both physical param-
mechanism, which consists of a striking hammer and a spring S?ers(with asterisk and the dimensionless on@githout asterisk
store the striking powet6) An adjustable screw mechanism toThe same labeling style is adopted in the following figures.
control the quasi-static wall movemeat. (7) An LDV system  The solid lines in Fig. 8 represent the measured lateral deflec-
made by Polytec Co(optical measurement head OFV-508 andion history at the midpoint of the arch following the impact. The
electronic signal processor OFV-2832 measure the speed of theparameters of the assembly in Fig(aB are h* =3.46 cm h
sliding mass in the axial direction or the lateral speed at the mid-ggy ~ k* =206 N/cm k=0.0034), v* =1.44 m/s {; = 2400).
point (one at a timgof the arch. The converting ratio of the LDV ' t :
signal is 1 V to 125 mm/s. The instrument can record a signal up
to 15 V. Displacement can be obtained by integrating the spee(*a)

t : (sec)

signal. (8) A digital oscilloscope is used to visually monitor and 4 425 "
record the signals from the LDV system. A photograph of the 29 2.5 14. 46
laboratory setup is shown in Fig. 6.
glo P 23
9 Transient Response Measurements E /my: 7\ 22 <
¥ T X roN
Figure 7 shows the measured speed history of the attached m § 0 W/ \\/ \/ 0 i
following the impact. The parameters of the assembly are initic  11_, W/ AV 23 2
height h* =2.80 cm f=65), spring constank* =327 N/cm K = Y ~
=0.0050), wall movemena* =0. The complicated impact phe- =20 -46
nomenon between the striking hammer and the metallic flange ¢
the sliding mass is not of our interest. Instead, we focus our a  -30 o3 0-269
tention to the initial speed gained by the sliding mass after th 0 0.05 R 0(-1 ) : :
sec
t
13.2
(b) 00 3.3 6.6 9.9 :
z
A
7N
E-30 y 69 =
g R ~ =
S N // \\\ P =|‘\
i N\ S N N N
* o 60 No_~ =~ S1138 N~
N
S
290 -207
0 0.035 .07 0.105 0.14
t (sec)

Fig. 8 Deflection history at the midpoint of the arch following
the impact. The solid lines are the measured response while

the dashed lines are the numerical results. (@) h*=3.46cm,
Fig. 6 A photograph of the experimental setup in the k*=206 N/cm, vi=1.44m/s. (b) h*=3.00cm, k*=333N/cm,
laboratory vi=179m/s.
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No snap-through occurs in this case and the arch settles to th(a) a
original shape eventually. Figuré shows the deflection history 296 =222 -1.48  .0.74 0 074 148
of another assembly with parametdr$=3.00 cm f=70), k* 20 3333
=333N/cm k=0.0051), v}=1.79m/s{;=2975).  Snap- 3000
through occurs in Fig. ®) and the arch settles eventually to the 2667 &
other side. 2333
To simulate the motion of the assembly numerically, we have to
estimate the damping of the system. The dissipating mechanism ¢ -4 -3 2 -1 0 1 22000
the system comes from the friction in the moving parts and the(b) a (mm

*
Ver (m/sec)

material damping in the arch and the spring. We assume that th 0.0021 0.0027 00’;39 0.0045  0.0051
first mode is dominant in the dynamic response in Fig).8The 20 - 00033 0. 0045 0. 0'00537333
damping factor may be estimated from the decaying rate of the § |38 ~ 3000
two peaks as signified by black dots. The heights of the two peak: & 16 k=ky K2 2667 &
are measured 3t, =38 andy,=24. The ratio of the damping of sy W K
the systemu in Eq. (32) to a critical dampingu, is [28] > l4 2333
12 2000
3 _ In(y;/y5) 39) 160 180 220 k*?gjjcm) 300 340 380
te  {(2m)?+[In(y1/y,) P} (©) h
The damping ratio in Eq(39) is calculated as 0.07. The critical 2018 762 508 854 200 94'63333

damping u is estimated numerically by adjusting the damping
parametem in Eq. (32) until the responser; ceases to oscillate. =
In this way the dimensionless critical dampipg is estimated as 26675
10. As a consequence the damping of the assembly is estimated 2333
u=0.7 (©*=9.8 Ns/m. It is noted that the concept of critical 129 T 35 57 3 77000
damping and the logarithmic decrement approach is for a linea h*(mm)

oscillator. We assume that the similar concept can be extended to

a nonlinear systgm W,'th a linear viscous damping such as ,Et'—‘ig. 9 Critical initial speed v, as a function of (a) wall move-
(32)' Alth(_)u_gh th.'s estimate may appear som_ewhat englr_leerlr;gém a*, (b) supporting spring constant  k*, (c) initial height h*
oriented, it is believed that the damping factor in our experimentg{ the arch. Symbol Xrepresents the measured data, while the

setup is about this order. Whether this approach is satisfactorysisid lines are the theoretical predictions.

examined by experimental results. The dashed lines in Fig$. 8

and 8b) are the deflection history from numerically integrating

Eq. (32). The short rise time from impact to the peak speed as

explained in Fig. 7 is ignored. It is noted that the actual responbkack dots are; =16h? andk,=18h. In the rangek,;<k<k,

as measured in the experiment may contain multiple-mode cothe theoretical critical initial speed is given by E@7). In the
ponents, while the numerical simulation contains only a singl@ngek<k, the theoretical critical initial speed is given by Eq.
modea; because of the initial conditior(84). The actual multi- (38). It is observed that the critical initial speed increases as the
mode response may result from imperfect initial shape of the arcipring constank™ increases. Figure(8) shows the critical initial
The good agreement between the experiment and the numerggged as a function of the initial height of the arch. The fixed
simulation as demonstrated in Figs(aB and 8b) confirms parameters of the assembly k& =208 N/cm k=0.0035), a*

that the one-mode solutiom,(t)sinx is indeed the dominant =0. The two points corresponding ty anda, are outside the

3000

*

Vo (m/sec)

component. range of this figure. The critical initial speed increases as the
N initial height of the arch increases. Generally speaking, the experi-
10 Critical Speed Measurements mental results of the critical initial speeds are satisfactory com-

Figure 9 shows the results from a series of experiments on thgred to the theoretical predictions.
critical initial speed. Figure @) shows the relation between the
. i .
critical initial speedvg, and the wa}ll movemena*. The fixed 11  conclusions
parameters of the assembly i8*=3.46cm H=80), k* ) ) . .
=206 N/cm k=0.0034). The symboirepresents the measured In this paper we consider a shallow arch with initial height
critical initial speed. In the experiment we increase the striking"€ end of the arch is attached to a masand supported by a
power of the hammer incrementally until snap-through occurSPring with constank. After the supporting wall is moved quasi-
The increment in the corresponding initial speed change is abgigtically a distance to preload the arch-mass-spring assembly,
0.0125 m/s, which may be considered as the accuracy of the criflé attached mass is subjected to impact and attains initial speed
cal speed measurement. Each experiment is repeated three tiies/Ve are interested in the conditions under which the arch will
Therefore, there are thraelustered for each specifieat. The Snap to the other side dynamically. Some results can be summa-
solid line represents the theoretical predictions. The two blafi¢€d in the following. . o
dots represent the wall movement corresponding;tanda,. In 1) .There are at most two stable equilibrium gonflguratlons for
the rangea,<a<a, the theoretical critical initial speed is given@nY given combination o, ?ndk' One of them iy, which is
by Eq.(35). In the rangea<a, the theoretical critical initial speed always stable. TQe other B, , which is stable only in certain
is given by Eq.(36). In the rangea>a, no snap-through is pos- range ofa andkh-. _ _
sible because there exist only one stable equilibrium posRign (20 Whenh=<h, anda,<a<a,, the energy barrier preventing
It is noted that the wall movement in the experiment ranges the arch from snapping from, to P; is the strain energy dp; .
from negative to positive values. It is observed that the criticéh the case whema<a, the energy barrier is the strain energy of
initial speed decreases as the wall movenzeinicreases until the Pliz_
poir_lt a=a;. o ) (3) The assembly is safe from dynamic snap-through as long as
Figure 9b) shows the critical initial speed as a function of thehe initial speed of the attached mass from the impact is smaller
supporting spring constakt . The fixed parameters of the assemthan a critical speed. This critical initial speed can be predicted
bly is h*=3.46 cm §=80), a* =0. The two points signified by analytically and confirmed by experiments.
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A Plane Stress Perfectly Plastic
omids. unger | MIODE 1 Crack Solution With
amiaaaoit - Continuous Stress Field

University of Evansville,

1800 Lincoln Avenue, A statically admissible solution for a perfectly plastic material in plane stress is presented

Evansville, IN 47722 for the mode | crack problem. The yield condition employed is an alternative type first
e-mail: du2@evansville.edu proposed by von Mises in order to approximate his original yield condition for plane
Mem. ASME stress while eliminating most of the elliptic region as pertaining to partial differential

equations. This yield condition is composed of two intersecting parabolas rather than a
single ellipse in the principal stress space. The attributes of this particular solution of the
mode | problem over that previously obtained are that it contains neither stress disconti-
nuities nor compressive stresses anywhere in the fiél@l: 10.1115/1.1828061

The mode | perfectly plastic solution for the plane stress crationship between the tensile yield stresg and that in shear
problem under the von Mises yield conditiph] has a discontinu- k differs from the von Mises yield condition and has the form
ous radial stress in the trailing portion of the plastic zone. Beyoneh= 2k.
this stress discontinuity and extending to the crack face lies aThe alternative von Mises yield conditidB] is defined below
region under compression, which is a counterintuitive feature forfar plane stress
crack subject to tensile loads. In contrast, neither this stress dis-
continuity nor compressive region is found in the analogous plane 71702 _
strain crack problenisee, e.g.[2]). These features are likely in- K T 1+v2
herent to the plane stress problem because of the extended regions
of the yield surface where the governing differential equations als plot in Fig. 2 reveals it is comprised of two intersecting pa-
elliptic. In the analogous plane strain problem, only hyperboli@bolas. The positive sign i{2) corresponds to the solid parabola
partial differential equations govern over the entire yield surfacehown in the figure, while the negative sign corresponds to the

Cognizant of the innate mathematical difficulties that arise withroken parabola. For the solid parabola, the sldpe/do is
ellipticity in plasticity theory, von Mise$3] proposed an alterna- zero at the lowest point of the defining cur@é and infinite at the
tive yield condition for plane stress. This yield condition approxihighest point of the defining curviél’. The converse is true for
mates the shape of the original surface in the principal stregfe dashed line portion. The associated governing partial differen-
plane, while eliminating most of the elliptic region of the yieldiial equations are hyperbolic, except where the slope is zero or
surface—the exceptions being just two points. Using this altermgfinity. At these extreme points!’ andQ’ on the diagonal line,
tive yield criterion, it will be shown that a continuous stress fielghe equations are elliptic. These points are similar mathematically
is derivable for the perfectly plastic mode I crack problem undg§ corresponding points on the Tresca yield conditidrand Q,
plane stress loading conditions. B which are also located at extreme points along the diagonal line.

The traditional von Mises yield conditioi8] assumes the fol- For the alternative von Mises yield condition, the tensile yield
lowing form for a plane stress, nonwork hardening material  stresso,=2k; however,k is no longer interpreted as the yield

. 5 ) stress in_ pure she_ar. _ o _
o1t 05— 010,= 05=3K", 1) To gain insight into the varying predictions of these three dif-

) o ferent yield criteria, the mode | linear elastic, small scale yielding
whereo; and o, are the first and second principal stresseg ( stresseg2] have been substituted into the various criteria and
=0), oy is the tensile yield stress, alkds the yield stress in pure piotted in Fig. 3, which is a normalized XY plane with a crack
shear. A plot of the corresponding yield surface in Fig. 1 showgtated to the left of the origin. In this plane, the dimensionless
that the curve itself in pnncnpal stress space is an ellipse. RegiofiSyrdinates are of the forii= 277Xa§/K2, etc., whereK, is the
VW and UZ on the yield surface are governed by hyperbo“ﬁ]ode | stress intensity factor, andis the standard Cartesian

partial d&ﬁ%rentlilgl equation§2], V,Xh"i regions UV and WUZ 3re oordinate. It can be seen that the yield locus of the alternative
governed by elliptic equations. At the transition points U, V, Wy pises yield condition is similar in size to the traditional von

and Z, parabolic partial differential equations govern. gises yield criterion. However, the alternative von Mises yield

oK @

o+ 0'2>2

(1+¢2)2—(

Fg_r Ppurposes of cor:npanson, |_ns|gr|be? in theh_vcr)]n_ I\/rlllses YI€iterion seems to resemble the shape of the Tresca yield condition
condition in Fig. 1 is the Tresca yield surface, which is hexagong|q e than the traditional von Mises yield condition.

in shape. Regions NP and ST on the Tresca have hyperbolic par

tial differential equations as governing equatidi. Regions To date, no analytical elastic-plastic solution of the mode |
) P blem has b found. H , plastic stre$2e$5 h
MN, MT, PQ, and QS have parabolic partial differential equ robiem nas been foun owever, plastic stre¢2s&5 have

X ) - - been continued analytically across the prescribed elastic-plastic

tions. At points M and Q the equations become elliptic. The rel oundary that is shown in Fig. 3 for the Tresca yield condition.

Comributed by the Abpiied Mechanics Division ofiE A . The associated slip line nets found in these analyses are shown in
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF H H H Al H H

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- Fig 4. tis Cuno.us to npte that a[ong S“pl.me DF a biaxial state of

CHANICS. Manuscript received by the Applied Mechanics Division, July 21, 2003;Stress of magnltudelals determmeq- This SIat_e of Stl’E?S C_ONE'

final revision, August 13, 2004. Associate Editor: K. Ravi-Chandar. Discussion @ponds to point M on the Tresca yield surfa€ég. 1), which is

the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journagﬁvemed by an elliptic partial differential equation. One could
Applied Mechanics, Department of Mechanical and Environmental Engineerin i in i ; ; ;
University of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will gﬁer by symmetry that a similar slip line, which is the reflection

accepted until four months after final publication in the paper itself in the ASM@? DF( exists on th.e opposite side of the crack allXiS- Thus the
JOURNAL OF APPLIED MECHANICS. analytical continuation of stresses across the leading edge of the
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Fig. 3 Predicted elastic-plastic boundaries around a crack tip

Fig. 1 The von Mises yield condition  (elliptically shaped ) with  or gifferent yield criteria using the elastic stress field

inscribed Tresca yield condition. After [3].

. L . uniaxial state of stress adjacent to the crack faces, and a concen-
plastic zone suggests that a biaxial state of stress might be presgiitg fan of characteristics in-between the other two regions.
in front of the crack tip for the elastic-plastic problem. The characteristics for the most commonly used perfectly plas-
In the context of a perfectly plastic material under the TresGa. \,0del for plane stress are shown in Fig. 5, which was devel-
ed in[1] for comparison with a power-law hardening material.

yield condition, a stress field having a biaxial state of strdss
ahead of the crack and a uniaxial state of stress of magnltklde( ote the crack i 1] was oriented to the left rather than to the

along the crack faces is statically admissible. This would requirq@ht as shown in Fig. 5.The dashed line along OB of Fig. 5
stlress ﬂlscont_lnuflty to fo"E at the ((j:ralck tlphand CONtiNUEE® —gicates a stress discontinuity. The associated stress field is inde-
along t ev-axis, for a crac oriented along the nggqt}(/ax[s 8S pendent of the radius from crack tip. Its variation with the polar

in Fig. 4. No concentrated fan of slip lines is admissible within th ngle 6, measured counterclockwise from OA, is provided in

Tresca yield condition in plane streébe Appendix gives some Fig. 6
indication of why this is trug otherwise, it would seem naturalto =
try to eliminate this stress discontinuity through an intervening fan

connecting these two regions of uniform stress. It will be showfnalysis
that the alternative von Mises allows a stress field to be developed selution of a mode | perfectly plastic solution for plane stress

which has a biaxial state of stress in front of the crack tip, i found in this section using the alternative von Mises yield con-
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Fig. 4 Slip lines across an elastic-plastic boundary under the

Fig. 2 The alternative von Mises yield condition (parabolically
shaped ) compared to the Tresca yield condition. After [3]. Tresca yield condition. After  [2,4,5].
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B

Fig. 5 Characteristics for plane stress mode | crack under the von Mises yield condition
(elliptically shaped ). After [1].

dition. The first step will be to solve the associated differentiallows for stresses which automatically satisfy the equilibrium
equation generated b§2) for a stress field independent of theequations in the plane.
radiusr for a body in equilibrium. Further, the particular form dB) defines a stress field, which is
Solving (2) for o, gives independent of the coordinate which can be deduced from the
relationships given below relating to stresses in polar coordi-
o,=2ak+2y2ak(ak—oy)—oy, wherea=1+v2. (3) pnates
Note the branch of the multiple-valued function was chose@)n 12 1ad
to represent quadrant one of the principal stress plane for the O =5 — + — —=1"(0)+21(0), @)
solid-line segment of the yield surface of Fig. 2. r<aec r or
The following elementary transformations are used to relate the 5
stresses in polar coordinates §) to the principal stresses in the . :MZZ £(0) @8)
yield condition(3) 0™ or? '

o=+ 0 )2+ (o, — 0p)°+472,)2, 4 90 (1 a¢)
ay= (0, + o) 2= (o — 0 g) 2+ 4722, ) rae

=" o =—1'(6). (9)
Introducing a stress function of the form

Upon substitution of7)—(9) into (4) and(5) and subsequently the
resulting expressions far; and o, into (3), one finds that the
e R (6) governing ordinary differential equation fé(6) is

f"(e)+4f(0) 1 5 >
f"(0)+4f(6)=2ak+2\/2akjak— er 5\/””(0)) +4(f'(0))|;. (10)
I
Applying the standard technique for reducing the order of an or- dQ(f)
dinary differential equation lacking the explicit appearance of the q(f)= a7 =Q'(f). (15)
independent variable, i.e.,
q Upon expansion of the bracketed terms(id), the equation as-
£(6)=p, f"(e):pd_?’ (11) Sumes the form
212
1
produces the expression fa(f)—Q(f)=———+ 1—6q2(f )~ qu(f ). (16)
dp 4f 2k2 1,dp 2f k2
gak|Paf T4 TeaK] ToPgpret—a
(k)
3 pdp)? 4p? 12 2
=711 Pgf] T4P7 (12) s o
after both sides have been squared repetitively in such a way as to 1
eliminate both radical signs appearing(it0). -
An additional substitution of the form 0.5 r
Q=3p?+2f2 (13) 05 I 5| 2 25 %,
further reduces the equation to 035 99.8°
, -1 ° *ro
L(dQ_ |7 1dQ _[2 1[(dQ2 dQ s 28.6 "
gak|dr 23K T3y ~ak =g||qr) “8'gr T8Q) '
(14) Fig. 6 Stress field for plane stress mode | crack under the von
Let us now introduce the following notation int@4) Mises vyield condition (elliptically shaped ). After [1].
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On the surface(16) appears to be a formidable differential equa- df k2 3 q%(f)
tion to solve being of quartic degree. Typically, a first order dif- p=-—=+\/——— —q%(f )+ ——5—5 +2q(f )T —4f2
ferential equation of degree higher than one requires as an inter- do 4 8 64a’k
mediate step a solution of an algebraic equation of the same (23)
degree as that of the equation itself. However, in this case th@ere q(f) is given by (22). From (23) one further infers by
left-hand side of(16) has the form of a Clairaut equatid8], separating variables and integrating that
which will simplify the solution process considerably. The opera-
tional procedure to solve a Clairaut equation is to substitute ang+ g
arbitrary constant for the first derivative appearing in the equation,
and solve the expression for the dependent variable. The solution f df
Va

of the differential equation in this case is the dependent variable
Q, wherec is the constant of integration. Upon applying this
procedure tq16), it becomes

a’%k? 3 1
fe=Q(f)=———+ ECZ— m04- (17) wherepg is a constant of integration.
The implicit form of a singular solution dfL0) is obtained from
Now reverting to the original definition fo®(f ), i.e., (13), one (24), provided the integral exists. However, evaluating the integral
finds from (17) that analytically is difficult in its present form due to the complicated

expressiorg(f ). Nevertheless, it can be accomplished by noting

2k2/4 — 202(f )+ q(f )/64a%k? +2q(f )f — 4f?
(24)

1 a’%k? 3 1 : . . oo
T2 o2 > 2 4 a simple parametric representation(@p) exists in the form
fc 2p 2f 8 +160 12&12k20 . (18)
ak ak .
By substituting the definition gb from (11) into (18), the solution f= 7sin = T(e‘ v—elY),
to the original second order differential equation is reduced to !
quadrature, i.e.,
¢ 2ak )
= o YI3__ o—iyl3
o df q 4aksm3 i (€ e ). (25)
+ 6+ E = 3 s
\/azk2/4 — 5%+ c*/64a%k? +2cf—4f? By substituting the complex representations of bb#ndq from
(19) (25 into (24) produces a simplified form of the integral
where « represents the second constant of integration. The inte- 1 (v (1+e¥")dy
gral in (19 can be evaluated using either an integral table or using + 0+ B= = . 26
) i ' ) B ST A T3 (26)
a symbolic computer program with the result being an inverse 2 Jo (1-e">+e™)

trigonometric function off. Upon inversion of this elementary ) )
function, one finds the explicit form of the general solutiorid) ~ The symbolic computer program Mathematica®olfram Re-
as search, Urbana, lLwas used to integrat6) to yield

_c . [ak 2 0+ 8= 3ig(y), where
f(O)fZ_(Z—m)Sln(ZO-Fa). (20) 4

— o _ A2iyi3 — 213 SAyl3
It can be shown thaft(#) of (20) represents a class of solutions of 9(¥) 2¢il3+In(2—e t2yl-e +e™)

(10), which generate uniform states of stress. 1— 2g2ivi3

Another possible type of solution of the original differential +sinh ! +sinh 1372~ n3, and
equation(10) is a singular solution. Singular solutions represent
envelopes of general solutions. However, they cannot be derived 27)

from the general solution by simply selecting particular values of

the arbitrary constants. For Clairaut's equation, a method of find- 2f
ing singular solutiongif they exisy is described in6] and will be y=sin" 1( —s) ,
used here. In order to find the singular solution, one must first take ak

a derivative of the governing equatidt6) with respect to the

independent variablé, ... where the ambiguous sign in front of ¢ in (26) has been made

positive in anticipation of the application to follow.
3 1 Equation(27) represents a singular solutidg of (10) in im-
Q'(f)| f— g9~ m& =0. (21) plicit form.! The constanp in (27) represents physically a rigid
body motion. Although the notation dR7) contains imaginary
This procedure sets up a specific relationship betwgemd f  numbers the result is actually real-valued.
related to the envelope of the general solution. Next the term inFrom the general solutio(20) and the singular solutio(27) a
the parentheses if21) is set equal to zero and the expressiogtatically admissible stress field representing the mode | plane
solved forq(f ). The only real-valued solution of this cubic alge-Stress problem for a perfectly plastic material will be found.

braic equation fog(f ) is A solution will be sought having a uniaxial tensile state of
stress along the crack faces of magnitude &s indicated in Fig.
q(f )= 23\/ Aa*k4f2— abKk8— 2a2K2f 7. The boundary condition of zero tractionrf=0,7,,=0) is sat-
isfied along the crack faces by choosing the negative sign indi-
2a2k? cated in(20) and adjusting the arbitrary constants to be
+ . (22)
a2k 12— a%k® — 222K c=2k, a=ml2, —fopp=Ksir? 0, (28)
When (22) is substituted foq into the original differential equa- where the subscript ofi indicates the sector over which this so-
tion and solved, a singular solution is obtained. lution applies in Fig. 7.
Upon substituting the definition o®(f) into (16), one finds
that 1See Appendix B for an explicit form of the singular solution(&).

Journal of Applied Mechanics JANUARY 2005, Vol. 72 / 65



fan have previously appeared in the literat{ire8], and as such
their derivation will not be repeated here. The curved characteris-
tics in the fan are of the form

2y+a

r=rq/sin®?

), —m2<y<m (32)

wherer, is constant along a characteristic ands a varying
parameter ¢6=dvy).

This family of characteristics asymptotically approaches line
OC in Fig. 7 (y=), as the stress field approaches the biaxial
stateak, which is an elliptic point on the yield surface. Being
related to hyperbolic equations, there is also a second family of
) o characteristics in the fan, which are radial lines. At the interface
Fig. 7 Characteristics for plane stress mode | crack under the OB both families of characteristics have smooth transitions as the
alternative von Mises yield condition  (parabolically shaped ) stress fields are continuous. Thus the characteristics in the uniform
stress region OAB make angles of 57.2 deg and 122.8 deg with
the crack line OA, as determined frof80) and (31).

Similarly, a biaxial state of tensile stress of magnitadgpoint
M’ of Fig. 2 is desired ahead of the crack, wherés defined in Discussion
(3). The following choice of the constartin (20) generates this

biaxial state of stress for region OCD of Fig. 7 In the context of a perfectly plastic solid, a stress discontinuity

represents physically the last remnant of an elastic region. Indeed,
c=2ak— focp=ak/2. (29) the stress discontinuity observed in the perfectly plastic limit of

Now an attemot will be made t nnect the two uniform stat the plane stress mode | power law solutdh can be eliminated
ow an attemp € made to connect the two unitorm states g, e the conventional von Mises yield condition provided one

stress in regions OAB and OCD with a fan defined by the S'ng.u?Eneralizes the problem to include linear elastic sectors in addi-
solution (27)1 A reqUIremen,t for equnlb_rlum across boundarie ion to perfectly plastic sectors, as[ii]. Thus the formation of a
OB and OC is that(6) andf’(6) be continuous, i.e., four bound- gyress discontinuity in the plastic region of a plane stress mode |
ary _condltlons. . . crack problem under the von Mises yield condition depends on
First, fog andfopg are found numerically from the two Simul- certain a priori assumptions about the neighboring regions.
te}neous equations generated by equaplfoec) from (23) to Reference$9,10] address the more general mixed mode crack
foas(6) determined from(28), together withfoap(6)=fosc-  problem, where the mode | problem is considered as a special
Next, the phase angje of the fan follows by substituting the now case. In[9] the plane stress linear elastic/perfectly plastic mode |
known values off 5 and 6o into (27). Following this, the angle proplem is examined both analytically and numerically using
foc is determined froni27) by substituting the known value &  asymptotic methods and finite element analyses. For the analytical
together with the value ofocp from (29). The results are sum- portion, a statically admissible solution was found which is inde-
marized below pendent of the radial distance from the crack tip. For validation of
_ _ _ the analytical solution, a finite element analysis employing
fop=572 deg, p=-205deg, foc=155.5deg. (30) o y"Rouss flow theory was employed. The analytical and nu-
It should be pointed out that the system is over determined aftkrical results of9] agree very well with one another near the
one now needs to check that the fourth boundary condition ferack tip. No stress discontinuity was indicated in either analysis.
equilibrium is also satisfied. The fourth boundary condition ren contrast, a numerically determined stress distribution only
quires that the fan derivative of (23) be zero atloc=155.5 deg  slightly different from the discontinuous stress field[@f forms
becausé ocp is constant throughout its domain. This is verifieths a power law material approaches the perfectly plastic state
by substituting the value dffocp from (29) into (23). under the von Mises yield conditiofL0]. A fully plastic state
The stress fields associated with functidisag, fosc, and  without a stress discontinuity and without elastic regions was
foco by (7)—(9) are plotted in Fig. 8. One notes that all stressefgund in [9] only for a pure mode Il loading. The results [&]
are continuous throughout the entire domain. In addition, theredgso concur with those of an earlier elastic-plastic finite element
no compressive region anywhere in the field. analysis in[11] for the pure mode | problem. That study involved
To the best of the author’s knowledge, the solutions of the fafe development of independent finite element programs for both
stresses have not been previously solved for the alternative Viiiear elastic/perfectly plastic materials and linear elastic/power
Mises yield condition. However, the characteristics related to thgy hardening materials employing flow theory under the von
Mises yield condition.
The issue of completeness for the conventional plane stress von

Ki— o =241k — Mises yield condition in regard to the mode | crack problem was
max ™ addressed if12]. The alternative von Mises yield condition does
2 Co not have the same limitation as the traditional von Mises in this

regard. As such it admits the continuous stress field derived here
15 for the mode | crack problem within a perfectly plastic analysis.
1 (o 18 The disadvantage of the using the alternative von Mises yield
condition instead of the conventional is the significant increase in
the degree of the governing ordinary or partial differential equa-

0.5} o o
57.2 155.5 ‘ tion and hence the difficulty of solving it analytically.

The solution presented in this paper for a semi-infinite length
0.5 1 1.5 2.5 3 0 crack is readily extended to the case of the finite length crack. One

-0.5¢ need only position a second crack tip at point A of Fig. 7, intro-

1 L Tre duce a second characteristic fan centered at A, and a second biax-

ial stress region to the right. The stress field follows immediately

Fig. 8 Stress field for plane stress mode | crack under alter- from the semi-infinite crack solution using symmetry. Concerning
native von Mises yield condition  (parabolically shaped ) this extension, a rigid elastic region would need to be introduced
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at point B of Fig. 7, with the rigid elastic/perfectly plastic boundSolution (A3) generates the stress field of the fan OCD in Fig. 5.
ary following two different curved characteristics to the left and to For the Tresca yield condition, the ordinary differential equa-
the right. Lacking a stress discontinuity, a kinematically admigion for the parabolic region MN of the yield condition of Fig. 1 is
sible velocity field is readily found for this particular stress field. — — Y
A presentation of this velocity analysis will appear in a future VIE"()17+4[17(6)17= 4k—["(6) +4f(6)]. (Ad)
publication. The author is unaware of the existence of a compalgain the substitution of Q froni13) will reduce the equation to
ible velocity field for the stress field plotted in Fig. 6. the Clairaut type, and a simple general solution related to uniform
Whether or not a power-law type material can be developed fefates of stress can be found. However, when a singular solution is

the alternative von Mises yield condition is an open question ajgtempted, the result analogous(&2) is independent ofj, i.e.,
seems worthy of consideration in the future. The solution pre-

sented here would serve as a comparison as a limiting case of a flz k. (A5)
perfectly plastic material for a mode | crack problem.

It is curious to note that the stress field derived in this pap
resembles the Prandtl and Hill stress fields for plane siisee,
e.g.,[2]), more than the Hutchinson solutidfh] for plane stress, .
in that the fan lies between two regions of uniform stress, rathéppendix B
than lying ahead of two uniform stress regions. This geometry Subsequent to submitting this manuscript for publication, a

change might have important implications regarding the strengifinple explicit form of the singular solution ¢10) was obtained
of the strain singularity in steady-state crack propagation profs

lems[13,14). ak
Concerning elastic-plastic problems, the solution presented here f(O)=—

is consistent with a state of stress with indeterminate principal 4

directions = o, ,7¢,=0) found ahead of the mode | crack tip

along the crack line as determined using Westergaard potentiglsferences

(see, e.g.[Z]) fpr Ilngar elastic materlals. For a Stea.dlly moving [1] Hutchinson, J. W., 1968, “Plane Stress and Strain Fields at the Crack Tip,” J.
crack, an elliptic region of plastic stress was noted in front of the™ \iech. phys. Solids16, pp. 337-347.

No fan of slip lines is generated U)Z Instead a biaxial state of
Slress of magnitudekis determined fron{A5).

2 2
3—3in2§(0+,8) sinz (6+5). (B1)

crack tip in[15]. [2] Unger, D. J., 2001Analytical Fracture MechanicsDover Publications, Mine-
ola, NY.
Appendix A [3] von Mises, R., 1949, “Three Remarks on the Theory of the Ideal Plastic
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e toplastic Int ” Eng. Fract. M . 763-776.
also be used to solve analogous problems for the traditional VORg Jreer. b. 5. 1995, *Stress across 6. pp

AR Al (6)] =32
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same form as those appearing ). Hence the substitution of Q [9] Dong, P., and Pan, J., 1990, “Plane-Stress Mixed-Mode Near-Tip Fields in
from (13) will also simplify (A1). The result of this substitution is o g:ﬁ%ﬁt'épgrf%%ﬂ'aﬁm 30"?,3;5”'9- ,Ffa?tt-h""eccﬂbpp- J‘iﬂ—?- Crack Prob
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to uniform states of stress can be found fréAl) in much the  [11] Narasimhan, R., and Rosakis, A. J., 1988, “A Finite Element Analysis of
same way as$20) was found for the alternative von Mises yield Small-Scale Yielding near a Stationary Crack under Plane Stress,” J. Mech.
condition. Phys. Solids36, pp. 77-117.
[12] Sham, T.-L., and Hancock, J. W., 1999, “Mode | Crack Tips with Incomplete

Concem'n.g the singular solution 6A1), the relationship analo- Crack Tip Plasticity in Plane Stress,” J. Mech. Phys. Sol#ig, pp. 2011—
gous to(22) is 2027.
[13] Rice, J. R., 1982, “Elastic-Plastic Crack GrowttMechanics of SolidH. G.,
q=3f. (A2) Hopkins, and M. J., Sewell, eds., Pergamon Press, Oxford, pp. 539-562.
. . . . [14] Broberg, K. B., 1999Cracks and FractureAcademic Press, San Diego.
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of Stable Crack Growth under Plane Stress Conditions: Part I-Elastic
fgll =*kcod0+p). (A3) Perfectly-Plastic Solids,” ASME J. Appl. Mech&4, pp. 838—845.
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The Coupled Thermoelastic
Transversely Isotropic Bimaterial:
Interface Crack Extension

L. M. Brock A semi-infinite crack grows at a constant subcritical speed along the interface of rigidly

Department of Mechanical Engineering, bonded, dissimilar transversely isotropic, coupled thermoelastic half-spaces. Shear and
University of Kentucky, normal Iogdg that move on the crack faces. drive .the process. A dynamic steady state of

Lexington, KY 40506 plane strain is considered. Robust asymptotic full-field solutions for the related problem of

g-mail: brock@engr.uky.edu translating interface disturbances are first obtained. These lead to coupled singular inte-

Fellow ASME gral equations for the crack problem that are solved analytically. Expressions for the

crack opening components and discontinuity in temperature between crack faces, the
traction and temperature change ahead of the crack, and debonding energy rate are
presented. These show that the critical crack speed is the minimum of the two Rayleigh
speeds and, if it exists, the Stoneley speed. The case of zinc bonded to a thermally inert
rigid solid is examined, and calculations for interface temperature change and debonding
energy rate given. Apart from any fracture criterion, these parameters show sensitivity to
crack speed and to the extent which compressive crack face loading dominates shear
loading. Indeed, interface temperature change may decrease in magnitude with crack
speed when shear loading dominaté®Ol: 10.1115/1.1825435

1 Introduction stants €11,C12,C13,C22,Cas), Mass densityp, specific heat(at
constant strainc, , thermal expansion coefficients(, ), and

The interface crack in equilibrium has been considddd] thermal conductivity parameter&{,K,). These obey constraints

for an isotropic bimaterial and asymptotic dynarfdd and tran-

- X ) e . 13,1
sient[5] studies also exist. The equilibrium interface crack in a[m 16
anisotropic bimaterial6—8], and the dynamic case for an ortho- C11>|C1g,  (CpptCig)Cop> 20%2, Cas>0 (1a)
tropic or transversely isotropic bimaterigd,10] have been con-
sidered. These treatments are isothermal, and so this article pre- (Kyx,Ky)>0, (ay,ay)>0, p>0, ¢,>0 (1b)

sents a study of interface crack extension in a bimaterighe plane strain disturbance on the surface is confined to a region
consisting of rigidly bonded, transversely isotropic, coupled thegf fixed dimensions that translates in the positiveirection with
moelastic half-spaces. A dynamic steady state of plane straincisnstant subcritical speasl A dynamic steady state ensues, so
assumed, in which a semi-infinite interface crack grows at a cotivat it is convenient to translate the Cartesian system with the
stant rate under the action of translating crack face loads. region. The independent variables are theyy), and time differ-

In part I, general results for a disturbance moving on a tranentiation in the inertial frame can be written a3)( ) ; the op-
versely isotropic, coupled thermoelastic half-space are givesration ()5 denotess-differentiation.
These are used to obtain full-field solution expressions for trans-It is convenient to introduce the Lame’ shear modulus symbol,
lation of a strip of displacement and temperature discontinuitptational wave speed, thermoelastic characteristic length and av-
along the interface of rigidly-bonded dissimilar half-spaces. Trerage conductivity

translation speed is constant and subcritical, and a dynamic steady K.+ K
state of'plane strain is exam'ined..The findings of part | .then form U=Cus, U= \/E h= > ¥ y, = %(ZQXJF a) (2)
the basis for Part Il—analysis of interface crack extension. P 2pCyu;

1.1 Basic Equations in the Half-Space. Consider a half- nondimensionalized disturbance speed
space at rest at a uniforfabsolute temperaturel. It is trans-
versely isotropic, with Cartesian coordinatesy(,z) defining the c=— 3)
plane &z) and axis(y) of material symmetry. The half-space sur- Ur
face is taken to bg=0, and the half-space itself can be eitheand, afte{13], dimensionless constants
y>0 or y<O0. If a boundary disturbance induces a state of plane

strain with respect tox,y), then, from results for anisotropic a= C22 b= Cu m=1+ C12

elasticity [11-15 and coupled thermoelasticifyi6,17], the rel- Cus’ Cas’ Cas’

evant field variables are the,fy)-components of displacement

(ux,uy), change in absolute temperaturé and tractions me=1+ C_13, y=1+ab—m? (4)

(ox,0y,0,,04). The relevant material properties are elastic con-

T — . o Dimensionless constants
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- To 2K
CHANICS. Manuscript received by the Applied Mechanics Division, October 28, e= _(Zwr)Z’ CS:—S (5a)
2003; final revision, May 28, 2004. Associate Editor: H. Gao. Discussion on the C, Kyt Ky

paper should be addressed to the Editor, Professor Robert M. McMeeking, Journal of

Applied Mechanics, Department of Mechanical and Environmental Engineering, ay ay ay ay
University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will bel',=(b+mz—1) =~ +(m—-1) =, ['y=2(m-1)=+a=
accepted until four months after final publication in the paper itself in the ASME o @ @ a
JOURNAL OF APPLIED MECHANICS. (5b)
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are also introduced. Frofil1—-17 the governing equations in the acC,

absence of body forces can then be written as h'= ac h, A’=Q0+w, B'=0-ow0 (14a)
(B=C%) Ut Uy ™ MUy = T4, =0 () 20,0)=VA, T (A, 2B, A'B'=AB (14
MUyt (17 €00y ok 8y —aly0,=0 () Ja A, =\b,— ¢, a,A,=(a,~1)(b,~1)-m2 (140

& .
h(Cy8 ot CyB.y,) +c| 6+ Z(FXUX'XJ,_ ru,,)| =0 (&) These expressions feature

X a,=atse,, b,=b+te,, m,=m+ e, (15a)
Similarly, the constitutive relations take the form

Mg.=Mgte,, v.=1+ab,—m? (15b)
. b m-1 I, 0] | SR ,
X X, X =
o m—1 a r, o s es=¢el'; (15¢c)
o | " m—1 m-1 TI. 0 —%0 (7)  The (e ,&y) are thermoelastic coupling constafts] for trans-
o 3 x U ot U verse isotropy. Like its isothermal counterpartiric), anisotropy
xy 0 0 0 1 Xy EYX coefficientA,=0 in the isotropic limit, as does the anisotropy

1.2 Transform Solution in Half-Space. A bilateral Laplace factor A defined by(11b) and
transform and inverse can be defined 28] A=T,I'B*~k,k,, C?°A=N,N,B*~MM,  (16a)

M =ks+T'(B?, Ng=k+T (160)

It can also be shown that\(ks,M¢,N;) are invariant under the
isothermal-thermoelastic transformatiom, i, m)—(a, ,b, ,m,).

—®

?=fw f(x)e PXdx, f(x)=%f?ep"dp 8)

Transform variable is imaginary in the firsttransform integral,
and the secondinversion integration is taken over a Bromwich

contour in thep-plane. Application of the transform integral ¢6) 1.3 Bounded Solutions: Material Characterization
in view of (7) and the requirement thati{,u, ,#) be bounded as Study of (11a) and (14) shows thatc= =+ (1,\b,/b,) are branch
VX“+y“—co gives the general transforms points of B,B’), Ag and (A, ,A’), respectively, in the-plane. In
light of (2)-(5) (v,,\bv,,b.v,) are the rotational, isothermal
prXZZYE (T, B2+ kyqf)wiequily\ (9a) dilatational, and thermoelastic dilatational wave speeds in the ma-

terial symmetry plane. Becaufg&3] b,>b>1, terms @,,A, ,B)
are purely real for all subsonic Qv<uv,) disturbance speeds.
ply=—a sgr(y)E (kyt+ Fyqiz)qil,//ie‘ Pailyl (9b) Terms @A’,B’) share the branch cuts oA(,B), respectively, but,
through their component$),w), exhibit others as well. Modifica-
tion [20] of a system for isothermal transverse isotr¢p§] gives

o=a> T(qg)ue Pulyl oc
E (@) (%) Category 1: a,b,<y.,<l+a,b, (1<b.,<a,)
for y#0. Summation is over index=(1,2,3) and they; are co- iph<y <1+ <g <
efficients to be determined by imposing conditions consistent with 3, +b.<y,<l+apb, (1<a<b,)
the surface disturbance. The dimensionless term 2ags78s1+a§ (1<b,=a,)
T(a)=q*+(Ag+AG+BA)g*+AJB? (10) Category 2: ¥b,<y,<a,+b,, y>—4ab,<0
and dimensionless parameters Category 3: vy.<1l+b,, 75—4a€bg<0
VaAy=+\b—c?, B=\1-c? (113)  |n the c-plane,Q and » exhibit, respectively, for category 3 the
ke=(b—cATy—mly, ky=al,—ml, (1) °ranchpoints
a—A,—m,\?
aAy=(a—1)(b—1)—m? (110) C=+cy, Co= \/1_ \/aT) (17a)
The anisotropy coefficiend ;=0 in the isotropic limit. Dimen- ©
sionless quantitieg? are the three roots of - a—A,+m,\?
C==XICqy, Cp= T -1 (A7)
C ce £
2, % rr2R2 2., 17244
(CX+qu + hp)T(q)+ ahp[r"B +(kdy+ kI T3] 1rm o exhibits branch points
12
. . . v m,(+)ia, VA, |*
Equation(12) and the cubic root formulpl9] imply that the form c=*C., Cc.= —a-1 | 1 (18)

of g; may require inversion af9) by numerical quadrature. There-
fore, robust asymptotic expansions of the root1), (9) and for category 1, and17b) for category 2. These points collapse to
corresponding stress transforms are used. Specifically, a transfar@ origin and A’,B’)— (A, ,B) in the isotropic limit (A,=0).
valid for |hp|<1 has an inverse valid fgx/h|> 1. Isotropic cal- The nonreal branch pointd 7b) and(18) do not arise for positive
culations[17] show thath~O(10"®) m. Expansions can then bereal disturbance speeds. Thus, for category 1 andl 2, Q) are
made for smal|p| and only lowest-order terms kept. The roots ofjiven by (14) and are positive-real for Q|c|<1 on the

(12 become Re()-axis for subsoniaw. However 0<c,<1 in (17a), so that
N 1= (A',B’,Q) for category 3 are all positive-real only fag<|c]|
(91,02)= —p(A’,B’), qs=— [—P (13) <1, i.e.,v is in the subsonic rangey, <v<v,. Foruv in the
Jp pvh range O<v<cqv,, () remains positive-real for €|c|<c,, but
) ) i (14a) is replaced by
Lengthh’ and dimensionless term#&\(,B’) are defined by2)—
(5) and A'=0Fiw, B'=Q+in, w=y-A,—(A,—B)? (19)
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for Im(c)=0=, 0<|c|<cq. In light of all this and the fact that Additional subscripts(1,2) are understood for dimensionless
O>(w,0)=0, Eq.(9) is bounded asy|—o for all subsonicv  quantities
when Re(=p)=0 in thep-plane with, respectively, branch cuts

Im(p)=0, Rep)<0 and Imp)=0, Ref)>0. Uap =TB?—k/(A",B")?,
1.4 Translating Interface Strip of Discontinuity. Now V(AVB)=(A’,B’)[kfoy(A’,B’)z] (239)
consider two such half-spaces of dissimilar properties, rigidly
bonded along interfacg=0. This bimaterial is at rest at a com- 3 ap=NB*~M(A’,B')?,
mon uniform(absoluté temperaturdl ; when an interface strip of L, a2
discontinuity in displacement and temperature appears and trans- Tap)=(A",B)[My—Ny(A",B")7] (23p)

lates in the positivec-direction with a constant subcritical spee

v. The strip is of infinite extent in the-direction, but of fixed qhat exhibit @&',B"), and dimensionless terms

width, and the discontinuities vary only with location across the K=k A +T.B. P=M.A.+N.B (24a)
width. The situation is one of plane strain, and we assume that a e e e o

dynamic steady state is achieved. M=a,A,+B, N=aA,+(1-m,)B (24b)

Therefore, the basic equations presented above hold for each
half-space, with onlyly being the same in each set. In particular, R=— agczA£+[a§A§— (m,—1)%]B (24c)
@mén,\(ljo(v? h%c\)/://;;g,r ?rr]wt(;rfl(lgégyéggdﬁ\irc()ansbounded foryx™+y that exhibit @, ,B). TermsR and S are factored forms of Ray-
' ' leigh and Stoneley functions associated with the common plane
U= U =Ux(X), Uy —Up=Uy(X); 01— 0,=0(x) (x2) of material symmetry. Their forms are actually simpler than

(20a) isothermal isotropic results often usg2ll,22. The factorizations
minimize dependence on the anisotropy factand(asymptotig
Oxy1 ™ Oxy2=0y1 = 0yp= b1y 05, =0 (2M)  cubic roots @A’,B’). In particular,(9) and (21) show that these
hold for y=0. Subscripts(1,2) signify, respectively, half-space terms appear only in expressions for the corresponding half-space,
(y>0y<0), and discontinuity functionsly U, ,0)=0, xeL, 1-€- the category of one half-space has limited effect on transform
whereL denotes the strip region. The functions are continuo@®!utions for the other. Moreover, even for category 3 dasy,
except perhaps at isolated locationsxerL; (U, ,U,) in particu- the real-valued nature of strip speed dependence in transform so-
lar vanish continuously at the strip edges. lutions is maintained because contributions corresponding to
Transforms(9) are also valid for each half-space. The two cot¥1.¥2) for the given half-space are complex conjugates with
efficient sets {1,4;,) are obtained by substitution ¢B) and respect tc for that half-space. It can be shown that
their traction counterparts for each half-space into the transform

— 2 _ —
of (20). Use of asymptotic result&l3)—(16) gives, for example, R=a,b,—(m,~1)">0, R=—va,(b,~1)<0, R=0 )
the coefficients for half-space ¥¢0) as (25)
\/— forv=(0,xv,,*cgy,), respectively, where€Qcg<1. In light of
" 1 a. —XgpU,+Y _ppr (213) (2), then,vg=cgy, is the thermoelastic Rayleigh speed in the
Us|BA(A'-B), B TE Y material symmetry plane. Similarly,
1 aa " V_p - S= \/aslAsl+( Vael+ Vbsl)z\/aSZAsz—‘r( Va82+ Vb£2)2
Yn=g BAA—B) XApUx+YAT pUy| (21b)
1 p X(\/aslbs2+\/a82b81)+(\/asbs+me_l)l
2/ 1312
p°U, h]_ 1 (8) ~ M1
= —— = || =] a1 Xt X —— — —
¥ \/h—i-i-\/h—é a, S|\al, 1R121 81421 X MZ(\/asbs-i-l m,)ivVag b+ (Vab,+1—m,),
207 1312
pUy, hi™2\-p[[e)| . M2
+—2— | |= - +(vVa,b,+m,—1),| — (Va,b,+1—m,),\a,b,
hi+\/h—é a, S \/6 = 2“1Y12 £1Y21 (Vazb,+m,—1), Ml( a,b,+1-m,),vVa, b,
@ h/3/2“
L PP e (210) +(Va,b,+1—m,), (263)
hi++vh, a
In (21) the dimensionless terms
@0 S= \/asl(bsrl)(%Rf%MﬁzNz
1 2
M2
o=y RVt 20AD) 200t N T, (229) +2(2,B0)\by 1A B, tby 1 (28)
o forv=0 andv=v,,<v,,, respectively. The corresponding result
YSZZ RoU1s+2(a,BQ),Tis+ N2 (220)  for v=v,,<v,, follows from (26b) upon interchange of sub-

scripts(1,2). It can be shown thaP6a) is non-negative, but26b)
i and its counterpart are either both positive, or of different sign. In
Xik=—R K +4(a,A.Q),(BQ Nyt NPy (22c)  the latter instance, a thermoelastic Stoneley spegkists, where

Kk 0<vs<MIin(vy1,0y).

ML _ _ 1.5 Full-Field Expressions. In light of (9) and (21) the
Yik I Ri(BEy)t (a,B)PEN(BN, D), (22d) imaginaryp-axis can serve as the Bromwich contour in the inver-
sion integral of(8). Indeed, integration can be performed with a

M M2 standard tablg23]. As illustration, consider the displacement
S= ER1M2+ ZRZM1+2N1N2+4(aSQ)1(aSQ)2(AslBZ components Wy, ,Uy;) in half-spacey>0. For all subsonic, i.e.,
0<v<min(v,1,0y,), Speeds for category 1 and 2 and for the sub-
+A,2B1) (22¢)  sonic range ¢ov,)1<v<min(v,1,v;,) for category 3,
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1 (4., Yn ) AlyU(t)d+ 1
qu 2 S Ql W, Lr +A:,Lzy2 t 7T_S 71

U, Uy (1) 1
" 201) )72+ Aj%y? aer 27S Vas
_ UT B1yUx() +i ,
L2+B%y? @S\

U;n) f TUy(1)
- —dt 27a
2w1) )7 -i-B’zy2 (272)
1 1/'1 , TU(1)
“”w_S(z_wl_Vm) fL72+Aizy2 * 2ms| Vo
_VTl AiyUy(t) dt_i 71
w1/ )L+ A%y? SAVACH
, TU, (1) 1
+V91> = B’2 3 +2_7TS Va1
V, BiyU,(t)
+ 1) j ly—yzdt (27b)
w1 ) J 7%+ B}%y?
HereL signifies integration over the strip width and
T=1—X (28)

In the speed range<Ov <(cqu,), for category 3, however,

*Urlf Ti+ T1-
Uy = — U,(t)dt
" 2mSe, L(m Qly TimiyZ) v
Ug Oy Oy
+27-rSf 55T PR, U, (t)dt
L\ g+ Qly? o+ 0dy
n Uy f Oy Oy U, (t)dt
2mSoy Ji\ 74, +0fy? 4 o+0dy?)
UTlJ’ 71+ 71—
+— U, (t)dt (29
7S '—( 75+ Oy T%—"'Qly o (%)
e Voi f Oy O,y U (t)dt
M 2mSw; ), 2 +Q%? 2o+ Q%2 )
;1 T1+ T1-
-— U,(t)dt
WSfL =, +Q2y? 7-§+Qiy2) X
Vo f T1+ 71—
+ — U, (t)dt
2mSw; L(7'1++91y 7+ 0y A

VmJ’ Oy
ZEI AR
In both (29), (2%),

Qqy
L zyZ) Uy(tydt (29b)

’Tlt:tfxialy (30)
In (27a) and (2%) dimensionless quantities
U,=Q, Mlﬂ Ro+ Q;N;N,+ B [a?A%+c?—(m
- 1)2]1(asAsQ)2 (31&)

Journal of Applied Mechanics

Un1=4(2,B0)1(2,A,0)2+ NNz + My 2R, (310)
1

1=(a,BQ)1N,+N;(a,BQ), (3l

Uh1=2Q;N;(a,BQ),+m, 151 R2+ Bl[a2A2+c —(m,
—1)%I1iN, (31d)
In (27b) and (29%) dimensionless quantities
=0, Ml,u Ro+ Q1NjN,+ A, [a?A%+c2—(m,
—-1)?]4(a,BQ), (324)
Vor=4(2,A,0)1(2,B0), NN, + My 2R, (320)
Vii=(a,A. Q)N+ Ny (a,A. Q) (32c)

1
=20,N;(a,A Q)2+m81A81 R2+ Asl[a2A2+c —(m,

—1)%];N,

In addition to parameters iR4), dimensionless termsV(; ,N;)
appear in(31) and (32) where, with additional subscriptl,2)
understood,

(32d)

M’'=a,A,—B, N'=aA,+(m,—1)B (33)

The study of(27)—(33) shows that the anisotropy factdy, in the
denominators of21) cancels from field variable expressions.

can be shown thg27) and(29) are identical whery=0 because

It

the denominator termsu(; ,w;) cancel out. They are also identi-

cal whenc;=cp;. Then (w1,w1)=0, but results are finite be-

cause the factors of (@4,1/w,), respectively, vanish themselves

when (w,,w1)=0. The functionSin (27) and(29), however, does
imply singular behavior at g, if it exists. Therefore, the subcriti-
cal speed requirement for the translating interface strip should be

0<v<MiN(v,1,0s2,05) (34)

2.1

of Cartesian coordinatex y,z) they have interfacg=0, and are
rigidly bonded over the portioy=0, x>0. The interface X2)

plane and its normdly-direction coincide with, respectively, the
plane and axis of material symmetry for both half-spaces. These

are at rest at unifornfabsolut¢ temperatureT, when opposing
shear and normal forcétne loads in thez-direction (F,,F,) are
applied to the half-space surfaces in the separation yen@, x

<0. These are translated in the positiirection with subcriti-

Interface Crack Problem. Consider two dissimilar
transversely isotropic, coupled thermoelastic half-spaces. In terms

cal speedy, thereby inducing debonding. A dynamic steady state

of plane strain ensues, in which the interface crack also extends

with speedv, and the forces maintain a fixed distaricéom the

crack edge. It is convenient to translate the Cartesian system with

the crack, so thatx(,y) =0 always locates its edge. Equati(6)

and(7) hold for each half-space, and the interface conditions are

Oxy1 = Oxy2=0y1— 0yp=01,— 0,,=0 (y=0) (353)
Oyy1=—Fyd(x+L), oy =—F,o(x+L),

01y,=0 (y=0x<0) (35h)

Uxp— Uy =Uy1 —Uyp= 61— 6,=0 (y=0x>0)  (35¢)

whereé is the Dirac function. The last condition {85b) implies
negligible heat flux across crack faces. Compariso36f with

(20) shows that, if U, ,Uy) and® are interpreted as, respectively,
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the crack opening and discontinuity in temperature between crathkis imaginary result implies purely sinusoidal eigenfunctions for

faces, and can be found such tli2#b) is satisfied, then the part |
results also serve as the interface crack solution.

2.2 Integral Equations. Settingy=0 in counterparts for
the far-field result§27) and (29) yields, upon substitution into
(35h), coupled integral equations

N du, D 0 du, dt
B2l b=+ Z2(up) X | = —Fa(x+L)
S dx ., dt t—x
(36a)
VM2 dUX DB 0 de dt
S D ax +?(Up)f,m_dt m)——Fyﬁ(X-l‘L)
(36b)
1 dj o TxdUs
N el i
+2Ty 0 du, dr 0 36
WS(UD) . dr 7—t| (362)

for x<<0, where ¢ p) signifies Cauchy principal value integration.
Dimensionless terms

Da=2\/22Ry(a,A,0),+ 21/ 2 Ry(,A,0);  (37)
M2 M1
Da=2/22R,(a,B0),+ 2/ 22Ry(a,BOQ),  (37h)
M2 M1
M1 M2
= RN, A2 RN
M2 e M1 2

(37c)

C]
appear in(36a), (36b), while (36¢c) exhibits dimensionless quanti-

ties

€ €
T= ( Z) Xt (Z) Xo1 (389)
2 1

&
Ty: E

2.3 Solution. The weak coupling of unknowngJ,,U,,0)

(380)

Y (S)Y
| =] Ya
2 @/

(36a), (36b). Thus, in what follows, subcritical interface crack
extension is defined by

O<U<min(UR1,UR2,Us) (43)

It is noted that(43) is more restrictive than the part | condition
(34). It should also be noted that results for isothermal anisotropy
[25] and isotropic thermoelasticit}26] indicate that (r1,vr2)
<vg when the Stoneley speed exists. In view(88)—(41), the
analytical solutions t436a), (36b) are

du, P 1 [L F (¢ . )
sin n—
dx leRz x+L Vx| |*/,u,1,u,2 [X|
+ DFy S(x+L) (44a)
—— (X
RlRZ\/ M2
du, VDb, 1 [L F s(d; . L)
——=——"—1\/—7—=—=C08 ¢p—{In—
dx  7RRy x+L VIX| i, [x|
OF, S(x+L) (44b)
—= (X
RlRZ\/ M2
for x<0, where the amplitude and phase angle are
_ DgF T T
= JDgF2+ DF2 —tarla/oBIX " £
F=\DgFi+DAF2, ¢=tan \/DAFy 2<¢<2)
(45)

Equation(36c) gives an Abel integral equation that, in view of
(36a), (36b) and (44), yields

1 JDg F L
BN MF N Y
mRR,S Dg Y/x+L Vx| | Wifho [X|
[ZTH ! (T+2DTH Fy S(x+L)+ c
I R o six -

Dg  RiR,S| * Dg ” V12 V||
(46)

Because its term shows weaker decayxis- o, we set the inte-
gration constan€=0. For the single isotropic material limit, ad-
ditional terms in the asymptotic integral transforms developed in
Part | allow stronger coupling ofl{, ,U,,®) than that displayed

in (36) allows (36a), (36b) to be treated separately. Appllcatlon ofin (36). An exact solution for the |sotrop|c limit ca$27,28 gives

singular integral equation techniquist], after[9], gives the ei-
genvalue equation
DDy cog mv+D?sir? 7v=0 (39)

supported by the observation thaD/f,Dg)=0 for 0<v
<min(vgy,vre) and results

D,Dg—D?=R,R,S, q= (40)

D
VDADg
In light of (40) and the discussion abovéq|<1 for 0<uv

<min(vgy Vg ,vg)- Then(39) gives dimensionless complex conju-
gate eigenvalues

(41)

and it is noted that{,D) are of opposite sign. If, howevar, lies
between the minimum and the minimum of the remaining tw
speeds, thefg|>1 and(39) gives

g—1

ve==i¢, 277§=Inq+—1

(42)
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more complicated forms thad4) and(46), but behavior indicates
that the stronger coupling has marginal effects, especially away
from the crack edge.

2.4 Interface Functions. The same procedure that gives
(36) yields, upon substitution of44a), (44b) and use of Cauchy
residue theory, the analytical results

F JD_A\[
oxy w\/rRZSXH— sm(d; lIn— ) (47a)
o _F_ \bg S( )
I 47b
oo -1 Vhih, ( &5 &1 Y)
VRIS i g | apyhg 2 Gy
o Foo1 \F E( L)
Xm m ;CO d—¢ In; (47¢c)

for y=0, x>0. The superscript indicates that functions are valid
for both half-spaces. The oscillatory behavior(#4), (46), and
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(47) is typical for interface crack§l—3]. In (44b) and (47b), it

implies crack face interpenetration and a compressive normal in-

terface stress, unlessis restricted by

T | L = 48
><¢—{In W<E (48)
For example, when{>0,F,=0), (48) gives
— @2 |X| w2
e <T<e (49)

Isothermal result§9,10] indicate that|Z|~0O(10™1). Thus, (48)

shows that the aberrant behavior occurs either at great distances
(as a multiple oL) from, or in small regions nedas a fraction of
L), the moving crack edge. Moreover, certain field variable com-

binations are free of oscillation§44a), (44b) and (47a), (47b)
give, respectively,

du, )2 du,|? DDz F L 1
Dal ——| +Dg| ==| = ————(x
dx dx TRIRy \Juip, Y IXIX+L
<0x+L+#0) (50a)
JDDs F \F
0.2 0\2_ —
\/DB(O-xy) +DA(Uy) W\/TRZSXJ’_L X (X>O)
(50p)

Similarly, derivation of the debonding energy réper unit length
of crack edggin the manner of29] yields the positive result

E - 1% \DADB EZ
¢l VR1R2S Vuiuso

(51)

Equation(51) shows that the upper limit i(43) produces an un-
bounded energy rate, whether that limit is a Rayleigh speed o

it exists, a Stoneley speed.

2.5 lllustration: Rigid-Elastic Bimaterial. ~Consider half-

o% 2[a0VA| f \/E L
ﬁ:— & &€ - I _ -

o @\ MR 11-|—x/L Xsm(¢> {Inx) (549)
a 2 aQ\/E a \/[ L
X = Y —¢In—

o 7w\ MR 11+x/L Xcos(qS {Inx) (540)
0 20T ,\B T

o 7| JMR

pc,\ [(aC
1+ \/( ) (—yhvr)
Ky S\ 8, .
1 \f L
X —co§ ¢—{In—
1+x/L X ¢=¢ X

(54c)
and debonding energy rat61) becomes
Eq 4 (aEQ\/E)Z /(AEB) B -
E 7| VR, 1 MR/,
Use of dimensionless loading parameters
F..F
(Fx.Fy) (f2+12=1) (56)

(vafy): F2+F2
VExT Py

and, respectively, the stress, temperature and energy rate ampli-
tudes

1 — — 2
= — JF2+F? = E= 7
LYy 0 (ma)y’ (mp)1 1)

allow the right-hand sides @b4) and(55) to serve as dimension-

less measures of interface traction and temperature and energy
rrgte. These measures themselves depend on dimensionless vari-
ables €4,x/L,(f,f,)), i.e., the crack speed, distance from crack
edge, and relative strength of normal and shear crack face loading.
These last two are not independent, so that either one can charac-

space 2 y<0) to be rigid, but capable of conducting heat. Thererize relative strength, e.gf,=0 signifies pure shear an

(44) and(46) for y=0, x<0 can be written as

w dU, 2[a,QVB| f L L
=—=—|——| ——\/=sinN¢—¢In—
o dx w R/, 1+x/L Vx| [X|
N
|5 lfy|_5(x+|_) (528)
pidU, 2(a,QVA\ f L L
= —=—|——5—| ——— \/=cos ¢—{In—
o dx m R/, 1+x/L Vx| [X|
N
+| 5 LhotL) (520)
1
® 2[ONB), f [L L
—=—(J o —sin(d;—gln—)
9 R JLHxIL Vx| [X|
eP
-5 1fy|_5(x+|_) (52¢)
where(41) and(43) give
2a,Q)VA.B+N
2w§=|n(; (53a)
2a,QJA,B—N/ |

w

— B f
f=JA.f2+Bf2, ¢=tan! \/——X( T gl
y At 2 2
(53p)
Fory=0, x>0 results(47) take the form

Journal of Applied Mechanics

=1 signifies pure compressidtensile loading of bimaterial
Equation(54c) shows that the thermal properties of the rigid

half-space affect the interface temperature change. If the rigid

half-space is also thermally inert, then the denominator of the

f-term becomes unity. We now consider this case, with half-space
1 (y>0) being the hexagonal material, zinc. Its properties are
[30]

c11=162.8 GPa, c,,=62.7 GPa, c1,=50.8 GPa,
c13=36.2 GPa, c44=38.5 GPa
p=7140 kg/m
c,=390 Jkg°C, K,=K,=124 W/m°C
@,=5.81810 °)1/°C, a,=15.3510 °)1/°C

at room temperatureT= 294 K). These values give, in view of
(2)-(4) and (15), the dimensionless solution parameters

a=1.6286, b=4.2301, m=2.3195,
mz=1.9403, y=2.506
a,=1.7203, b,=4.3024, m,=2.4019,
ms,=2.0144, v,=2.6354
co=0.999, cz=0.8833
Iry,=4.6018, I'y)=5.1181, £=0.003485
and values

h=1.917810°% m, v,=2322 m/s
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Table 1 Eigenvalue parameter { versus dimensionless crack Table 4 Dimensionless interface temperature change 6% @ at

speed ¢, x=L versus dimensionless crack speed ¢, and loading param-
eter f
(o 0 01 0.2 03 04 05 0.6 0.7 0.8 Y
{ 0.0913 0.093 0.096 0.1014 0.11 0.1234 0.1447 0.1826 0.268&" f,=0.1 fy=0.3 fy=0.7 f,=0.9
0 —0.000172 —0.000516 —0.001204 —0.001548
0.1 —0.0001721 —0.0005163 —0.0012047 —0.001549
0.2 —0.0001726 —0.0005178 —0.0012082 —0.001553
0.3  —0.0001735 —0.0005205 —0.001245  —0.001573
. . . 0.4 —0.0001758 —0.0005274 —0.0012306 —0.001582
As noted in part l,cou, is a speed that arises for category 3 0.5 —0.0001776 —0.0005328 —0.001243  —0.001598
materials, but does not affect solution behavior on the interfac€.6 ~ —0.0001824 —0.0005472 —0.001277 —0.001642
plane. The value o€, given here, moreover, puts the speed be-0-7  —0.0001929 = —0.000579  —0.00135 = —0.001736

yond the subcritical range. The isothermal parameterso'8 ~0.0002274  —0.000682  —0.001592  —0.002047

(a,b,m,m3,y) and theire-subscripted thermoelastic counterparts
are seen to be, in keeping with linear coupled thermoelasticity
theory[16,17], perturbations of each other. As noted at the outset,
isothermal result$9,10] involved a smaller class of transverselydecrease with crack speed, especially when shear dominates crack
isotropic materials; specifically, only the category 1 class definégice loading. This represents a stronger coupling of speed and
in Part I. loading mode effects.
For the present bimaterial, Table 1 gives the dimensionless ei-
genvalue parameterfor subcritical values o€, . Values are seen
to be of O(10™ ) and to increase with crack speed. Similar be:-)’ Comments
havior arises for isothermal category | resiyfis10]. This article was a two-part study of dynamic interface crack
A criterion for which interface crack extension occurs is nogxtension in an unbounded bimaterial formed from rigidly bonded
imposed in this study. However, some insight into solution behauissimilar transversely isotropic, coupled thermoelastic half-

ior is possible by examining the dimensionless energy EteE spaces. The half-spaces were Inltlally at rest at a common uni_form
for subcriticalc; andf, in the rangg0,1). Calculations of55) are temperature, and crack extension was caused by the trar)slatlon of
presented in Table 2, and show increases with both paramet&@mal and shear forces on the crack faces. A dynamic steady
That is, higher crack speeds are associated with higher enef§gte of plane strain was treated, in which forces and crack edge
rates, and energy rate increases as the compression componefit@fe at the same constant subcritical speed. The interface and its
crack face loading dominates. normal coincided with, respectively, the plane and axis of material
Similarly, data for the dimensionless change in interface terfymmetry, and crack face insulation was assumed.

perature(54c) is presented for Subcriticml andfy in the range Part | of the artlcle. presel_‘lted fu_ll-fleld_ re§u|t_s for the rela‘}ed
(0,2) at locationsx=(0.5L,L,2L) in, respectively, Tables 3—-5. All problem of a translating strip of discontinuity in |nterface dis-
entries are negative, indicating that interface temperature drdygcement and temperature. The use of robust asymptotic forms of
with interface crack extension. That the drop magnitude for te corresponding integral transforms led to expressions that were
given (c,,f,) decreases with is predicted by the form of SC. analy_tlc to w_|th|n single Welghtec_i |ntt_egrals of the_dlscontlnL_uty
Tables 3 and 4 give magnitudes that, like Table 2 entries, incredgactions. This feature was exploited in Part Il to yield analytical
with crack speed and dominance by compressive loading. Tabléosmulas for crack opening and discontinuity in crack face tem-

shows, however, that further from the crack edge, magnitude m@§rature, interface traction and temperature change, and debond-
ing energy rate. The formulas showed that the critical crack speed

is the minimum of the two Rayleigh speeds and if it exists, the
Stoneley speed.

For the special case of a rigid solid-zinc bimaterial, calculations
for the problem eigenvalue parameter, nondimensionalized deb-
onding energy rate and change in interface temperature were

Table 2 Dimensionless energy rate Ed/l:: versus dimension-
less crack speed c¢; and loading parameter f,

Cy f,=0.1 f,=0.3 f,=0.7 f,=0.9 given. The eigenvalue parameter was seen to behave like its iso-
0 0.0 00 0.0 0.0 thermal counterpart. The debonding energy rate increased both
0.1 0.0225 0.0241 0.0294 0.0337 With crack speed and the degree to which crack face loading is

0.2 0.0468 0.049 0.0605 0.0693 dominated by compression. Interface temperature was seen to
03 0.0723 0.076 0.0943 0.1098  drop, and the drop magnitudes also increased with speed and com-
8'%‘ 8'%%2 8&9132 ?ﬁggi g'ggg pression dominance near the crack edge. However, as distance
06 0.1848 01978 0.2633 03157 from the crack edge increased, drop magnitude could actually

0.7 0.271 0.2943 0.4107 0.5037 decrease with speed, especially when shear loading is dominant.

0.8 0.2956 0.329 0.496 0.6296

Table 3 Dimensionless interface temperature change 06 at Table 5 Dimensionless interface temperature change 0% 0 at

x=0.5L versus dimensionless crack speed ¢, and loading pa- x=2L versus dimensionless crack speed ¢, and loading pa-
rameter f, rameter f,
cy fy,=0.1 f,=0.3 f,=0.7 f,=0.9 cy fy,=0.1 f,=0.3 f,=0.7 f,=0.9
0 —0.000486  —0.001127 —0.002382  —0.002984 0 —0.00004036 —0.0002039 —0.0005374 —0.0007107
0.1 —0.000489  —0.00113 —0.002385  —0.002987 0.1  —0.00003969 —0.0002033 —0.0005371 —0.0007106
0.2 —0.000495  —0.001137 —0.002395  —0.002997 0.2  —0.00003872 —0.000203  —0.0005482 —0.0007121
0.3 —0.000505 —0.00115 —0.002413  —0.003016 0.3 —0.00003699 —0.000202 —0.0005391 —0.0007147
0.4 —0.000524  —0.001177 —0.002452  —0.003059 0.4  —0.00003459 —0.0002018 —0.0005439 —0.0007226
0.5 —0.000547  —0.001206  —0.002489  —0.003097 0.5 —0.00002997 —0.000199 —0.0005455 —0.0007273
0.6 —0.000591 —-0.001265 —0.002574  —0.003189 0.6 —0.00002328 —0.0001351 —0.0005541 —0.0007427
0.7 —0.000677  —0.001386  —0.002753  —0.003386 0.7 —0.00001109 —0.0001948 —0.0005746 —0.0007772
0.8 —0.000928  —0.00175 —0.003318  —0.004014 0.8 —0.00002133 —0.0001946 —0.0006465 —0.0008926
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4 Future Efforts [10] Brock, L. M., and Hanson, M. T., 2002, “Interface Crack Extension at any
Constant Speed in Orthotropic or Transversely Isotropic Bimaterials—II. Two
Equations(44) and (48) indicate that interface crack closure Important Examples,” Int. J. Solids Struc89, pp. 1183-1198.
could occur at large distances from the crack edge, thereby limifl1] Kraut, E. A., 1963, “Advances in the Theory of Anisotropic Elastic Wave
ing the applicability of the semi-infinite crack model. This feature _ Propagation,” Rev. Geophysl, pp. 401-448.

. . . . . f . 12] Scott, R. A., and Miklowitz, J., 1967, “Transient Elastic Waves in Anisotropic
has been studied in the isothermal isotropic bimaterial for trari Plates,” ASME J. Appl. Mech.34, pp. 104-110.

SOT"C interface crack speeds, i.e., between the rotational and dll[qé] Payton, R. G., 198Flastic Wave Propagation in Transversely Isotropic Ma-
tational valueg4,31]. More recen{32] results for Mode | crack terials, Martinus Nijhoff, The Hague.

extension in a single transversely isotropic thermoelastic materigl4] Lekhnitski, S. G., 1963Theory of Elasticity of an Anisotropic Elastic Bqdy
show that smooth crack closure without interpenetration can occur Holden-Day, San Francisco.

for subcritical crack speed. The general resi8t40] for interface [15] Ting, T. C. T., 1995 Anisotropic Elasticity Oxford Science, New York.

crack extension in the isothermal category 1 transversely isotropit®! mg’sa?' Ifl_'* and Weiner, J. W., 198Fheory of Thermal StresseKrieger,

bimaterial consider any _ConStam _Crac_k speed. The resu'f??] Chadwick, P. C., 1960, “Thermoelasticity, the Dynamical Theory,Pimgress

[9,10,37 are qurently Serving as gl.JI.deS in the extension of Fhe in Solid MechanicsSneddon, 1. N. and Hill, R., North—Holland, Amsterdam,

present analysis beyond the subcritical range and the consider- vol. 1.

ation of crack closure. [18] van der Pol, B., and Bremmer, H., 195Dperational Calculus Based on the
The restriction(43) for subcritical crack speed was based only =~ Two-Sided Laplace IntegraCambridge University Press, Cambridge, UK.

on the fact that the Stoneley speed, if it exists, and both Rayleig[ﬁg] Abramownz, M. A., and Stegun, I. Aeds), 1972,Handbook of Mathematical

speeds are subsonic. As noted above, studies of bimaterials for Functions Dover, New York.

N p ) " . P . A @S] Brock, L. M., 2003, “Rapid Sliding Indentation With Friction on a Trans-

isothermal, anisotropic elasti25] and isotropic thermoelastic _ versely Isotropic Thermoelastic Half-Space,” Int. J. Solids Stru¢®,, pp.

[26] cases indicate that the Stoneley speed exceeds both Rayleigh 3195-3210.

speeds. The isothermal and thermoelastic rotational wave spedds Cagniard, L., 1962The Reflection and Refraction of Progressive Seismic

in the material symmetry plane were seen in part | to be identical, Waves McGraw—Hill, New York. o o

and data for zinc indicated that the two dilatational wave speedé? 22:‘;2‘:;::; J. D., 1973Vave Propagation in Elastic Solidslorth-Holland,

a}re perturbatlons of One. another. Thl.s SUQQeStS that the ObserY??;] Foster, R. M., and Peirce, B. O., 1958,Short Table of IntegralsBlaisdell,

tions of [25,26 generalize to the bimaterial considered here. ~ \yajtham. ma.

Clearly, however, the aforementioned extension to supercritic@4] Erdogan, F., 1976, “Mixed Boundary Value Problems in Mechanics, V-

speeds should specifically consider the Stoneley—Rayleigh speed chanics Todayedited by Nemat-Nasser, S., Pergamon Press, NY, Vol. 4.

relation. [25] Barnett, D. M., Gavazza, S. D., Lothe, J., and Musgrave, M. J. P., 1985,
“Considerations of the Existence of Interfaci@toneley Waves in Bonded
Anisotropic Elastic Half-Spaces,” Proc. R. Soc. London, SeA®g, pp. 153—
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Statistical Damage Mechanics—
D. Krajcinovic Part |- Theorv

Life Fellow ASME

A. Rinaldi Statistical damage mechanics in this work establishes the connection between damaged

random heterogeneous micromaterial and the system macroparameter. Renormalization
Mechanical and Aerospace Engineering, group theory provides the bridge from the microscale to the macroscale. Delaunay lat-
Arizona State University, tices, which simulate and capture the role of the disordered microstructure in damage
Tempe, AZ 85287-6106 process, substitute a polycrystal specimen assuming that microcracks are grain-

boundaries cracks. The macroparameters of the system, in the form of algebraic func-
tions, are obtained applying the Famiyicsek scaling relation on simulation
data. [DOI: 10.1115/1.1825434

1 Introduction dependent on the short-range intermolecular forces between mo-

Simple mathematical theory of the thermomechanical process!FT ular particles and on the body forces of longer-range that are

based on the four constitutive equations for the strgﬁssx,t), acting on the interior of the specim¢a]. Continuum models of
— . . __engineering cannot be used when the short-range intermolecular
heat flux,q;; (X,t), internal energy and local entropy production

7;j(X,t) [1]. Above, X is the position of the point,is present time :grcc?Zc?;cCIS?e longer-range forces, as the microcracks become

and the bar above the symbol indicates the macrosymbols. An he model of this work can be used from continuous to mo-
principle of local action, according to which the response &t a |Fcular medium. But, in this work is restricted only to macroscale

is _determined if the conditiqns are |_<nown'in an arbitrarily ,smaand microscale. The macroscale matter is contiguous. The resolu-
neighborhood ofX, the motion outside being disregardelr] tion length of the microscale ig, defined as the length of the

Kellogg [2] also usedX to determine the “continuum particle. gin-boundary. The microstructure of a polycrystal, such a ce-

. - It
MOSt. classical continuous models are baged on the property?gmics, can be modeled by the lattice, i.e., a simplicial graph in
locality. In [3,4] Kunin provides the connection between the nory .1 voronoi froth is perpendicular to the grain boundaries and
Ioca[, weakly nonlocal models and quasicontinuum. I.n. nonloc. e Delaunay graph, dual graph to the Voronoi froth, is of honey-
continuum models used for damage mechaffigshe position of comb geometryFig. 1). For the solid mechanics design the scal-

microcracks in the “representative volume” is irrelevant. ) - .
crocracks the “rep ese_tat e volume”is irrelevant ing process from microcracks to the macroparameters is most
Materials, such as ceramics, are on macroscale homogene?1 ded

ordered and isotropic in pristine state. On the microscale, the tex-

ture of this ceramic is random heterogeneffis The distribution

of the position and geometry of grains, i.e., number of edges and

faces per cell, surfaces, interfaces, boundaries, microcracks gre Damage “Micromechanics”
random variables. As the microcracks nucleate, enlarge, and clus-

ter with each other, the random variables become different. ThusThe t_ask of mlcromechamcs(m micromechanics” material
the effect of random heterogeneous “continuum particles” mu bperties depend on macroscopic averages defects and not on the
be smaller as the microcracks grow efects position in spagés to estimate the effective stiffness ten-

But physics, thermodynamics, and mathematics provide, as r of heteroge.neogs material. Mu#, Nemat-Na}sser and Horl
ways, the tools. The first tool is thermodynamics, which is empirn<0» @nd Krajcinovic[11] have the same task, i.e., to estimate
cally based science that requires no knowledge of microsco;%era” properties by mlcromecharllcs m_odels under some cir=
interaction. The second tool is the statistical mechanics that “e&imstances. But, “micromechanics” considered only the statisti-
tablishes a connection between the microscopic and thermo ! homog_enelty of the matter at the mlcr_qscale. Hencc_a, the over-
namic description of a systen{7]. Thus, statistical mechanics | properties do not depe_nd on th_e position of the microcracks,
models establish connection between macroparameters, suchGs he Process is ergodic. As microcrack density enlarges the

the macroscale the components of generalized Hooke's |2 eraction of two or more microcracks, their positions become
CaB¥ in the form o 6“575(5)* whenD is the mac more relevant. At threshold failure a large cluster of interacting
, o= €5y -

d he third tool e the f | microcracks become a macrocrack. Finally, the form of the failure
rodamage parameter. The third tool is the fractal geometry. depends on the fractal or multifractal geometry and density of the
macrocrack.

2 From Continuum to Quantum Mechanics? 3.1 Damage Scalar Model. The first, two-dimensional and
Apparently it is Boscovicl{1763 who “assumed that, between time-independent, damage mod#,13 related the macrostress,

every two ultimate particles and along the line connecting thens, and macrostraing, as

forces act which are attractive for some distances and repulsive . .

for other” (Timoshenko, S.P.History of Strength of Materials o=E%1-D)e. 1)

Dover Publications, Inc., New York, p. 104A proper model is

In (1) is the macrostres€?° is the elastic modulus of pristine
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF PRg

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- S.tate.’. and is the damage parameter. The bar over the parameter
CHANICS. Manuscript received by the Applied Mechanics Division, November 15ignifies a macroparameter. ) )
2003; final revision, May 28, 2004. Associate Editor: H. Gao. Discussion on the The brittle loose bundle modgl4,15 is the simplest damage
paper should be addressed to the Editor, Professor Robert M. McMeeking, Journahehdel (1). The expressioril) can be obtained assuming that ex-
Applied Mechanics, Department of Mechanical and Environmental Engineeri ; ; i ;
University of California, Santa Barbara, Santa Barbara, CA 93106-5070, and WiIIrEgnt “nk.s share equa”y the tensile !Oaﬂ, Nis .the nu.mber of all
accepted until four months after final publication in the paper itself in the ASM nks, nis the m{mber of a”_ brOKen |In|l(S, arfdis the link ruptqre
JOURNAL OF APPLIED MECHANICS. strength. AIIN links have identical stiffnesk=K/N whenK is
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4

Il N N N e N tions of the effective stiffness and compliance tensors it is advan-

O R B IR B B tageous to introduce a set of six fourth order tensors. These ten-
. ARN AR ARR AN RAN sors represent the irreducible integrity basis for all fourth order
B A " tensor invariant to permutations of first and second pair of indices
[ (9 . (3% (3] [y . . ~ ~ -
Bin Al CRA RS EEIEEE EELEEE EE EEE R defined by the symmetrieS;nn=Sjimn= Sjjnm=Smnij. The dy-
\'\ Ly e A Lo ’ adic products of a unit vectar and the Kronecker delta function
SN TS Ll,'/' R J that define the two components of these six tenpbfsre
------ bonwdowsdastanlicalacdiantacdaa
s E) [ &) () 5 1
’ o g o s o 12 mn=3(NiNyWSin+NiN, i+ NiNy S+ NiNLSi) - and
‘-',"l"')(")"-\:k,"f’): ijmn™— 2VHiHm%%jn i''n%m j"'m%in i"'!n%m
- . . ' o \ 6
Iijmn_ninjnnﬂm- (8)

Fig. 1 Perfect two-dimensional honeycomb Voronoi and trian-

gular Delaunay lattices If the normal stress at the crack surface is tensile, the expression

for the compliance that is attributable to a single, planar, penny-
shaped crack of radius has a very simple form

the stiffness of the model in the pristine state. The random vari- g_co ZE 1-v ia3{2|§ (m)—vl® (m)} 9)

able is defined by (f,) = (fna)  *=const. The damage density is mho3V2-v2u ymn Hmn

then that is expressed in terms of the glol§at specimej coordinate
—n system[11]. The unit vectom identifies the crack plane and can
D= N’ (2) be expressed in the global coordinate system s

={cos¢ cosb,cosgsinb,sing} in terms of trigonometric func-
A different rate of damage variable is the quotient obtained bions of the Euler angles. Following the arguments in
rate of unbroken bars divided by the number of the unbroken baf0,11,18,19where(9) is used as a Green'’s function, the compli-

In this measure the damage ratd i6] ance of a solid containindy penny-shaped microcracks is
557 5“ 5—' 3 —* 161_V 1 aJr 3,6 d
n=non O De=Inl ) (3) Sjmn—ggm - a*d(a)da
The damage density in expressi@) can be written as 2w (w2 _
— = - X f f Fiimn(6.6)p(0,$)cospdodp.  (10)
— E°-E — E 0 J-ar
D=— and Dp,=In—, 4) - o _
E E where d(a) and p(6,¢) are statistical distributions of size and

T_E01 1 i , . _orientation andFj,,( 6, ¢) is defined by the expression within the
\;vgeec;esEpecl?m(;n D) is the Young’s elastic modulus of the dam curly bracket in(9). This result is based on the assumptions that
The force ve.rsus displacements curve is a parabola(6y) aII_ cr_acks are penny-_s_haped, the crack growth_ |s_self_-5|mllar, t_he
—(f- )1 when the displ ti trolled. The hardeni rinciple of superposition holds and that the distributions of ori-

= (fmad = when the displacement is controlled. The hardenin ntation and size are independent. The set of restrictions makes

and softemng parts are mirror-same over the directrix. Hence, fis model close to be useless because the validity is confined to
softening part of the brittle loose bundle model cannot be trust all damage density

3.2 Damage Model Based on Fracture Mechanics.Budi-
ansky and O’Conne[l17] proposed the first damage model based
on the fracture mechanics. By assuming that the continuum js _ .
isotropic and homogeneous, damage is isotropic, cracks penAy- Statistical Damage Mechanics
shaped and damage density insignificant, and the damage paran$tatistical mechanics establishes the theoretical bridge between

eter is the microscopic and macroscopic thermodynamics description of
a system. Also, “thermodynamics is an empirically based science
— 1 . that requires no knowledge of the microscopic and macroscopic

D= \F<a ) ®) interactions”(Chaikin and Lubensky7]).

wherea is the crack radius and® is the volume of the specimen. 41 Mean-Field Theory. Lev Davidovic Landau’s works in
Krajcinovic [11] considered a single penny crack in effectivénathematics and physics are the foundation of mean-field theory
properties of elastic, isotropic, homogeneous, and continuo?@d sta_tlsycal mechamcs. He proylded the mathe_matlcal tools for
specimen using fracture mechanics. The energy releaseS;dt, the statistical mechanlc_s to establish the connection _between ran-
homogeneous and isotropic elastic solid is dom heterogeneous microstructure and macroscopic properties.
Statistical mechanics literature, such as Chanf&i, Chaikin
1-v v and Lubensky[7], Garrod [21], Cardy [22], Fujimoto [23],
G=J= — (K?+ K3+ —K?3,. (6) :
2 W Kaoanoff[24],_Chowdhury and Stouffe{25] etc., was forgotten in
) ] ) . . _solid mechanics research. The first mean-field model, by Landau
In (6)J is the |ntegral for homogeneous and isotropic e'QStIC soligh 1937 (see[21)), is the phase transition from the ferromagnetic
v and u is the Poisson’s ratio and shear modulus, &ndis the yhase to the paramagnetic phase as the temperature increases.
vector of stress intensity factors whem=1,2,3. After some ten-
sor transformationg[11], pp. 253-25§ the effective(average ~ 4.1.1 Correlation Length. The quantityé(n) is the correla-
compliance S; is tion length, i.e., the upper bound of the distance over interacting
jmne> = _ _ microcracks. The correlation length is the distance over which the
Sijmn= Sﬁmﬁ Sfimn - (7) fluctuations of the microscopic degrees of freedgeometry, dis-
— ) o ) tance, Euler angles, specimen dimension, random microtexture,
In (7) Sy, is the compliance of a pristine specimen. The complistc) are significantly correlated with each otfeg]. During the
ance that is attributable to the presence of a single penny shapgghage process the fluctuations of the microaffinities increase
crack embedded in a homogeneous, isotropic and elastic mateggh the microcrack density. Thus, the number of degrees of free-

is Sﬁmn. To facilitate the analytical and computational manipuladom of strongly correlated microcracks is the correlation length.
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A) 2 Order Transition B) 1% Order Transition
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Fig. 2 Order Parameter. The second and first order chase transitions.

The closer the phase transition, where the largest cluster of fhleese two concepts support the bridging between the microscopic
microcracks drives the process, the more the correlation lengthd macroscopic parameters. This bridge is réreormalization
approaches the specimen characteristic size. group theory that is a transformation involving thinning of de-

4.1.2 Order Parameter. Order parameters distinguish an Or'lgerr?gti ()Sfc;ri[e7dgzrmg(;a2r§e grainingcoupled with a change in the

dered from a disordered phase. Even more, the “order parameter
is a quantitative measure of the relevant ‘order’ in the system”

[25]. Finally, “the order parameter is the average), of an op- 4.3 Thermodynamics of Griffith Cracks and Thermody-
erator, ¢, which is a function of the dynamical variable in thenamic Potentials. Experiments demonstrate that isolated sys-
system Hamiltonian{Chaikin and Lubenskj/7]). The phase tran- tems spontaneously tend to states that are known as equilibrium
sition can be of first or second order. The order of the phasgates, defined by a “small” number sf/stenparametef20]. The
transition depends on the order parameter continuity. specimen is in contact with heat reservoir to maintain the tempera-

During a brittle deformation of a specimen, underaxial ex- o atT=T,=const[29] during the damage process. If the sys-
tension inx direction, when the damage density is |nS|gn|f|can[1't_Jm elongation,s_ij . is controlled, equilibrated thermodynamic

and correlation length is inferior to the specimen lenigth.. M. ) g
Kach \ d Ig 1 b dp F hm‘ e states of the process are defined by the manifdd®, T,}z on
achanov's model ir(1) can be accepted. For each valuelf he macroscale. When the elongatier,, increases, the macro-

the current effective secant stiffness modulus of the systel isstress and macrodamage parameters increase as well, i.e., the
=E(D)=E°%(1-D). The order parametef$)=(1—D), iS @ manifold is {oc+ do,D+6D,T,};. This quasistatically damage
time-independent scalar, which is sufficient for the model in thﬁrocess can be partitioned in a sequence of many two-steps op-
paper. From(1) the relation between macrostrain and macrostregsations[29]. The two steps are the following:
is
1. Separating reversibly two surfaces pulling against cohesive
_ _ forces until two surfaces are not jointed. “By definition of

g N A B2 - the quantity % as the reversible work disothermal sepa-
——=(1-D)= or o=(1-D)e= , 11 f X L -
E%. { >sc 7= ye=(d)e (11) ration per unit area, the contribution to the free enelyis
2y¢" [29].
with &, being the macrostrain at the specimen failure. 2. Deforming elastically and quasistatically each element of the
From (11) the order paramete{¢), is zero when the straia damaged specimen so that such elements have the same
—%¢le, is unit. Vice versa, when the strain is zego= 0, the order equilibrated strain-state as that actually induced in the speci-

parameter(s), is unit. At both of these states the normalized ~ MeN when the microcrack sand the imposed displacement

macrostressr/E° is zero. If (¢) reaches continuously the zero s de.

value, the phase transitiog,=e/e.=1, is of thesecond order In polycrystal specimen microcracks will nucleate and propagate
[Fig. 2(@)]. If (¢ goes discontinuously from zero to a nonzer@ither along the grain-boundaries or through the grain. In this
value ate =e/e.<1, the phase transition is of tHiest order[Fig. work, the resistance energy at the grain-boundary,,2¢, is
2(b)]. Figures 2a) and Zb) refer to a 2D quasibrittle lattice. smaller than in the bulk of the grain and the cracking is purely
intergranular.

4.2 Mean Field Theory: Critical Behavior. The impor- L . . )
tance and utility of mean field approach consist of the robustness! € Gibbs’ potentialys, (per unit volumg, defined as the Leg-

to the details underlying the interactions. The mean-field theory &fdre transformation of the Helmholtz free energy densitj30]
critical behavior is based on two concepts.

1. Universality designates that a problem belongs to a univer- ploTH)=oie—v(e, T H)=0e—U=Ta. (12)
sality class. Universality class is the set of all systems that —. . )
have same critical properties and fixed poiikadanoff N (12) T is the absolute temperatuie/s internal energy density,
[24]). du=ondemn, H is the history recording parameter, andis

2. Scalingrefers to the power law relations that are observeentropy. Complementary expressions for the average stress and
between various quantitie§<ardar [26]). The fragmenta- strain (at fixedH) are
tions, earthquake&Gutenberg—Richter relatipmand fracture
of quasi_br@ttle r_naterials{WeibulI theory in_dicate that the B a?(s_,?,ﬁ) B ﬁ;(;,?,ﬁ)
system is invariant under the transformatica\r, whenr oj=———  and g=—".

system (13)
is position.

doi;
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The inelastic(irreversible changes of Gibbs’ potentidper unit 6
volume occur during processes characterized by the change of 4
the recorded history. 3
The inelastid(irreversible changes of two potentials that occur
during processes are characterized by the change of the recorded
history. The change in the Gibbs’ energy density associated with a 2
change of statéisothermal and load-controllgds [29]

— 1 1
Sy=— f,50,=— ff; G(c,a)—R(€)]5a()dC. 1
v v  [G(o.a)-R(Oa(0) v
(14)
In (14) sa(¢) is the “distance” that a point on the microcrack
front advanced during the transition between two neighboring -

states andy=V°y. Since the entropy production rate is non-
negative the integral i(14) is

L—
v
“
. -

.

ff'edssf (G—R)édssf Atds=0.  (15)
c.f. c.f. c.f.

In (15 “c.f.” stands for “crack front” and the integral with re-
spect to the arc lengthis carried over all extending parts of the
microcracking front[29]. Finally, analogously to the Griffith’s
theory,G is the energy release raf,s the material resistance to 0 1 2 3 -é-
crack extension, andl is the thermodynamic affinity

A=G-R. (16) Fig. 3 Saw-toothed stress versus strain curve during the dam-

age process

The thermodynamic crack-extension “force” per unit length along

the locus of all microcrack front$; (N/m), is (Rice [31])

.
T R

>

=
-

E:E (G—R) a7 5.1 Disordered Matter: Lattice Simulations. A damage
N S tolerant material, that has random heterogeneous microstructure,

is modeled in a simple way by a lattice. On the microscale the

The part of the Gibbs’ free energy required for damage increasegiSometry of a disordered material, either a polycrystal or an amor-
_ phous one, can be thought as a random-close-packed particle
d‘\lfzz (Gi—Ry)da=0. (18) structure where each particle is connected to the others. In a gen-
n eral sense, each particle can be an atom, a molecule or a grain

In (18) N is number of microcracks) number of microcracks that dépending on the specific problem. By assuming to know the
increased, ana the microcrack radius. This formulation can beature of the interactions, the matrix of Hamilton's equations of

applied to continuum or discrete models but requires thermoo?-mh structure would be 1:u|| and the simulati_ons Iaborious: Hovy-
namic equilibrium. ver, the primacy of the “short-range order is very much in evi-

dence in the structure of amorphous solid@allen [34]) and
polycrystal material. Limiting the model to the short-range makes
large simulations become possible. The x-ray scattering data on
5 Mean-Field Theory of Damage amorphous metallic glass, amorphous silicon, amorphous metal
and other materials demonstrate that short-range order provides

[7,20,21-29), provides a tool for considering many processes g[ootd mlodtelsf and luseful tda[t’a4]. In this case each atom is con-
phase transitions and at critical states. But, most of those modgfjjﬁ ‘t’hf? y tofewc ?serde_t oms. latti ; . dt

and procedures do not consider process in materials, which are {1 (IS paper a two-dimension 1a |d@_r networK is used to .
microscale random and heterogeneous, and on the macros@&?éjel the polycrystal_ material. The sites re_present_the grain
“continuous.” Close to the phase transitions and critical stated13SS€S anq the bo_najkmks) connect eaph grain with six close
most continuous engineering materials, such as ceramics, C3R?S- The link consists of a spring of given stiffness that breakg
crete, rock, cementitious composites, etc., become discontinud/[i€n the load reaches a random tensile threshold. The load is
on the macroscale. Thus, the material at pristine state and"HParte.d through rigid bars that are applied on the fr.ee sgrfaces of
threshold of failure is not t’he same the lattice and are free to translate along given directions. The

Research in the statistical physics models is not frequen ticg is rectangular and the macro-strain is hom_ogeneous. Irr_egu-
found in books and journals of engineering mechanics of contin ar Wigner—Seitz cells can be used to the approximate the grain of

ous medium. Weibull's publication in 1939 of the paper “A sta_uIIy dense polycrystalline ceramic on the microscale. To simulate
tistical theory of the strength of materia[32] shows that the the random heterogeneous geometry of real microstructure, the

threshold of failure scales with the size of the specimen. Thidllice must be irregular. -

engineering work provides the foundation of the “weakness” of, By a mechanical viewpoint, enherl finite elements.or r.no.lecular
material but was published, without any mention of the mean-fieﬂ}’.na[mcs gar: l:t))e”usetd lt)CIJ sc%lt\:e Isetrmg' netwgrlé, which is indeter-
theory of Landau in 1937. The other shortcoming of that genre H?'lna € 3.” Ig oba yts a f' I 3 ater {S qsel de_re. th
engineering literature that will benefit by considering mean-field n a dispiacement controfied monotonic loading, th€ macros-
theory is fatigue. Behaviors of small fatigue flasf the size fress versus macrostrain curve resembles a smooth parabola. On

from a fraction of millimeter to several millimeterare still called the microscale th? mpdel the sress versus strain curve Is saw-
anomalousWhat is “anomalous” is that the models of continuou§°°thed as shown in Fig. 3. The radial segments of the macrostress

medium from fracture mechanics are used in fatigue models, evérSUs macrostrain curve are linear eEstic;Thg macroparameter
though that material at microscale is heterogenef88 and Mmanifold for the radial segments arf{o;+ 607),Di, To}z + 5c,»
discontinuous. when the system elongation passes frgnto ¢;+¢;, . The ver-

Mean-field theory, at infinite and finite dimensiolisee in
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tical segments, in Fig. 3, are nonstationary and nonequilibrated. Ind. Macroparameters are fractal and/or multifractal.
fact the “vertical” segments are not vertical at all. e. The failure is of the avalanche cldgd,43.

In reality, microcracks formation and growth are dynamic prq, en the macrotraction is applied to the specimen, failure hap-
cesses during which shock waves attenuate, interact and refl (9 PP P  1ailu p
ens at the peak of the macrostress versus macrostrain curve, i.e.,

within the random material. Damping properties of materials d Je softening phase does not exist. Then. the process has only one
pend on the chemical composition, constitution, homogeneity e%% 9p ' ; P y

fects, damage, aging, solid-state transformations, state of inter h?se transition namely the failure wheer=0. This phase is

stress and stress imposed by service conditiamsuding envi- identical to the first phase transition when the conjugate macro-
>S 1IMP y 9 displacement is applied. For this case there are two phases, i.e.,
ronmental conditions[35] that are not known.

before and after the peak. Thus, it is sufficient to study the process
5.2 Phase Transitions. The mechanisms of damage evoluwhen the macrodisplacement is applied. Finally, when the trac-

tion on the microscale are the nucleation, propagation, and clii§n, o, is applied to the specimen, the failure at the peak is a

tering of microcracks. As the density of microcracks evolves, tH#st-order phase transitidifrig. 2(b)]. When the displacement,

effective macrostiffness declines. The rate of damage that evoli@gontrolled, the failure is a second-order phase transfti6g.

depends on the primary mechanism of the damage. If the nucké&)] and happens at=0.

ation is the primary mechanism of damage evolution, the rate of5.4 Phase Transition. “Phase transition between two equi-

Qb5rium phases of matter whose signature is a singularity or dis-

tiffness are slower. The rate of macrostiffness decline and dam tinuity in some observable quantity” is the phase transition

evolution is higher when the microcracks clustering is the primapﬂ_ By considering a specimen loaded under uniaxial tension, the

mechanism. : .
. . . order parameter i011) can be used:
A faster decline of the macrostiffness becomes obvious when P D

the process is close to the critical state. Thus, by measuring the

rate of the effective macrostiffness, at “pristine” and current ()=

states, one can estimate the residual strength and durability of the

specimen. Since the damage grows as a stochastic process and the

material is randomly heterogeneous on the microscale, the critiddlis order parameter denotes “a fluctuating variable the average

state is a random variable. Consequently, residual strength atadue of which provides a signature of the order or broken sym-

durability are also random variables. Accordingly, statistical danfetry in the system{20].

age mechanics provide the only possible fundamental models offhe Delaunay triangular lattice, used in this work, may furnish

the damage tolerance principles of airplane de§&j. good data when the process approaches failure, but not as good as

. one would desire to predict reliably the failure. This is due to the

5.3 Phases. There are two phases during the process ghany approximations in the specific lattice model. Far from the

damage accumulation from its pristine state to the failure of thgftening phase, the correlation length approaches the specimen

specimen. The two phases, hardening and softening, are thelé?fgth, i.e. coherence lengt{D)—L#, and in reality the largest

fleﬁtlogs O.f thghpnm.ary mechanism of damage growth. cluster also grows through the grains. During the same part of the
ardening Fhase. process, the damage increases by avalanches. The macrocrack in-

a. Damage density develops by microcracks nucleation at tHe&ases by Iarger_ numbers of the microqracks and the affinities of
weak links or spots. It is unlikely that the distance betweetiie microcracks in the rest of the specimen stagnate or become
two or more microcracks is small. The amplifying interaclesser(shielding and crack closure _
tion effect of microcracks is insignificant. At the threshold of failure, the order parametér-D(¢)) de-

b. The specimen is statistically homogeneous and the damagmds on the damage tolerance of the material, the process dy-
nucleation microcracks is the paramount mechanism of damamics, the damping properties of the matter and the temperature.
age rate increase. Close to the peak of the macrostress vemslighese parameters should be embedded in the lattice model.
macrostrain, the propagation and clustering mechanisms liéence, the lattice in this work cannot simulate correctly the part
come dominant. The result is the large reduction of the e®f the process when the specimen secant effective stiffness is
fective stiffness of the system. close to zeroK* ~0, and the order paramet&p)~0. In Fig. Aa)

c. The specimen is statistically homogeneous only in part gfe order parameter curve terminates with dashed lines.
the hardening phases. This part of the hardening phases m@nnier considered a similar problem, 23], on two distinct
be small. But, when the macrotraction vector is applied, th@agnetizations.
failure threshold depends on the rate of reduction of the

effective system stiffness in that part of the macrostress ver-2:> Hardening Phase: Macro Parameters. The goal of
Sus macrostrain curve. statistical mechanics is to estimate macroparameters, required in

engineering, from microscopic descriptions of a system. Scaling

Thus, “micromechanics” models, Section 3.2 in this paper, mayoncepts provide the tool for the goal. From Weibull to this day
provide good data in the hardening phase. However this modests determined that “power laws are fundamental constants, ro-
cannot furnish any estimate of specimen failure. bust to the details of the underlying interaction$8?2]. In this

During the hardening phase, including the peak, the form of theork a two-dimensional triangular lattice substitutes a damage
macrostress versus macrostrain curve does not depend on whetihlerant specimen, i.e., a ceramic in which the microcracks nucle-
the macrotraction or the conjugate macrodisplacement is appliet® and propagate along the grain-boundaries.
to the specimen. The experimental data indicate that macroparamThe simulation data provide the macro-behavior of four lattices
eters are fractals at the failufé,37—43. of sizeL={23,47,95,191L From[15], the damage response of the

Softening Phase: lattice is of the form

:<1—5> or (¢)=eP (19)

M| m

0

a. The damage process in softening phase depends on the large
cluster, formed at the peak of the macrostress versus mac-
rostrain curve, of the microcracks of correlation length,

¢(D), that spans the specimen. This cluster is known 441€réD andD is the damage parameters. Thus, the relabon
macrocrack or faulf40,42. versuse fully describes the stochastic part of process. In this

b. Correlation length is a fractal and/or multifractal. process the order parametét,—D(z)), depends on the scaling
c. The specimen is random heterogeneous. function, D(e). The damage parameter for the lattice is

o=E%1-D)z or o=E% P& (20)
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Fig. 4 The o versus &£ and D versus & curves from simulation data

the data better at the origin. In lieu of the linearity of Figb)5in

D~—, (21) the beginning,3=1 andy=«a. Thus, there is only one degree of
L freedom,a, and(22) can be rewritten as
wheren is the number of broken bonds from simulations. The . P
macrostress versus macrostrain curvesersuse, and the dam- D(e,L)= |_01f<_> (23)
age versus macrostrain curve®,versuses are shown in Fig. 4 “

(curves in Fig. 4 are mean curves of a sample of 10 replicates R{q ata of the hardening phase, shown in Fig. 5 by dashed lines,
lattice siz. The collapse of simulation data in Figth is ob-  5jansed fora=—0.035 and the peak points clustered around
. . . _ 71 71 72 _ —_—

Lalnked V\éhergj relatlﬁmzfl) IS D_et(kze . 9 f nL I. The pun?berdof (e/L*,D/L*"),=(0.0021,0.5) remarkably well for all lattice sizes.
pro gn 03 ﬁatt € lorce pedt,, IS a rg(;}tallqugntlrt]ml realy This is important in deducing the macroparameter and the mac-
in [43]) and the curveN,, versusL is a straight line in the 109-10g ress versus macrostrain relations from pristine state to failure.
plot. The exponent-1.6 of the exponential in the latter expressioRrye gcaling(23) is feasible because the damage at the peak is a
_eql'J:gls E;he |nterceptdof Suﬁh str|a|ght “(][F?t not show?:. Markirsf ractal quantity that plays the role of the saturation threshold in
InFg. 4 corresgor_lrhtolt eva uefs o hamage at the pg% 0 ]. In the beginning the simulation data are close to a straight
curvesg versuse. The location of such peak points is different,e ¢ geviate progressively at the peak. The simple analytical

for each lattice.
. . ) . . formula for the damage parameter,
In this paper, the Family—Vicsek scaling relations[28] are gep
reinterpreted to make the damage curves collapse on a single _ g2
curve throughout the hardening regime. The relations are D=as+bF, (24)
S(S_,L): Lﬂf(i) and y= 2 (22) captures the data simulation of the hardening pliastd line in
L B Fig. 5. The coefficientsa and b are deduced from simulations.

. . — The parameter, is the nucleation damage rafeig. 5, dashed—
where a, v, B are, respectively, the scaling exponentdf the yqteq fing and b governs the rate of data deviation from the
scaling exponent of and the exponent of the power law that fitSyyjght line, i.e., the effect of the interaction of microcracks at the
threshold of the transition. For the fitted model in Fig. 6, a set of
parameters is a=dD/ds[o=275 and b=L%/2e,(dD/Je],

— 9D/ de|o) = —14,862.

( The selection of the order parameter is correct if the macrodam-
05l ] age parameteb) (&) versuse, collapses on a single curve for all
sample averages of specimen sizes. This test of the selection of
0k the order paramete¢1—D), was passed as shown in Fig. 5.
_ / 5.6 Softening Phase: Macro Parameters. The requirement
_Du 03 . of a non-negative entropy production rate, as the temperature is
L e positive, is
,'/V
0.2t . % peak 24 —
o peak 4 > (Gi—R)ti=Al=0. (25)
o peak 96 i
01l X peak 182 _
— model In (25 A=%,(G;—R)) is the affinity defined earlier that deter-
mines the damage or thermodynamic force that drive the evolu-
% 05 T 15 2 25 tion (link rupture. For an increment of applied displacemev,
1 x10° the increment of length ia¢. As the affinity of a link reaches
zero, the link breaks. The smallest increment of damage is when
Fig. 5 Simulation data in the hardening phase after the scaling only one link breaks. The force that the broken link was carrying
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501 tribution, P(M), of the masses the sole exponenis not suffi-
cient. In this case the quantitiéé«) and 7(q) “characterize the
distributing heterogeneity’s of the measures known as multifractal
measures’|47].

The entropy production rate in a heterogene@rsdiscontinu-

ous system is

o 20} =
~ /q 1 1 R
g 1o A=32 (G-R)G=32 Ali=3 AL (26)

— q =1

401

\\\

/
— g =0 _ -
Or q=1 In relation (26) A total affinity and ¢ is the total rate of the
T A=
‘\.\‘\" q=2 damage parameter
10k \‘ + g =3
T - S
20 . q=5 , A= A=, (Gi—R) and (= ¢. (27)
10' 10° 10° ! ! !

log, L . . .
%10 Since the absolute temperaturg, is non-negative the entropy

production rate will also be non-negative.

The statistical moments of the distribution of link affinities in
the asymptotic neighborhood of the phase transition can be writ-
ten in the form[11]

is distributed to the other links such that the complementary work 1
and the minimum value of the complementary energy are satis- Mk(L)=2 Ajkn(Aj ,L)EJ Akn(Aj ,L)dA. (28)
fied. The force of the dismembered link is distributed to the links ] 0
of negative affinity, in accordance with equilibrium and compat- o . - . - .
ibility conditions. At that point, defined by the applied macrodisii-n (28) A, is the normalized affinity carried by théh link, while

. . n(A;,L) is the number of links conducting an affinity;( —o°
placemente,, the survival links carry the force of the broken " : . : . = L
links and their affinities is 4+ A.4)<0. Thus, on microscale i 0) in lattice of sizeL. Using the relation in28) the prob-

lem of the determination of the distribution of affinity transmitted
tmhz)r(%fleAZh)li (t)W(F), rgégggifg%;ﬂ?;égg eAhéir)dzr?i ngn;;jhézs) e 2y individual links of a lattice is reduced to the determination of a
the dalmage Igrovv.s by one link at time. Procé&ysdominates the et of expon(_entz(k). These equnents must be S|ze-|ndeE(_endent
softening phase as the damage grows by two or more link at ﬂ‘?ebe uselflufl ml?rlﬁzseiofor glnkgh'e: prid_uE";(AkaLf).At IS
time. The number of links at damage grows is the order of burst&!Y Smail for bothA—=—e and.A—0. For.A=—c= and niniten
Hemmer and Hansen i#4] ascertained that this evolution of |s.pr0(.1uct is obviously qual to zero. 'V'Ofe."."e“ the fraction of
the process involves a sequence of burstealanches during Ccutting linksn(A—0L), which carry the affinities close to zero,
which a group of links fails in the simulation. They derived théS @ mlan(scuIe part Of_ the tOt"?‘I affinity. Thus, th_e_ product
analytical expression for the distribution law for bursts and alggAk*L)A peaks at an intermediate value of the affinity of

Fig. 6 Multifractal distribution of the gth moments of the mi-
croaffinity distribution

determined that the distribution of numbers of broken links durinig® Normalized affinityi. Al peaks become sharper with the in-
the simulation is a fractal. rease of lattice size. Assuming that the peak is very steep, the

At the threshold of failure, one may conclude that small nunfUm in(28) can be approximated by a singidgominani term as

bers of links at the tip of the largest cluster carry the largest force. My ~n( A L) A (29)
However, the material of the cluster tip is heterogeneous. Gener- k ke k-
ally, the macroenergy release ra®, drives the damage processyathematically, the expressid@9) can also be interpreted as an
and the material resistanc®, determines the geometry of theestimate of the integral equation i28) derived by using the
clusters. The microaffinity intrinsically accounts for this differmethod of steepest descent the saddle point The approxima-
ence by definition25) and has a strong physical significance. Ifjon (29) is consistent with the conjecture that each statistical mo-
the large microaffinitiesA= O, is concentrated at tip of the larg- ment of the current distribution in the lattice is supported by a
est cluster similar to the “Barenblatt strig45]. The affinities of gifferent fractal subset of the backbone. The affinity, at which

the links in the “singularity dominated zond46] are large but the integrand of28) peaks, is determined in a traditional way by
not as large as those in the “Barenblatt strip.” Therefore, thgetting to zero its first derivative.

distribution of links affinities is a multifractal, because the on gmploying the stratagem if#3] for the currents in the electri-
position in space and Ehelr strength of “Barenbla_tt strip,” “singug) network, assume that local affinitied, scale asd«L?, and
larity dominated zone” and other zones, which is fractals. Thugyat their support is a fractal object, as in the “Barenblatt” strip, of

bases of the softening process are the two discontinuous fiel ; f ;
namely the distributions of microtexture of the specimen and tggptggfrllgnrf)’hg(sé)izL  Thus, the momenf29) of orderg i the

distribution of link affinities.
) These fields are in accord with the multifractal measures where M ()L Le9=LX® when y(q)=aq+f. (30)
knowledge of the fractal dimension of a set, is insufficient to

characterize its geometry, and, all the more so, any physical pl&nce the functiorny(q) is not affine ine Hansen and Roux as-
nomenon occurring on this setGouyet[47]). Multifractal analy- sumed “that instead of a single set of such currents, there exist a
sis is the proper tool when links breakdown into a “collection ofarge number of such values af and for each of them a corre-

sets having different singularitieHansen and Roup43]). spondingf(«) dimension.” Thereupon, the functiop(q) is
Following Gouyef{47] the “multifractal character is connected

with the heterogeneous nature of the distribution.” The scaling x(@)=ma{aq+f(a)]. (31)

law of (M(R)), where mass is\I(R) and R is the radius of @

sphere centered on the fractabat is R*. If all moments modu-  Thys, the exponent can be computed for the selected function

late like as{ M(R)%)(M(R))9, for all g, the fractal distribution (). Using the extremum condition, the function(®L) leads to
is characterization by the sole exponentand the fractal distri-

bution is homogeneous. For heterogeneous fractals of broad dis- f'(a)=—q. (32)
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Fig. 7 Scaling procedure of the data in the softening regime

The condition(32) designates the value af that contributes
most importantly to the scaling of tlgth moment. With this value
of a=a(q) the function in(31) is

x(@)=qa(q)+f(a(q)). (33)
The derivative ofy function with respects tq is
dx(a) da(q)
K @O @] g @4
From (32), a(q) andf(q) are
d
a@=-L and f(e@)=x@-ga@. @9

Gouyet derived the same expressi@) for multinomial fractal
measures. Hence, knowing the functipfy) in (30) is equivalent
to the knowledge of35). By virtue of (30), since theqth moments

plot on straight lines in Fig. 6, the distribution of microaffinities is

multifractal.

with respect to a new frame of reference. In Figa)7the origin of
the new coordinates is the poin?[(,Dp):(0.00Zl,O.S), where
the peak points collapsed in Fig. 5.

There are some similarities between the crystal-growth phe-
nomena i 28] and the propagation/clustering mechanisms in the
softening regime. Hence, a scaling similar(&8) is used. Since
the new set of datd) versuse,, does not have a large curvature
at the origin,8=1 is assumed and the new scaling relation is

— &,
Ds<ss,L>—LZg(L—j). (37)

The result of(37) is shown in Fig. T), with z=—0.52. The data
collapse is evident and provides a useful piece of information in
deducing the macroparameters and the threshold of failure. The
analytical function for the damage parameter

D=LDy+a;L % +biLoLH(1—e /L) (38)

Relations(35) are similar to a Legendre transform. The param?esc"ibes very well the softening data as shown in Fig. 8. The

eterq allows selecting subsets, of the setE, i.e., E=U ,E,.
The two functionsf(a) and x(q) are related by the Legendre
transform in(33). The properties of the multifractal spectrum
f(a), are:

1. The determination of the scaling exponent of the moment
orderq takes one single set of links frof80) and is tangent
to the spectrum that has slopeq [43].

the suppor{47]. From (33) the exponenty is maximum.
tion f=f(«a) to a plane curve to the equatian= 7(q), of

the same curve, by eliminatiam betweenq=df/da and 7
=f—qa [47].

. The maximum of («) corresponds to a uniform measure on

. The Legendre transform allows one to pass from the equ:

hree parametera,,b,,c, are determined from simulations but

(o]

D,
i

The scaling(23) takes care only of the first part of the process.
In the softening regime the damage curves are, indeed, still sce
tered[Fig. 7(a)]. It is possible to scale the data also in the soften-
ing phase because of the existence of fractal sets. The new scali
is applied only to the data of the softening regime and new coot

dinates,D, ande, are defined as

sode_ e % 0.02 0.04 0.06 0.08
L« L« 36 EL
D. AD_D 05 > v
s @ e Fig. 8 Data in the softening regime after scaling
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they are not independent. After the scalii3g), the softening data racks nucleate, old microcracks grow and/or crystal deforms and

maintain C' continuity with the hardening data froif23) [Fig. rotates, and the set of number of degrees of freedom is very large.

7(b)]. This provides the first condition The solution of the large number of degrees of freedom problem
— asks for statistical physics and fractal geometry.

a tb.c :% (39) Durability and residual strength are two parameters, which de-
1R e fine the microcracks order and density at the specimen passage to
‘p the failure. The goal of the method in this paper, composed by
At the end of the transition, characterized by a continuous slopelid mechanics, statistical physics and thermodynamics, is to es-
change, the softening data collapse on a straight line of sigpetimate the durability and residual strength of systems from air-
:aa/ag[fa“ure_ Hence, givena, and (39), only one degree of Planes to semiconductors. This method establishes the connection

freedom is left in(38). The pair{b;,c,} is chosen to optimize the be.tween macroparameters and the random processes on all scale
data fit. (A nonlinear regression analysis is needed to this pu#sing the renormalization group transformation. In this work mac-
pose) When the transition is complete at the saturation, the thif@Parameters are deduced from the microcracks and random het-
term in(39) tends to the constabt; . For the data in Fig. @), the €rogeneity of the material.
values area; =15.80,b;=2.2, andc,=100.
The usage of analytical expressié®4) and (39) allows the
estimates of the damage parameter in the entire range of the dAMgknowledgments
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Thermoelastic Fields in Boundary
Layers of Isotropic Laminates

An approximate approach to the calculation of displacements, strains, and stresses near
edges and corners in symmetric rectangular layered plates of dissimilar isotropic mate-
rials under thermal load is presented. In the thickness direction the plate is discretized
into an arbitrary number of sublayers/mathematical layers. A layerwise linear displace-
ment field is formulated such that the terms according to classical laminate plate theory
Wilfried Becker are upgrade_d with upknown in-plane_functions and a linear interpola_ltion scheme through
the layer thickness in order to describe edge and corner perturbations. By virtue of the
principle of minimum potential energy the governing coupled Etllagrange differential
equations are derived, which in the case of free-edge effects allow a closed-form solution
for the unknown inplane functions. Free-corner effects are investigated by combining the
displacement formulations of the two interacting free-edge effects. Hence, all state vari-
ables in the plate are obtained in a closed-form manner. Boundary conditions of traction
free plate edges are satisfied in an integral sense. The present methodology is easily
applied and requires only reasonable computational experj§#9]: 10.1115/1.1827247
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1 Introduction usually require high computational effort, hence approximate ana-

The application of layered materials in the field of structura{g/tiC methods which capture free-edge and free-corner effects ad-
PP Y uately are of particular interest and practical importance, espe-

mechanics requires adequate means of calculation for all sta |ly since until today there is no exact elasticity solution of the
variables, i.e., displacements, strains, and stresses. The most Qf?gé'-edge problem available. In 1967, Haya§] published an
glt_)g_rar;aelgsg tcﬁl])'S\nghcégﬁsgcealctﬁgéﬁée d Fz)alstgn-rgise'ri%n pproximate closed-form analytical study concerning interlaminar
Kirchﬁoff’s,plz.a?el theory. CLPT is widely used but fails to predic hear stress concentrations in crossply laminates. Consideration of
; R bquilibrium requirements between the anisotropic laminate layers

accurate results in the vicinity c_)f edg_es and corners of Iayerf‘égq to simple trigonometric hyperbolic functions for the interlami-
structures where due to the discontinuous change of matefigl oo stress distributions. To the best of the authors’ knowl-
properties in the _Iayer |nterfa_ces localized three-dimensional ag ge, Hayashi's work is an early publication available on free-
singular interlaminar stress fields oco{so-called free-edge ef- edge stress concentration phenomena. A quite similar early study
fects[2—-49 and free-comer effectt50-56) that may lead 10 pageq on simple equilibrium formulations was published by
interlaminar failure modes like, e.g., delaminations. Fr_ee-edge_ﬁppO/EvensemQ. Pagand17] used a single layer theory em-
fects in composite laminates have a good tradlt_lon in scienti oying the kinematic assumptions of Mindlin's plate theory with
research throughout more than 30 years. Numerical, closed-fofm"5qditional linear thickness term and calculated interiaminar
and experimental approaches employing a broad variety of meffymga| stresses in the symmetry plane of crossply laminates.
odologies are reported. In the following we give a short selectiyges/paganf18] derived an approximate elasticity solution for
review concerning scientific developments on free-edge effectsang|e_p|y laminates under uniaxial extension by expanding the

Early numerical works employing the finite difference m?thogisplacements as Fourier-series. Tabg] and Tang/Lewvy20] as
were reported by Pipes/Pagaf@) and Altus et al[3], wherein | a5 Hsu/Herakovicti21] employed perturbation techniques.
the work[2] must be especially appreciated as a pioneering copaganc[22,23 proposed a variational model based on inplane
tribution which triggered countless other investigations in theress assumptions for the stress analysis in arbitrary composite
years to come: Note, that the free-edge effect is often referredfpninates and outlined a specialization of his general theory to the
as “Pipes—Pagano-problem.” Standard displacement based firiige-edge problem. Kassapoglou/Lag42é] introduced the so-
element methods were employed by Wang/CrosstddnRaju/  called force balance method which is based on assumptions for
Crews[5], Whitcomb et al.[6], or Wu [7]. Due to the singular the inplane stresses in the form of exponential inplane terms and
stress concentrations at the free-edge interface point, mesh refiy@ynomials through the thickness, with a subsequent application
ments around the singularity center were applied. Especially atthe principle of minimum complementary energy. It is worth
justed element formulations were employed by, e.g., Spilker/Ch@iting that due to its simplicity yet astonishing accuracy this
[8], Wang/Yuan[9], Robbins/Reddy10], Gaudenzi et al11], or method has been adapted and refined by a good number of au-
Mannini/Gaudenzj12]. Other numerical approaches like, e.g., thénors. A single layer theory approach with polynomial thickness
boundary element method or the scaled boundary finite eleme&tms was utilized by Krishna Murty/Hari Kumd®@5]. Rose/
method for the investigation of free-edge stress concentrationgrakovich[26] presented a refined version of the force balance
were also reportedDavi [13], Lindemann/Becke{14]). Purely method upgraded by additional stress functions which explicitly
numerical investigations of singular stress concentration problefia&e into account the mismatches of the material properties of
- adjacent dissimilar laminate layers. Y[27] investigated lami-

YTo whom correspondence should be addressed. nates with arbitrary layup under uniaxial extension, bending, and

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF ; el ; AL
MECHANICAL ENGINEERSfor publication in the @URNAL OF APPLIED MECHAN- torsion and employed Lekhnitskii's stress functions and the prin

ICS. Manuscript received by the Applied Mechanics Division, November 2, 200§ip|e of minimum Cpmplementary pOtentiaI for the qescription of
final revision, June 17, 2004. Associate Editor: D. A. Kouris. Discussion on the padéee-edge stress fields. Beckf28,29 employed single layer
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Appliﬂgher order disp|acement based theories for Symmetric Crossp|y

Mechanics, Department of Mechanical and Environmental Engineering, Univers _ ; ; :
of California - Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep%giad angle pIy layUpS and formulated trigonometric thickness

until four months after final publication in the paper itself in the ASMEX@NAL oF  Warping terms especially adapted to the considered free-edge situ-
APPLIED MECHANICS. ations. Zhu/Lam30] used a Rayleigh—Ritz formulation in con-

86 / Vol. 72, JANUARY 2005 Copyright © 2005 by ASME Transactions of the ASME



junction with a layerwise displacement field in the form of prodries is to simplify the three-dimensional theory of elasticity to a
ucts of in-plane and thickness terms. Tahani/No$&¥] used two-dimensional problem by postulating a displacement field in
layerwise linear displacement formulations and a variational prithe form of a priori assumed displacement shapes with respect to
ciple for free-edge effects in pure crossply layups. The asymptottee thickness coordinate whereas the in-plane displacement func-
analysis of the state variables in the vicinity of singular free-edd®mns remain unknown and are the objectives of the actual com-
interface points has also been the topic of thorough investigatiomstations. The governing equations are then usually derived by
and is relevant until this very day. A selection of works is givemapplication of variational principles. The advantage of variation-
with, e.g., Ting/Chou32], Wang/Choi[33,34], Zwiers et al[35], ally consistent theories is that such formulations naturally lead to
Delale [36], Bar-Yoseph/Avrashi37], Ding/Kumosa[38], Gu/ adequate finite element formulations in a straightforward way for
Belytschko[39], Kim/Im [40], Chaudhuri/Xie[41] or Chue/Liu numerical evaluations of the given theory. This is, however, not
[42]. Finally, experimental studies on free-edge effects are alsotbi objective of the present paper. The displacement formulations
interest. Let us cite the works of, e.g., Pipes/Da¥&], Whitney/ require at least &continuity. The application of layerwise theo-
Browning [44], Herakovich et al[45], or Herakovich[46,47. ries has a good tradition for more than the last three decades as the
The interested reader may also refer to exhaustive review papgtsrks of Whitney{62], Mau[63], Srinivas[64], and Sun/Whitney
available on free-edge stress concentration problems, see, §&5] show. A frequent employment of layerwise theories for lami-
Herakovich[46], Kant/Swaminathaifi48], or the present authors nated structures can be detected since the 1980s. Selecting some
[49]. publications found in the open literature, it is noted that the em-

Compared to the amount of available investigations on freptoyed layerwise theories do not only differ with respect to the
edge effects, the number of works that are concerned with fragtilized displacement formulations but can also be subdivided ac-
corner effects is considerably lower. Becker et[&D] presented cording to the applied requirements of continuity for the inter-
an expanded version of the force-balance method for the invedéiminar stresses in the layer interfaces, the neglect or consider-
gation of rectangular corners in crossply plates under uniforation of interlaminar normal stresses and the treatment of the
thermal load. Dimitrov et al.51,52 investigated the orders of the transverse displacements. Since the number of publications con-
occurring stress singularities for a good number of free-corneerning layerwise higher order theories for laminated structures is
geometries and laminate layups by employing a variational fampressingly high, the following overview is a selective one. In
mulation with a subsequent finite element boundary discretizatidt®87, Reddy{66] introduced a general higher order theory for
A similar numerical approach was presented by Labossiere/Duplane layered structures allowing for arbitrary approximations
[53] for the three-dimensional asymptotic study of free corners imith respect to the thickness direction. From the general expres-
bimaterial joints consisting of isotropic materials. Mittelstedtsions included therein, many of the known higher order theories
Becker[54] considered crossply laminates under thermal load amdn be derived as special cases, which is also true for the present
presented a simple higher order displacement approach based amethod. Theories which apply linear thickness terms for the dis-
single layer theory employing trigonometric thickness warpinglacements and which are of special interest within the scope of
terms. In 2003 and 2004, the same auth&i5,56 expanded the the present contribution were applied by a good number of re-
method presented if50] on angle-ply laminates and arbitrarysearchers. Di Sciuvi@7] investigated bending, buckling, and free
nonorthotropic layups. vibration of layered plates. Murakarf68] assumed layerwise lin-

In all it can be concluded that there is an obvious lack dcfar displacement shapes in conjunction with a global approach
knowledge about what exactly happens in the vicinity of freapplying Mindlin kinematics. The shear stresses were assumed as
laminate corners. Hence, in the present paper we develop a @jgadratic functions. The governing equations were derived by ap-
placement based approach for free-corner effects in thermafiijcation of Reissner’s variational functional. Reddy/Sa\&8]
loaded symmetric layered plates consisting of isotropic layeligvestigated the buckling and postbuckling behavior of layered
The plate is supposed to include rectangular corners and is sulmjitindrical shells. In 1993, Nosier et dl70] studied the dynamic
vided into an arbitrary number of mathematical layers through thehavior of crossply laminates. Wisniewski/Schrefiét] used a
thickness. The applied layerwise displacement formulation colayerwise linear approach in conjunction with Tschebyschew and
sists of CLPT terms combined with special perturbation terms afdylor polynomials of arbitrary order for the description of the
employs a linear thickness interpolation scheme between the imechanical behavior of composite beams. Reddy/Stajigk
terfaces of the mathematical layers in which unknown displacstudied the buckling behavior of layered cylindrical shells with
ment functions with respect to the inplane coordinates are definéliscrete stiffeners. Cho/Parmerf&s,74 used a combination of a
As the thickness distribution of the displacements is assumedjlabal cubic displacement variation through the laminate thick-
priori, the actual three-dimensional problem is reduced to a twoess and a layerwise linear approach for the investigation of sym-
dimensional one. The unknown interface in-plane functions ameetric und unsymmetric lamination schemes. In 1994, [Fsg
determined by employing the principle of minimum potential enapplied a layerwise linear approach in conjunction with a global
ergy. The resultant governing Euler-Lagrange differential equaubic equivalent single layer formulation. Liu et dlz6] em-
tions allow a closed-form solution since due to some simplifyingloyed layerwise linear displacement shapes in conjunction with
assumptions we are able to uncouple the problem with respectgendre polynomials. Chattopadhyay/@Giir] investigated the
the two inplane coordinates. The boundary conditions of tractidiuckling behavior of cylindrical shells with delaminations. Kam/
free plate edges are fulfilled in an average sense by utilizing dan[78] numerically investigated the first ply failure of laminates
integral formulation. The method requires only reasonable comwith arbitrary layup by developing an eight noded finite element.
putational resources, can be run on every standard personal c@iRothert[79] in 1995 applied a global cubic displacement varia-
puter employing standard programming languages and enablegian through the entire laminate thickness in conjunction with a
important insight into the underlying mechanics of free-corndinear layerwise displacement formulation and investigated cylin-
effects in isotropic laminates which to the best of the authordtical shells with arbitrary layups. Khatri/Asnaf80] conducted
knowledge has not been done before. dynamic analyses of conical crossply shells with elastic and vis-

The use of displacement based layerwise theories for the coooelastic layers. Ossadzow et E81] employed layerwise linear
putation of displacements and stresses in layered structures fatigplacement shapes with global trigonometric functions. In 1996,
broad variety of analysis purposes has been reported in a gddéel/Zhang 82] investigated the bending of simply supported rect-
number of publications, whereas these higher order theories haveyular unsymmetric angle-ply plates. Kassegne/R¢&8y ap-
been mostly applied to problems of bending, free vibration, qlied a linear layerwise approach for the buckling and vibration
buckling of layered plates or shells. Excellent review works am@nalysis of discretely stiffened cylindrical shells. For the investi-
available[57-61]. In general, the strategy of such layerwise theagation of laminated plates under thermal and/or mechanical load,
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Detail 1

symmetry

mathematical
interfaces

Fig. 1 Exemplary layered plate, discretization scheme, nomenclature

Ali et al. [84] used a global cubic and layerwise linear displace- Ny;
ment approach for the in-plane displacements whereas the trans- N,
verse displacement was assumed to be of a global parabolic form. NI [A BJ/g0 N
In 2000, Cho/Averill[85] used linear layerwise approaches for ( - ): - - }(go)resp 12
arbitrary lamination schemes and developed a corresponding finite M/ B Dk My
element formulation. M2,

A further study of the literature on layerwise higher order theo- M 1o
ries shows that a good number of the applied theories neglects the - -
dependence of the transverse displacement component on the A Az A Bu Bz Bis| o
thickness coordinate. Furthermore, in some of the investigated A, Ay Ax B, By Bog (1)1

. . . . &

theories the interlaminar normal stress is also neglected. As long 22
as we consider problems like, e.g., the bending, vibration, or _ A Az Aes Bis Bz Bes Y12 1)
buckling of layered plates or shells, these might be adequate sim- “|By By, By Dy Dy Dyl «% ]
plifications. However, these typical assumptions are improper K
when stress concentration phenomena like free-edge and free- Biz By Bz D12 D2 Do %2
corner effects in composite laminates are to be considered. Hence, Bis Bss Bgs Dis Dss Dags K12

for the purposes of the present paper we must find a layer-
wise displacement formulation that involves a fully threes

dimensional displacement field and a fully engaged stress tenggre quantitiesN,; andM . (a,5=1,2) are normal/shear forces

yet which allows closed-form computations with reasonable effoid b(oendmg/tms.tmg moments per length unit. The quantitfes
and accuracy. and vyj, are the in-plane normal/shear strains. Plate curvatures/

torsions are denoted a8, and«%,. A superscripted “0” denotes

quantities according to CLPT. The componeAs,, B,,, and
2 Analysis Approach D, of the constitutive matrix in Eq(1) read (with o, p=1, 2,
and 6:
2.1 Prerequisites. Consider a rectangular layered plate
(Fig. 1) with total thicknesdd, in-plane dimensions|2 and 2,
and symmetric lamination scherpe,,m,, ... ,m,;,]s consisting A B D :J 1X+ . X2Tdx 2
of n physical isotropic plies with the materiais,, m,, ... My [Aop:Bop-Dogl dQOP[ X3 X1, @

under a uniform thermal load T. Let us subdivide each physical
layer into an arbitrary number of mathematical layers, resulting in . . . . .
an overall number ofi,. mathematical plies in the entire plate. Theor, n t(D)e Sﬂec'al n::ase of layerwise constant material properties
orthonormal reference axes, x,, x; are situated in the laminate With &m’=X39 = Xa(-1)

middle plang(which is also the plane of symmejrwith x5 being

the thickness direction. The mathematical laglerwith the thick- r=n 1 1
nessd®=xg(y— X1 is bounded by the lower interfac) [Aop:Bop:Dopl= >, Qgg[g<f>,§§g),§gg>} (3)
with the thickness coordinate;=x3(—1y and the upper interface r=1

(k+1) atxz=Xz( - The volume of the plate is denoted \dsthe

layer (k) has the volume/®). Herein, theQ() are the reduced stiffness components. They can
be derived from three-dimensional Hooke’s law by imposing a

T . I plane state of stress. The resultant layerwise CLPT normal and
2.2 Constitutive CLPT Plate Behavior. The constitutive (K

: _ 0 o(k M~k
law for a layered plate according to CLPT can be written as foshear stresses 2% and 09%” are calculated ag® —9( )(g°
lows [1]: +x36°— AT2X®), or:
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I Ql Q¥ Qi 0 0 Herein, 33" can be calculated from the assumption that the in-

& K
JRCTISN Q(k) Q(k) Q(k) Sél +x Kél te_rlamina_r nor_mal stress_gkg) va_nishes in the inner laminate re-
o 12 22 X2 22| 73| T2 gions which with three-dimensional Hooke’s law leads to:
k k k
712 QY Qi Qs Y12 K12 W
2v
k k k k
aff e = (VAT %) + a¥AT. (14)
—AT| aby | |, @) 1=v
a(lg 2.3 Linear Layerwise Displacement Approach. The

) ) ) ) ) physical layers of the plate are discretized imjo mathematical
where in the case of isotropic layer material the stiffnes3§$ pjies. Let us postulate a layerwise:-Continuous displacement
are vanishing. The stiffness@) are interrelated to the commonfield for each mathematical layék):
engineering constants—Young’s modul&", Poisson’s ratio

»®, and shear modulué®®¥—as: Ul =yl 4y (15a)
(K (0K K K K K
Q- ow-Y"E_ qk_g ol-gk ug?=ug"+uz"+uz? . (150)
@a” 2 1— k27 Tab T ‘
o (5) The layerwise termai® , ul® I andui*® are defined as:
The thermal forced\;, and momentd [, read: U0 = U0 () g (xg) + U D) i (x),  (169)
[N.M]= J ATQe{ 1x3]dxs. 6) Uz =Ug00) ¥4 (xa) + USSP (x) 95 (x3).  (160)
i

) ®_ ® _ ) _ ) ) Herein, we have introduced additional unknown displacement
SinceQ,d=0, ay,=a;”, andajz=0 hold for isotropic mate- functionsU{P (x,), UR(x,), UL (x,), UK(x,) in the kth inter-

. . T _ . . .
tr;?;»,a\ll\r/g ?gg-erro' The nonvanishing normal forces are ideng,_ .. andU$ D (x,), UK D(xp), UK D (x,), UL D(x,) in the

interface k+1). This formulation takes free-edge perturbations
r=n 140 of displacements and stresses into account and is supposed to
NI, =NT=ATY, dVE" " 5. (7) blend into CLPT in the inner laminate regions wher) —0 and
r=1 1= U¥—0 as well adJ§)—0 andU$Y—0 must hold. The interface
Furthermore, the matrix componerisg in Eq. (1) result in zero functions are interpolated by linear Lagrangian interpolation func-
values and the relatioA;,= A, holds. Due to the given symme- tions ¢{9(x3) and ¢59(x3):

try all momentsM lﬁ vanish and for the coupling terms in Ed)

k —
Bop=0 holds. Hence, no plate curvature§, or torsions 3, 94 (x9) = ¥ (Xa(9 = Xa), (173)
occur and Eq(1) finally reduces to: W .
P59 (x3) = M (X3—X3k-1)), (170)
NT)i A1 Arp 8(1)1 8
N7 A, Aylled) ®)  with 9= (xg09—Xage_1)) . Note, thaty{(xs) and y$(xs)

have the properties y{(xsu—1)=1, ¥{(x30)=0 and
P89 (Xak—1)) =0, ¥ (xa09) =1 which makes the displacement
=N EMM formulation -continuous across layer interfaces. Also note that
[A11,A]= 2 W[l,v(”]. (9) by virtue of the a priori assumed linear thickness shape of all three
r= 4 displacement components the actual three-dimensional problem is
reduced to a two-dimensional one, i.e., we have to solve
for 4(n_+1) unknown interface function&{9(x;), U¥(x,),
U (x1), andU$(x,). Assuming geometrical linearity, we may
o o N use the well-known kinematical relation between the displace-
Eaa™ € TALFAL (20)  ments and the components of the linearized strain tensor, i.e.,

normal and shear straing and»{ (i, j=1, 2, and 3

The remaining matrix componengs;; andA,, read:

The resultant inplane strains, are identical and can be calcu-
lated from Eq.(8) as:

The resultant in-plane normal stress<$" are also identical and

with Eq. (4) result as: el=ul =l +UX P+ Ui Vgl (189)
(k)
k) _ (k) _0O(k k k k k+1 k+1 k
o0 = (%= aMAT). (11) 8%3)*"'(3,%*835 )"'(U(31)"‘ng))‘//(1,%,'*‘(Ug11+ U’ ))l/f(z,%,
1— 0 (18n)
in- (k) i ituati k k k K) /(K k K k k
No in-plane shear stresses;” occur in the present situation. The YN =uf) +ukl=UuR R+ UV ug) g
layerwise inplane CLPT displacements can be calculated by inte-
gration of the inplane strain®: +UST Dyl (18c)
X K)o (k k) —
u000 J £00%,, . (12) Y =ug+ufy=o. (1&d)
0

. A subscripted index behind a comma denotes a derivative with
The transverse displacemarff® results from layerwise integra- respect tak; , i.e., (...);=d/dx;. Note that in the present situa-

tion of the transverse normal strai$ : tion no inplane shear straing) occur. Considering physical lin-
%5 earity, generalized Hooke’s law applies which for a thermoelastic
uQk = J 20, (13) material in thekth layer readsr®=C®(®—a{YAT) in a con-
0 tracted vector-matrix notation, or:
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(k) 7

M~k k
0 ¥ ¢ c® o o o0]_ L
11 K K K 11
o) cff ¢ c 0 0 0 e
k k k
o) _ cly ¢ cfy o 0 0 e
o 0o 0 0 c¥ o0 o Y59
(k) (k)
‘7(13) 0 0 0 0 c¥ o 73%
o L\
v 0O 0 0 0 o0 c¥ ©
agk)AT
afk) AT
(k)
a; AT
19
0 (19)
0
0

The components of the symmetric stiffness ma@% can be

expressed in terms of the engineering constants in the isotro

case as:
TN
cf=cly=clg=cp=— L IE o
(1420 (1-2p1)
WE®
v"WE
(0= k)= o) — (k) —
Ci2=C13=C3=C; (1+ 1) (1— 21" (200)
K) _ ~(K) _ A(K) _ ~(K) _ k
c)= e =l = 0 = G ¥, (200)

Using Eq.(18), the stress field in thkth layer reads with Eq$19)
and (20):

K Ky (k) (k K+1) (K k) (k) (k k+1) (K
o U UL )+ U+ U D)
K K Ky (K k+1 K+1)y (K o(k
+ch )[(Ugl)Jrng))l/f(l,%*(U(sf U ))1/’(2,%]+0'1(1):
(219)
K Ky (k) (k K+1) (K k) (k) (k K+1) (K
o =cHUFIA + ULV ) + e (UG + UGS V)

o q 1k Ky (K k+1 K1)y (K o(k
+ e L(UE)+US elfo+ (U + USs ) 3]+ 09,

(21b)
k k k k k k k k k k k
A= UL+ UL Y ) + U+ U )
k k k k k k k
FEIT(UY+ U p - (U + U g, @1

) ()1 100 K k+1) (K K ik k+1) (K
g =g (UYL + UL P+ UG i+ USs5" v ),
(21d)
K () g 10K (K k+1) (k Kk k+1) (k
a'g =g (UL P+ UV g%+ UG) i + U v ))(, )
21e

r=n_ X3(1)
n=3 [ [ [ o Ul ol Us. Ul U= vin
r= A" X3(r-1)

Note that the variational statement E83), respectively, Eq(25)

o\l =0.

(21f)

Note that while the resultant transverse straif$, y%) , andy{%

are discontinuous across layer interfaces, there is the theoretical
possibility for the interlaminar stresse$’ of becoming at least
approximately continuous and thus fulfilling equilibrium also at
the layer interfaces with an increasing degree of refinement of the
computational model. This will be the subject of a convergence
study later on.

2.4 Variational Statement, Decomposition of the Problem.
Due to the chosen form of the displacement approach the three-
dimensional conditions of equilibrium with neglected volume
forces

K K K
ol oyt oi5s=0 (22)

cannot be fulfilled identically. However, we may resort to a weak
Ffm, i.e., let us use a variational statement such that we require a
minimum of the total potential energy of the plate:

r=ng 1
m=> (_fjf gy
=112 oo T

,fJJ o VAT V)
v

+%f f f()g{’>TAT“K;“@{”AT“)dV“) = Min.
Vf

(23)

As the third integral term only contains constant terms and thus
vanishes throughout all subsequent variation processes we will
omit it in the further course of this work. An integral concerning
the volumeV® of one mathematical layer can be decomposed
into an integral through the layer thickness and an integral with
respect to the are&’= 41,1, of the middle plane of the plate, i.e.,

® X3(k) o
) dvi¥= . dxzdA®.
vk A% X321

As we have a priori assumed the thickness distributions of all
displacement components, the integr&itl of the functional that

is subject to the minimization process in Eg3) is only depen-
dent on the interface functionsl{?(x;), U%¥(x,), UK (xy),
U%¥(x,) and their first order derivatives. Hence, we may rewrite
Eq. (23) in the following form:

(24)

(25)

on into a free-corner solution. Note, however, that this does not

leads to a set of governing coupled differential equations ferecessarily hold for other kinds of laminate layups. For the
UPF(xy), UP(x,), UK (x1), UL (x,) that cannot be solved in a present analysis this means that as a decomposition measure we
closed-form analytical manner but requires numerical evaluatidiermulate two separate displacement fields that correspond to the
However, previous investigationtsee, e.g.[54,55) on free- involved free-edge effects alongside theaxis and parallel to the
corner problems have shown that for the present class of layepedcoordinate. This will allow for a closed-form solution of the
plates it is sufficient in an approximate sense to consider the tgiven thermoelastic free-corner problem. Let us first refer to the
interacting free-edge effects separately and to combine these ldtee-edge problem parallel to the axis. We may achieve an
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appropriate displacement formulation for this situation by Ietting 1 W 1 (ke D)? 0 1102 () o (ke D)
x;—0 in Egs.(15) and (16), which corresponds taJ{¥=U{ + 5Ky T+ 5Kz KR35 20z

=0 and thusuj®¥=u}"¥=0. The remaining layerwise dlsplace-
ment field then reads: 1 2 Lok K 10 (k1
I + 2K(221U( Sy 2K(11)1 G KLU BUED
Ul :Ul ’ (2&)
1 2 1 2
U(zk) = Ug(k) + U%(k) ) (260) + 2 K(lkz)z (3k2+1) + 2 Kg}.)llu (e,kz),2+ K(Sl;.)ZlU (skz) gszzl)
OG0 oe) ) 2
, , L S KELUELY (29)

This describes the free-edge problem of a thermally loaded lami- 2 '

nated strip which is long in the; direction. The according strains
and stresses for this situation can be gained by letti ) . o
“UR=UB-UY 0 in Egs. (18 and (2% As thg onlmﬂir@e- that array of functionsJ$?, UYS, UY, andU$Y, which mini-

117 =31 7 M3 d y mizes the total potential energy of the plate. According to the

ini i (K) (k) Lk ; .
rnalnlngkhlgher okrder functions aké; _ andU; _ _and their deriva-  ¢4)cylus of variation, the following two governing Euler-Lagrange
tives UY) and U4, the corresponding varlatlonal statement reequations must be satisfied:

2.5 Governing Equations and Their Solution. We seek

duces to r—n r=n
r= nL L( EL F(m) _9| EL F(f)”:o (30)
f f f FOUY),UY),U% UL ) dxsdA®= Min, U\ =1 dx o"U(z@ =1
X3(r-1) r=n_ r=n
27 - d t
It is convenient to introduce some abbreviations for the thickness &U dXz Uss,\ r=1
integrals(with 8, ¥, 6=1, 2: with d/d( ...) andd/é( .. .) for derivatives. Performance of the
‘ ‘ " S0 o . . variations(30) with respect to each interface leads to the follow-
[HY HE HE 1= oYL W AT dxs, ing n_+1 sets of coupled ordinary linear differential equations:

X3(k—1)
k—1 k-1 k—1 k-1 k-1 k k
(28&) (Kg’,122) K(2212 )) U (32 2 >+ ( Kg’:ZZZ) K(2222 )+ K(31)12 K(21)12) U 32 2

X3(k) +(K _K(k) )U(k+l) (k l)U(k 1)
k k k k k k 3212 2122~ 32,2 3123
(19 1%]= cMaOATO[ YR yMdxs,  (28D)

Xa(k 1) + (KD + KEJUR+ KLU D — Kk (o Dy D
X3(k) (KD L0 Yy k) kD)
Lal= | el wiles, @ea) (Kizot'+ K1 Uso KiTal3% =0, (312)
k— k— k— k— k— k k k
® @ " s (K(21221)_ KngZI))U( 1)+<K(22221)_ Kg2221)+ K(21)12_ gl)il.?)U( )
[Kiyor:Kiys Kiyis] + (K- KUY D+ KD U
X3t k— K K K gk k k—
= f el L us Uy S S saldxs, + (K53 + K119 U + K0 85" — K, U5 07
X3(k—1) k—1) (k) (k) yk+1)
— (KD KE YUY~ KK U
(28d) 3221 311V Y 32,22 ™3121¥32,22
1
a9 =104 219+ 195,V + 21950 — Z[262(3%, Y + 35
[Lf?l:Ll(yz]_f C§k>82§k>[¢§"> (k)]dx3 (280) 112 2121 1122 222 2[ (3522 212
k—1)
. ) ’ . + (LYY + L] (31b)
Using Egs.(18) and(21), the integrandc® of the functional Eq. . , ,
(27) with Eq. (28) reads: It is convenient to introduce a vector-matrix notation for E2fl)
with the vectors U,=[U¥]eRM*YX1 and Ug=[UY
F(k):ESO(H(lk)JrH(zk)),(H<k>+H(k)) e R D" including the functionsU$Y and UYY and their
2 derivatives:
1 1 1 KU+ KsoUs 90t KaUs, =0 (329)
k k k k k k k Y2 T 22227 23Y 3227 Y
+ ZH( )~ I<11>1 2|(21)1+_‘90(3(21)1"'3(11)1)"'EL(21>1)U(2,% KyUayt KeU KU F (32)
KaUgot+ KsUgp 20t KU o=F.

[EnY

The constant quadratic coefficient matricel,=[Kpyqml
e RLFDX(LHD (with m=1,2,3...,6 andp,g=1,23...n,
1 +1) can be found in detail in Appendix 1. The vectér
1 o) L g0300 4 = (0 )y e R(F1*T contains the nonhomogeneous right-hand sides of
1127 41212 21277 5 12| Y32 (n +1)X1 ; . -

Eq. (31b), 0Oe R'"™ is a zero vector. A solution of E@32) is
possible by introducing some new notations €9 andU$)

1 1
K K K 0/ 1(k K K k+1
+(_H(22) <12)1 2I(22)1+ _8 (‘](22)1 (12)1)+ L< )1>U<2,2 )

N

+

1
K K 09K K | (k1 K (K
— 1995 2199+ %3595+ = > L(lz)z) Uss™ ™+ (K5hU 5,

Us=(Uss Usp)™=(Uzy Us))", (33)
k k k k k k k k — _ =
+K(32)1 (3221))U(2 )+(Kgl)2 (32)2+ ng)z 5221))U(2 = U,=(U,; Uy T=(U, U322) (33%)
k k k k+1 (k k) k) — — . .
+(KSUE + KLU ) UGS+ (KY M8 Note thatU;;=U,; ,andU,= U, ,. Using these notations, after

some algebra the governing E@82) can be rewritten as:

1 2
k k+1 k+1 k k k k k+1
KRS VRS + g KA KU Usor K~ KoF (a40)

Journal of Applied Mechanics JANUARY 2005, Vol. 72 / 91



Up,=Kj'Up,. (34b)

The quantitiesgle RZ(nL+ l)><2(nL+1)’ EZ e RZ(nL+l)X2(nL+l), and
F e RZTD*1 read:

E 0
“lKs e —Ks K
whereinE=[8,,] € R D> (1) s the unity matrix withd,
being the Kronecker symbol,R("+D*("*1 is a zero matrix.
A solution for the homogeneous E(R4a), i.e., for U, ,,— K3U;

1
1

x|
o N
nwx

|
)

0
(KglE , (35)

X |
Ty

=0 with E?,:glgz, can be shown to be a system of hyperbolic

functions:
U,=TC;b,+T'S;b,. (36)

The quantitiesC; e RZMTD*2( 1) gpd g, e RA(MLFD*2(nL 1)
are diagonal matrices of the for@;=[ s coshiexy)] and S;
=[8sSinh\Xp)] with st=1,2,3...,2(n +1). Therein, the
quantities A\ are the roots of the 2(+1) eigenvalues\?,
N3, Ao 12 OF Kg, the matrix[=[ ys] e RAMF 1720+ D)

includes the corresponding eigenvectors:mf. The vectorsb;
=[b;c] e RAMADXL and b,=[b,] e RZMFY*1 contain free

constants. Using Eq.34b) gives the homogeneous solution for

523

Ic|

2= (37)

ex

Sib+

ex

Cibo,

with ®=[ o] e RAMFD*20+1) peing defined asb=K; TA

and A=[ S\ ¢] e RAMFD>2+D) - Utilizing Egs. (36) and (37)
for the unknown interface functiong$ andU$) and their de-

rivatives according to Eq(33) leads to the following homoge-

neous solution of Eq.32):

r=2(n_+1)
U= rzl By, @i SINAN, Xy)
r=2(n_+1)
+ r}_‘,l Doy @k COSHA, X5), (3%)
r=2(n_+1) r=2(n_+1)
udy= rzl D1 Yir COSHN X5) + rzl B2 Yir SINN(A(Xy),
(380)
r=2(n_+1) r=2(n_+1)
U= X burigcostih)t 3 byryie i),
(3&)
r=2(n_+1)
U= 2 bugie SinhAxy)
r=2(n_+1)
+ rzl by Gy COSHA,Xy), (38d)

Due to the symmetry of the given situation it is convenient to
restrict our investigations to one quarter of the plate containing
two free edges merging into a rectangular corner, e.g., enclosed in
the interval G=x;=<l,, 0<x,=<l,, —d/2=<x3=d/2, and fulfill the
boundary conditions of traction free plate edges for this quarter-
piece. The remaining parts of the plate can be adequately taken
account of by consideration of the symmetry of the given situa-
tion. Since u% must be an odd function ok,, U%(x,)
=—U¥(—x,) must hold as well which is achieved by neglecting
the corresponding cosh functions in E&8). Accordingly, u$’
and hence alsbl{) must be an even function &f which leads to
the neglect of the corresponding sinh terms in 86). Summing
up, the solutions in Eq38) are reduced to:

r=2(n_+1)

>

r=1

k= b1 ke SINAAXy), (3%)

r=2(n_+1)

2,

r=

uy= By Vir COSHA,Xy), (3%)

r=2(n_+1)

>

U= b1r Vi COSHA o), (3%)

r=2(n_+1)

>

k
ng),zz
r=1

b1 i SINANXR). (3%d)

Finally we have to find a solution for the free-edge effect occur-
ring parallel to thex, axis. Lettingx,—0 leads toU%=U%

=0 and henceis®=ui*¥=0. Analogous to the free-edge prob-
lem along thex; axis, the variational statement of the present
free-edge problem leads to a set of governing equations for the
unknown functiondJ{¥ andU$) and subsequently an eigenvalue
problem that can be solved like the presented free-edge problem
parallel to thex; axis. Note that due to the isotropic layer material
properties the present situation is insensitive to a coordinate trans-
formation regarding the right corner angle, hence all occurring
eigenvalues and eigenvectors are identical for both free-edge
problems. The solution for the remaining displacement functions
U andUY and their derivatives in théth interface can be
written similar to Eq.(39):

r=2(n_+1)

2,

r=

U= C1r i SINAA Xy), (40a)

r=2(n_+1)

>

r=1

U= Car Vir COSHA, Xy), (400)

r=2(n +1)

2,

r=

Cr Yir COSHAXy), (40c)

r=2(n_+1)

>,

us)= Car @i SINAOA Xy). (40d)

The quantitiex,s are free constants.

with k=k+ n_+1. As the nonhomogeneous right-hand side of Eq. . . .
(34) is a constant quantity and an appropriate approach for a2-6 Stress Field and Boundary Conditions. Using the so-
particular solution would be in the form of polynomial terms, autions (39) and(40), the stress field21) in the kth layer for the
particular solution of Eq(34a) and thus of Eq(32) corresponds Coupled problem formulation reads:

to rigid body motions and strain states. As the displacement solu- r=2(n +1)

tion Egs.(12) and(13) according to CLPT already fully accounts

for these states, the introduced CLPT terms correspond to the T Z:l [ear (i yhy +c57uby)costin xy)
particular solution. Hence, the formulation Eg8) for U and
U$) and their derivatives is complete and unique.

+1, 0 (4 + Y5 oSN x,) 1, (41a)
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r=2(n_+1) r=2(n_+1) r=2(n_+1)

o =ofis 2 [eacl i+ yh)costingy) 2 byB+ X o CP=DY, (%)
r= r= r=
b (AT +c5 g Ycosti ), (410) I i
i D> byBY+ X ¢ CY=DY,  (4m)
r=2(n_+1) =1 =1
o= zl ey + Pyl cqp cosNXy) r=2(n_+1)
>, byBY=0, (4%)
+ b1r COSN)\rxz)]: (410) r=1
r=2(n_+1) r=2(n_+1)
(k) —
of=ct D by yl sinhnxp), (41d) 2, cuch=o (4%d)
(= a(n,+1) The coefficientB{Y, B, B, ¢V, c¥, c{ and the right-
) Pk iven i i - i
(K — k) e oM sinh\x Ale hand termsD;”, D" are given in detail in Appendix 2. With
7137 ;1 wiar SNy, (41) that, the development of the higher order layerwise theory is
completed.
=0, (41f)
wherein 3 Results and Discussion
3.1 Convergence Study. It is of basic interest to study the
= 9 YiesT U Vs s (429) g y y

behavior of the present analysis method with varying degrees of
(420) discretization refinement of the computational model. For the sake
of simplicity let us investigate a four-layered symmetric bimate-
) ) ) ) rial plate with material 1 in the facings and material 2 in the inner
Vas = V1 @ucen rst V2 Cacen +2)sT Y130kt ¥23¢0cr s o layers. Let us assume that the physical layers are identically
(42)  subdivided intom= 1/4n, mathematical layers whereas we will
These stresses have to fulfill the conditions of traction-free pldfgvestigate the development of the solution for=3, m=6, m
edges: =9, andm=12. Let us assume aluminum as material 1 with the
elastic properties:

E'=71,000 MPa, »'=0.34, ai=24x10"% K1,

o3 (Xe=1,)=0. (4) (46)
. . ' . . ) whereas material 2 is supposed to be nickel:
An identical fulfillment of Eq.(43) is not possible with the chosen

form of a layerwise approach. However, an integrated form with E?=210,000 MPa, »?=0.31, «f=13x10"°% K.
respect to the plate interfaces using the same interpolation func- (47)

tions ¢4 and 4 as for the stresses can be utilized which leadphe individual physical layers of theAl,Ni]g plate are assumed
to 4(n_+1) equations for the 4 +1) free constant®,s and to have a thickness of 0.5 mm each which leads to a total plate
: thickness ofd=2.0 mm. A similar layered plate under uniform

K _ (K k
U= UV i+ Dst Y9NV kin, 250

o (x,=1,)=0, (43)

Cis:
. thermal load has been considered by Becker €i58l. The load
2L k-1 = (k=D gy_d case is a uniform temperature drop»T=—100K. CLPT pre-
oy (X =11,Xg,X3) 5 X20X3 di L
0 Jxgu 2 icts the nonvanishing in-plane stresses as

2 Xa(k oM =00V =03=03"=87.43 MPa, (48)
+ f f U<1|1)(X1=|1,X2,X3) l,//g_k)d)(zdx:g:o, (4@.)
0 Jxac1) 022 = g% =9 = 33 = —87.43 MPa. (4B)
I (X3(k-1) 1 1 The in-plane dimensions of the_computational model are set to
f f a5 (X, X =15, Xg) ™ Haixydxg l;=1,=2d=4.0 mm. For evaluation purposes from now on let us
0 Jx3k-2) refer to an orthonormal corner coordinate systemx,, X5 (see

I [ Xa) Fig. 2). Figure 3 depicts the resultant distribution of the interlami-
+J J (X1, % =15,%3) ¥¥dx,dx3=0, (44) nar normal stressa; through the thickness at the corner p
0 Jxgk-1) =0, X,=0, —d/2=<x3=<d/2 for m=3, m=6, m=9, andm=12.
We did not calculate mean values @f; at one interface coordi-

2 (Xaben gy (k—1) natex; but have depicted both stress values of the respective two
013 (X1=11,X2,X3) ¢y T dXodX3 . X X X
0 Jx adjacent mathematical layers to gain an estimate of the conver-
3(k—2) >
gence of the presented method with respect to the development of
2 (Pa00 0 () gt continuous interlaminar stresses in the mathematical interfaces. As
* o ). 013 (X1 = 11,2, Xg) Y17 dX0X5 =0, (44)  could be expected, the quality of the stress results increases with
3(k—1)
l1 [X3k-1)
k=1 k=1
f J’ 0'(23 )(Xl ,X2: I 2 ,X3) lﬂ'(z )dxldX3 T3
0 JX3k-2) T
e g () =
+ 023(X1,X2:|2,X3)l/fl XmdX3=O. (44j)
0 JXzk-1)
This eventually yields an ordinary system ofrd (1) linear
equations for the free constariig; andcy: Fig. 2 Corner coordinate system  X;, X5, X3
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Fig. 3 Convergence study, o33 through the thickness —d/2<x,=<d/2 at the corner tip x,=0,

X,=0 for m=3 (upper left portion ), m=6 (upper right portion ), m=9 (lower left portion ), m
=12 (lower right portion ), x5 in mm, all stresses in MPa

higher values of. In regions that are not dominated by singula o®(m) - olP(m—1) and AcS'=o5%(m) - o5%(m—1), are

. - ? h 33 33~ 033 3
influences, i.e., some distance away from the interfaces betw%ﬁgo given in Table 1. It is noted that the convergence rate is high

two dissimilar physical layers at;=*d/4, convergence of the fo; |ower values ofm and decreases with highe.
stress distributions is rapid and almost continuous stresses in thehe analytical method exhibits excellent convergence proper-

mathematical interfaces are achieved. Close to the physical intety oy the intralaminar CLPT stresses, accordingly Fig. 4, upper
faces between the aluminum and nickel layers, however, no ¢ ' y

N, . . . . — —
vergence of the solution can be observed as with higher value;f%_ portion, shows the distribution o13(x1=11,X;= |2’._ QI2
m positive stress values are encountered that seem to increagg=0/2) in the center of the plate fan=3 only. Deviations
without bound. This is a common effect when applying discretietween the analytical results and the CLPT predictions of about
ing methods in the vicinity of physical interfaces between dissimi% are found for this stage of discretization.
lar plate layers at free edges and corners and hints of a distincFigure 4, upper right portion, shows the distribution @f;
corner stress singularity as the comparisonogf at x,=0, X,  along the plate edge,=0 in the range &x;=<I,/2 at the thick-
=0, x3=d/4 for varyingm (see Table 1 where the mean values ofiess coordinate;=d/4, i.e., directly at the interface between the
the two according interface valuesgiéj:g-%(fl:O,YZ:O% upper aluminum ply and the nickel layer, for the discretizations
=d/4) of the adjacent mathematical layers are gjva@so shows. M=3, m=6, m=9, andm=12. Sinceog; is dominated by a
Furthermore, in the regions close to the physical interfaces tRiggularity along the entire structural line<x,<I, directly at the
continuity properties o33 remain somewhat poor for aih. Also interface atx;=d/4, no convergence of the stress results can be
note that the fulfillment of the boundary condition of traction fre@bserved. With increasing values of, higher stress values are
plate surfaces, i.e., her@ss(x;=0x,=0x3==*d/2)=0, is sig- found in the entire considered range. Note that the differences
nificantly improved with increasing values of (see also Table 1 petween the results of two sequent discretization stagesem to
where the numerical values ofo59'=033(x;=0x,=0x; be more pronounced in the closer corner regions which hints of a
=—d/2) at the bottom surface of the plate are ginverhis is all  distinct corner singularity that will most probably exhibit charac-
the more satisfactory as the fulfillment of this boundary conditioteristics different from the occurring edge singularities.

is not part of the formulation of the layerwise theory, hence theseFigure 4, lower left portion, depicts the classical free-edge ef-
results also render the presented method reliable with plausibd@ situation of oz at X,=1, in the range Bx,<lI,/2 at X3
results. The differences o3f and Ao between two stress val- = d/4. Along this structural linegss is dominated by a singularity
ues o3 and o55' for two sequent values ofn, i.e., Aoy? only at the edge point;=0, x,=1,, x3=d/4. It is observed that

Table 1 Convergence study, os=04P at x;=0, x,=0 in the physical interface ~ x;=d/4 and

o5=05%" at x;=0, x,=0 at the bottom of the plate  x;=—d/2 for several discretization stages

m, differences between sequent discretization degrees, all stresses in MPa

m 3 4 5 6 7 8 9 10 11 12
o3P 18251 201.50 217.36 230.89 24270 253.18 262.60 271.17 279.02 286.29
AP 18.99 15.86 13.53 11.81 10.48 9.42 8.57 7.85 7.27
oS -1520 -491 -507 -305 -232 -163 -119 -0.85 -0.61 —-0.42
AcSY 10.29 -0.16 2.02 0.73 0.69 0.44 0.34 0.24 0.19

94 / Vol. 72, JANUARY 2005 Transactions of the ASME



1.00 T T T T T T T 6’3 350
= 0.751 | A »
g &
;g 0.50r 1 = 250
§ 0.25F 1 g ‘
S 0.00 b &
2 &
E 025+ 4 ‘é
2-050r 4 £
= _ ]
=075+ m=3 4 E

_1’0 1 i 1 1 1 1 i E 0 1 1 L

-100 -75 -50 25 0 25 50 75 100 0.00 0.50 1.00 1.50 2.00
Intralaminar normal stress oy, Inplane coordinate X,
2 160 T T T o
° L m=3 3
g 140 cmd e
£ o] &
= 100 1 §
E 80 3
£ 60 5
£ £
E 20 5
R g1
= 220 L i L —
0.00 0.50 1.00 1.50 2.00 0.00 0.50 1.00 _1.50 2.00
Inplane coordinate X, Inplane coordinate x;

Fig. 4 Convergence study, o, through the thickness —d/2<x,;=d/2 at the plate center point
x1=I1, x,=1, (upper left portion ), o33 at x,=0, xz=d/4 in the range 0 <x,=</,/2 (upper right
portion ), o33 at X,=/,, x3=d/4 in the range 0 <x;=/,/2 (lower left portion ), o5 at x,=0, X3
=d/4 in the range 0 =x;=/,/2 (lower right portion ), x; and x3 in mm, all stresses in MPa

the stress results for all applied discretization schemes in the é&na reasonable compromise between the spent computational cost
tire investigated range agree well with the obvious exception @fiote that one analysis at this degree of discretization takes several
the close edge region where again no convergence of the resultsésonds on a standard personal compwed the achieved accu-
found. Since this is a common observation with free-edge effegtscy of the analysis results. The valoe= 12 will also be applied
in layered plates this result is not unexpected. in all subsequent computations.

Figure 4, lower right portion, shows the interlaminar shear . . . . .
stresso;s atx, =0 in the range &x,<l,/2 atx;=d/4. Sinceo 3.2 Thermoelastic Stress Fields ina Bimaterial Plate. Let
is not dominated by singular influences for this class of plaés further refer to th¢Al,NiJs plate with AT=—100K and first
layups, the peak values of;; some distance from the plate edgdnvestigate the intralaminar normal stresg in the plate middle
show convergent behavior, as between the discretization stagl_ﬁ‘exszo in the range &x;=<I;, 0=x,=lI, as it is depicted in
m=9 andm= 12 only small deviations are observed. However, itig. 5a). Results for the second occurring in-plane normal stress
must be noted that the fulfillment of the boundary conditiffbg. 22 are not given since these can be achieved from the results for
(43b)] is only approximately achieved at this location. Howeveg11 by switching the axeg;, x,. The in-plane normal stress;;
we will present results fotr(5 later on where a satisfying fulfill- exhibits significant gradients with respect x@ and x, in the
ment of Eq.(43b) is shown. vicinity of both free plate edges and fulfills the given boundary

For the investigation of basic characteristics of thermoelast@ndition Eq.(43a) reasonably well whereas some disruption is
free-corner problems, a discretization degree of at lees6 is found in the closer corner region. In the inner plate regions CLPT
recommended. However, if there is interest in very accurate fleelds true. Thus, the present stress localization problem is such
sults, a value ofm=12 mathematical layers per physical plythat the in-plane stresses are rendered more harmless in compari-
should be applied, which in all correspondsto=48 mathemati- son to their CLPT values.
cal layers in the present four-plied plate. As the convergence studyFurthermore, let us investigate the distribution of the interlami-
has shown, this degree of refinement of the computational moadelr shear stress in the interval G=x;<l;, 0<x,<I, at x5

(b)

Fig.5 (a) oy, at Xx3=0 intherange 0 <x;</;, 0<Xx,=</,, (b) 013 at X3="3/16d in the range
0=x,=</,, 0=x,=/,, and x; and x, in mm, all stresses in MPa
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Fig. 6 (a)—(i) o33 at several locations X3 in the range 0 <x;</;, 0=<x,=</,, (a) o33 at X3=0, (b) o33 at x3=d/16, (C) o33
at x3=d/8, (d) o33 at X3=3d/16, (€) o33 at x3=d/4, () o33 at X3=50d/16, (g) o33 at X3=30d/8, (h) o33 at X3=70d/16, (i) o33
at x;=d/2, x, and x, in mm, all stresses in MPa

=3/16d (Fig. 5(b)). Due to the same symmetry reasons assfpr  x;=Xx,=0 in all interfaces between the mathematical layers in the
anda,,, results for the second occurring interlaminar shear streiggerval O<xz=<d/2. Table 2 shows a relative comparison between
0,3 are not given. It is found that5 fulfills the boundary condi- the encountered corner stresgﬁg,g atx;=x,=0 and the CLPT
tion of traction-free plate edge(ﬂSb) in a convincing mannefa  in-plane normal stresell As the shear stress gradientg; ;
value ofry3=—0.21 MPa is encountered ®t=0) and rises to a and 0,3, are nonvamshmqsee also Figs. (d) and 3b)), the
positive peak value at some distance from the free plate edgeerlaminar normal stressrz; has to arise due to three-
before falling to zero values in the inner plate regions. Note thdimensional equilibriuni22). Figures 6a)—6(i) show that the en-

as o3 is coupled with the inplane normal stress; by three- countered free-corner effect in essence consists of the superposi-
dimensional equilibrium(22) and since the gradient,; ; is non- tion of the two corresponding free-edge effects that culminate in
vanishing (Fig. 5@)), the occurrence of nonconstant inplaneistinct stress peaks at the corner tixg x,=0. This is encoun-
stressesr;; is mainly responsible for the occurrence of interlamitered at all locations;. Note that below the physical interface at
nar corner stress concentrations @f;. Similar reasoning will x;=d/4 in the nickel layer, the encountered free-edge effects are
also hold true for the relationship betweep, ando,5. Since the

encountered peak value of;; at the present location is about

half of the inplane normal stresse$, ando 5, according to CLPT 1.00 . . . :
and the peak value at;=d/4 is even higher(see Fig. 4d)), s 0.90F ! .
it is appropriate to talk about a serious stress concentration 2 080} f .
phenomenon. o} ! 1
In the course of the convergence study it was revealed that the ?g 060} 1
occurring interlaminar normal stresseg; exhibit very high peak 3 0.50f \\—> 1
values in the vicinity of the free laminate corner and also along % 0401 .
the free plate edges which characterizes the encountered free-edge & 030} 1
effects and especially the free-corner effect as possibly critical é 0.201 // 1
stress concentration phenomena. Thus it is justified to discuss the 0.10F ]

occurring distributions ofrz3 at some more length. Figure&a@— 0 0 100 200 : 00 200 500
6(i) display the distributions o33 in the interval G<x;=<I;, O
<x,=<I, at several thickness locationg from the plate middle
plane atxz=0 upward to the free plate surfacexat=d/2, namely Fig. 7 Interlaminar normal stress o3 through the thickness
between every third mathematical layer. In addition, Fig. 7 show)sax3sd/2 at the corner tip  x;=0, x,=0, X3 in mm, all stresses
a thickness plot of the mean values of; at the corner tip in MPa

Interlaminar normal stress &7y,
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Table 2 Mean values of o33 at the corner tip x1=0, x,=0 at several locations X3, comparison
with in-plane CLPT stresses, x5 in mm, all stresses in MPa

X3 0.000 0.042 0.083 0.125  0.167  0.208 0.250 0.292 0.333
o® 246.52  247.22  249.34  253.00 25837 26582 27570 289.22  306.43
Tip

0”33 2.82 2.83 2.85 2.89 2.96 3.04 3.15 3.31 3.50
211(m1)

X3 0.375 0.417 0.458 0.500 0.542  0.583 0.625 0.667 0.708
oy 334.31 367.37 45581 28629 2455 4.24-23.43 —25.07 —27.88

Tip

0‘733 3.82 4.20 5.21 3.27 0.28 0.05 —-0.27 -029 -0.32
gll(ml)

X3 0.750 0.792 0.833 0.875  0.917  0.958 1.000

olp -26.16 —22.83 -17.86 -12.03 -6.28 —2.18 —042

Tip

_%8 030 -026 -020 -014 -007 -0.02 0.00

ai(my)

possibly critical with high tensile stresses at the plate edges ttihat in [50] a coarse finite element mesh was employed whereas
are well above the stress values of CLPT. However, also note thia¢ presently applied discretization scheme with 12 sublayers per
the arising free-corner effects exhibit stress peaks at the cornergipysical layer means a quite high discretizational effort. Further-
that amount to approximately double values of the involved freeaore, the closed-form analysis performed %] is based on very
edge effects and thus make the immediate vicinity of the frestmple stress shapes the choice of which is somewhat arbitrary so
corner tip in the interval &xz=<d/4 the most critical location that it may be concluded that the presently applied displacement
with respect to the initiation of delamination. The encountereohsed approach probably yields results of higher accuracy. How-
stress distributions above the physical interfacezatd/4 are in ever, the overall qualitative agreement betwd®&0] and the
contrast to those previously discussed. Herg; reaches some present approach is quite satisfying and thus renders the presented
positive peak values some distance from both free plate edghsplacement based approach a trustworthy method.

before falling to compressive edge and corner values. All encoun-

tered absolute values ofs; are well below those in the range 04 Summary

=Xz=d/4 as can also be concluded from Fig. 7 and Table 2.\ye naye presented a layerwise displacement based approach to
Figure @i) shows that the boundary condition of traction freg,a jetermination of displacements, strains, and stresses in the
plate surfaces is met with reasonable accuracy. The encounteffghiy of free edges and corners of symmetric plates of isotropic
stress values at;=d/2 are negligible in comparison 10 thos€|,yers ynder uniform thermal load. After the assumption of a lin-

fo%nd I?t all otTegéoc_ation;@t d the 1 fect in ther.82" interpolation scheme between introduced interface functions
ecker et al.[50] investigated the free-comner effect in thery, i oniy depend on the in-plane coordinates, the application of
mally loaded cross-ply plates and calculated stresses for the |

_ . . 3YHR principle of minimum elastic potential of the plate leads to the
[Ni,Al]s under a uniform thermal load ofT=100K with the " 101 | agrange differential equations that govern the interface
geometry data identical to those previously discussed. Figuré g cions. These equations allow a closed-form solution due to
shows a comparison of the present method and the approaclygs,e simpiifying considerations in the displacement formulations
described if[S0] which consists of a variational principle and a,,4 the nature of the encountered free-comer effect. In conclu-
layerwise stress shape assumption for the in-plane stresses '”sﬁ%ﬁ, it can be stated that the occurring corner and edge perturba-

f_or'm of exponential functions with unknown de_caying rate. Thﬁons are an utmost localized phenomenon and are found to be
finite element results reported [BO] are also depicted in Fig. 8. b

Results are generated at the thickness coordirgted/5 in the

range Gsx;=<I,, x,=0. A reasonable agreement between bolcgb

methods is found which lends credibility to the present approa

Furthermore, the present analysis compares well with the numegy;,

ounded to a small edge region. Especially, the occurrence of

interlaminar normal stresses in the near field of the free plate

cal results as given if50]. The deviations between the present
results and those from Becker et al. probably stem from the f"’]quenclature

orner is a highly critical stress concentration problem and should
considered with care whenever layered structural elements are
olved under thermal influence.

Subscripts
200 . T . (k) = layer/interface index
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Fig. 8 Comparison of the present method with the results of
Becker et al.,, o3 and o3 at x,=0, x3=d/5 in the range 0 <x;
=/,, x, in mm, all stresses in MPa
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Appendix 1
The coefficient matricek,, read:

Their nonvanishing components with=[q—1,9,q+1] can be

Kim Kom O 0 0 0
m=[Kpgml = 0 0 K‘.m K‘.Mm O 0 (49)
0 0 0 0 Kn n.m Kn (n +1)m
0 0 0 0 K(nL+l)an K(nL+1>(nL+1)m

K) _ k-1) | i (k k
f(ls> [K2121 Yik- 1)s+(K(2221 (21)11)7ks+ K(21)217(k+l)s

written as: )
- —1
DD @ i +KY%s 7(k+nL)s+(K(2222)+K(2112)7(k+nL+l)S
Kpa=[K&23" (K" + Kt Kital, (508) @
+ K122 (k+n, +2)s)s (52a)
1 1
Kpge=— (K92 (KIS + Kih) Kbyl (500)
K _ 1 K
KA1 K(@-1y (KE-D _K(E-D 4 K@ £ =K Yoo s+ (KD KD Yt Koy 1)s
Kpga= (K331  —K3iao7), (K532; 2222 3112 1
— KD, (KD K1, (500) +Kibrs! Yx+npst (Kazzz +K2112))’(k+nL+1)s
+K(2k1)227(k+n +2)s]v (520)
— -1 1 L
Kpga=[Kilzs" (Ki3os" + KiF1 K T, (50d)
_ K k-1 k-1 K
Kpgs= —[Kilai” (Kb + K Kb, (508  &¥=[K (3121)<P<k+n +(K(3221)+K(31)11)‘P(k+n|_+1)s
k-1 1
Kpos= [(Kgizl)_ 5(1221)) (K gggzl)_K(scEzl)"'Kznz +K3121(’D(k*”ﬁ2>5+ KE’>212)‘D(‘<*1)5 (K3222)+K3112)‘pk5
(k)
—KZ), (K~ K91 (50f) + K122 (k+1)s]- (52)
Appendix 2 Ref
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- K K K K K K
The coefficientsB{Y, BY, BY, ¢, c¥, c¥ and the

right-hand term®{

B¢~
BY =1, costing ) X,
BY =1, sinh(\d,) &5,
CR=1, costind ) X,

Chd=ng

CY=1,sinh(\ g )Y,

DX=—I,(H V+H

k k—1
D<2 ):_|1(H(22 '+
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Solutions for the Inclined
Borehole in a Porothermoelastic
Transversely Isotropic Medium

Younane Abousleiman
Shailesh Ekbote’

Mewbourne School of Petroleum A porothermoelastic solution of the general problem of the inclined borehole in a trans-
and Geological Enginering, versely isotropic porous material is presented herein and compared with the isotropic
School of Givil Enginesring porothermoelastic solution. The governing equations are outlined for the case of general
and Environmental Science, anisotropy and specialized for a transversely isotropic poroelastic material under nonhy-

PoroMechanics Institute, drostatic and nonisothermal in situ conditions. A superposition scheme is employed to
The University of Oklahoma, obtain the analytical solutions within the isotropic and transversely isotropic porome-
Norman, OK 73019 chanics theory. The borehole generator is assumed to coincide with the material axis of

symmetry, in the case of transverse isotropy, yet subjected to a three-dimensional state of
stress. A systematic analysis has been carried out to evaluate the effect of the anisotropy
of the poromechanical material parameters as well as the thermal material properties on
stress and pore pressure distributions and the potential impact on the overall stability of
deep wellbore drilling.[DOI: 10.1115/1.1825433

Introduction is existing literature that addresses the thermal effects in aniso-
. tropic media, though the treatment in many cases is limited to
A great deal of attention has been focused on coupled ther c6'upled thermoelasticityf23—-25. A comprehensive treatment

mechanical behayior of fluid-saturgted porous media. Over t £ the anisotropic porothermoelasticity has been addressed by
years, the theoretical developments in this area have matured erﬁ’[sube[?]

a simple extension of Biot's isotropic poroelastic thefity-6] to In general, geoactivities are usually carried out in formations

. : - S Offfat can be broadly classified as transversely isotropic due to the
with the material anisotropy7]. Applications for these are found simple natural deposition of sedimentary rocks which has oc-

in diverse areas such as deep drilling and excavation, modeling®fred over a geological time scale. The deposition processes lead
nuclear waste disposal faciliti¢g], and extraction of geothermal {5 gevelopment of formations with similar material properties
energy[9]. With the complex mechanisms that come into playacross a cross section but with different characteristics in the di-
identification of various driving forces and the interaction betweg@ction perpendicular to it. In this paper, a porothermoelastic so-
them presents a challenge in predicting an appropriate behavioffon for an inclined borehole in a transversely isotropic medium
depth. ) ) ) is presented. Governing equations are developed first for general
Following the work of Biot[1,2], considerable research hasanisotropy and then specialized for the transversely isotropic and
been carried out in the mechanics of fluid-saturated porous meditropic cases. The resulting system of equations is used to obtain
Fundamental aspects of Biot's theory of poroelasticity have begie analytical solution for an infinitely long borehole where it is
reformulated and presented in various forfil®—12. Extension assumed that the borehole generator coincides with the material
of this theory to incorporate thermal effects for the isotropic casgis of symmetry.
has been addressed by several auti®+s6]. Consequently, solu- .
tions to boundary and initial value problems have been developEtEneral Formulations
under various scenarios which demonstrate the effect of the therUpon load application, the mechanical response of a fluid-
mohydromechanical coupling on the respohkg-1§. saturated porous system is characterized by coupled diffusion—
At the same time, Biot’s theory has been extended to accoud@formation attributed to the interdependence of change in pore
for material anisotropy2,11]. The extension introduced variousvolume and the pore fluid pressure. With the introduction of
material constants which were identified and recast with straiglteundary temperatures, i.e., a nonisothermal state, both the pore
forward physical interpretationd.9,20. Subsequently, analytical fluid and pore volume are subject to differential expansion or
solutions for fundamental problems such as Mandel's problegentraction, resulting in additional coupling associated with the
[21], the borehole problem, and the cylinder problg22] have temperature change. The magnitude of the relative change in
been extended for the transversely isotropic case. It was fousitiess, pore pressure, and temperature is coupled and described by
that analysis of the transversely isotropic poroelastic problerggnstitutive relations weighted by material coefficients. In this
showed unpredicted results when compared to their elastic coggction, a full set of governing equations is developed for the
terparts[21,27. In addition to the time dependency of the flongeneral anisotropic case.
and deformation fields, the anisotropic material coefficients play

. : X ) Constitutive Equations. The constitutive equations for linear
an important role in the calculation of the in-plane stresses. Th%@rothermoelasticity are expressed 5]

INow at Shell International Exploration and Production, Houston, TX 77025. aij = Mjjx € — a;jp— BIS‘] T (1a)
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namic and kinematic quantities is characterized by the matertztween the matrix and the pore fluid at the local level is much
constantsM; (drained elastic modulus tengpry;; (Biot's ef- faster than the overall heat diffusion process. Neglecting the in-
fective stress coefficient tengpM (Biot's modulug, 85, (thermic  ternal energy change due to viscous dissipation and compression,

coefficient tensor related to the solid skelétoand 85" (thermic ~ the energy balance equation is given as
coefficient related to the pore flyidThe thermic coefficient ten-

sor,ﬁf‘j , provides a measure of the stress induced due to change in pC
temperature. It is related to the thermal expansion coefficients and

the drained elastic modulus tensors as foll¢@6,27: wherepC, is the heat capacity of the solid—fluid mixture amis

S=M: . as 2) the heat flux. In Eq(7) the first term on the right-hand side cor-

:Bu ijkl €kl ( ) .
responds to heat transport by conduction, whereas the second term

where aisj is the linear expansion coefficient tensor of the solidepresents the heat transport by convection. In addition, it is as-
skeleton. The thermic coefficienss’, on the other hand, is asso-sumed that the porous material bears a low permeability and that
ciated with the pore fluid and provides a measure of the potlee heat diffusion occurs much faster than the fluid diffusion,
pressure induced due to a change in temperature. It is relatedMuich indirectly results in the assumption of a snidicletnum-
the thermal expansion coefficients of the solid—fluid system, tieer. Under these circumstances, the term corresponding to convec-
porosity to the medium, and the Biot’s effective stress coefficietibpn can be dropped frortv), resulting in a linearized form of the

aT

UW:*hi,i*(PCUQi)T,i (7)

tensor, and is given 428,29 energy balance given by

B'=ajjai+(a'—ag) (3 aT
. g . : - pC,——+h;;=0 ®)
in which «' is the volumetric expansion coefficient for the pore at '

fluid, and ¢ is the porosity. Note that in writing Eqél)—(3), the . )
thermal expansion coefficients of the bulk drained material ar%_erz?]rly,“qu”.((Sr)] |stuncoup_lted" fg)m the pt()Jre plretszurte f.'eg.j'.d |
that of the solid skeleton are assumed to be equal. The abqgve € “bulk heal capacity,’p%,, can be relatec 1o Individua

equations give the complete anisotropic stress—strain respons Gt capacities of the solid and fluid constituentd &5

a porothermoelastic material. For the most general anisotropic C =(1- SCS+ ofC! 9

case, the behavior is described using 35 constantsVi(g{s, pPC,=(1=¢)p°Ct ¢p'C, ©)

6 aj’s, 1M, 6,8?] s, and 18°%") [30]. in which the superscripts and f refer to the solid and fluid,
respectively.

Mass Balance. Under isothermal coditions, Darcy's law, A

where the fluid flux is proposional to the pressure gradient, is Well 4| case can be caused by gradients in pressure and tempera-
known [6]. For solid—fluid constituent porous system, where ng o A generalized equation for the heat flux is giver| 5]
fluid sources or sinks exist, the fluid mass balance equation Is

nalogous to the fluid mass transport, the heat flux in the most

written as h,= —7\ijT,j+Fihjp,j (10)
§+q- =0 4y Where);; is the effective thermal conductivity of the solid—fluid
at a system, and*!]- is the coefficient tensor associated with the heat

whereq is the specific discharge vector. Under nonisothermal cofUx caused by the pressure gradient. The first term on the right-
ditions fluid transport within the system can be caused by a gfd@nd side in Eq(10) is the heat flux caused by tti@urier effect,

dient in both the pore fluid pressure as well as temperature.fereas the second term gives the heat flux resulting from the
generalized expression for the specific dischamges given as Dufour effect. TheDufour effect is ignored in this analysis, thus

[15] giving the governing equation for the heat flux also known as
Fourier’s law.
gi=— Kijp,j+Fi‘}T,j (5) As in Eq.(9) the “effective thermal conductivity” can also be

obtained from the thermal conductivities of the solid and fluid

in which «;; is the anisotropic mobility coefficient tensor ahlf ¢ titents as a weighted average using the porosity, and is given
is the coefficient tensor which relates the flux to the tempera’[uzrag[3 15]

gradient. The first term on the right-hand side in E8). corre-

sponds to the fluid transport caused by arcy effect and the Nij= (1= ¢)\5 + ¢)\ifj (11)
second term on the right-hand side corresponds to the fluid flux

generated as a result of tSereteffect. The term associated withwhere\f; and )\ifj are the thermal conductivities of the solid and
the Soreteffect is ignored in this analysis, and H&) results in  fluid constituents, respectively.

the well-known Darcy’s law. The anisotropic mobility coefficient The above set of Eqél)—(11) represents the porothermoelastic
tensor,x;; , is related to the intrinsic permeability tenskf,, and  system in the general anisotropic form. These are specialized for a
the pore fluid viscosityu, by «j;=k; /u. transversely isotropic material in the next section.

Momentum Balance. Momentum balance yields the equilib-
rium equations which are given by

;=0 ©) Transversely Isotropic Material

Again, Eq.(6) has been written, in terms of the total stress ap- /» ansversely isotropic material is characterized by same prop-

proach, while ignoring any body and inertial forces. erties in one plane and different properties in the (_j|re_c§|on normal
to this plane. For the transversely isotropic material it is assumed

Energy Balance. Within a continuum model, both the matrix that thez axis coincides with the axis of elastic symmetry. The

and the pore fluid are assumed to occupy the same point in sptre@sversely isotropic poroelastic material is characterized by 8

and therefore one should introduce two temperatures to characteaterial constantsl9,20. These are given & E’, v, v/, G', a,

ize the thermal state of the system. However, existing studies fef, andM, where the unprimed variables are material coefficients

thermomechanical behavior of porous media employ a commaonthe isotropic plane and the primed variables are material coef-

temperature for both the constituents of the porous system bagetnts in the transverse direction. In the abokids the drained

on the assumption of instantaneous local temperature equilibriwtastic modulusy is the drained Poisson’s rati@ is the shear

[3,4,15,16,31. In other words, it is assumed that the heat transpartodulus,« is the Biot's effective stress coefficient, amlis the
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Biot's modulus. With the introduction of nonisothermal effect@and pore fluid due to temperature changes. Hence, constitutive

three additional thermic constantg?, ,33’, " are required to relations for the transversely isotropic material under non-
account for the differential volume change of the solid skeletdrothermal conditions are given as follows:

M 11 M 12 M 13 0 0 0 —aM .
(o) M. M Ve 0 0 0 —am |[ % iy
ayy _12 _11 _13 ’ eyy Es
Ops M M3 Mgz 0 0 0 —a'M €55 5
Txy | = 0 0 0 G 0 O 0 Yxyf —| 0 |T (12)
Tyz 0 0 0 G o0 0 Yyz 0
Tzx Yzx 0
0 0 0 0 0 G 0
\ P ) \ <) MpB°!
| —aM —aM —a'M 0 0 O M 3 :
I
where However, many problems in geomechanics are characterized by
— o= ) geometries in which boundary conditions do not change along the
Mu=Myta™;  Mpp=My+a'™ (132)  direction of their generators. Under such circumstances, a gener-
- . 2 alized plane strain idealization can be used which allows extrapo-
Mis=Miat aa'™; Mgs=Msgata™™M (130)  |ation of solutions developed in two-dimensional geometries to a
B5=B5+aMBs: 8% =g +a MBS (130) general three-dimensional cas2,33.

It is assumed that the direction is infinitely long and that
In the above, the coefficients of the drained elastic modulus tensgmundary conditions are invariant along that direction. Hence, a
can be related to the material consta®sE’, v, v', and G’ generalized plane strain condition, as discussed above, manifests
chosen to represent the transversely isotropic materials by the ftgelf, resulting in all stress components, pore pressure, and tem-

lowing relations[20-22: perature being independent. Naturally, both heat and fluid flux
components in the direction vanish and all diffusion phenomena
_ E(E'—Ev'?) ) occur in thex—y plane which is isotropic. It would therefore be
11_(1+ V) (E'—E'v—2Ep'?)’ ugeful to der_i\_/e gov_erning eqqations for a plarey) case which
will be utilized in obtaining analytical solutions(two-
E(E'v+Ev'?) dimensional and subsequently extended to the three-dimensional
M= (14a) case under the assumption of a generalized plane strain condition.
(1+v)(E'—E'v—2Ev'?) Combination of the equilibrium equations with the constitutive
. 2 relations yields the Navier-type equations which are given as
EE'v E"(1-v) follows:
Mys= Mas=

(E'—E'v—-2Ev'?)’ (E'—E'v—2Ev'?)

(14b) %(Mll_Mlz)ui,jj +%(M11+M12)uj,ji =ap;+B°T; (i,j=1,2

Lo . . . 17)
In addition, it has been shown that, with the assumption of mi- o
croisotropy and microhomogeneity the coefficientand o’ can Where u; denotes the solid displacement. Note that the two-
be related to components of the drained elastic tefi$®20. dimensional form of the equilibrium equations has been used to

These relations are given as derive the above equation. _ _ _
Combining the energy balance relation with Fourier’s law

M1+ Mt M i iffusi i
q=1— st V12 Vs (153) yields the heat diffusion equation
3Ks aT
- 2T =
.. 2Myg+Mgg ot CnVT=0 (18)
a'=l-—F— (15b)
3Ks

wherec,=\/pC, is the heat diffusivity in the isotropic plane.
whereKg is the grain bulk modulus of the solid constituent. Simi- Diffusion equations for the pore fluid are obtained combining
larly, using Eqs(2) and(3), expressions fop?, ,35', andpBsfare the fluid mass balance relations with Darcy’s law. These can be
obtained as follows: expressed in terms of the pore presspreand the variation of the
fluid content{, and are given as

B5=(My1+Myp)as+M s (16a)
' ’ (9p VZ _ Je sf J %a
B% =2M 30°+ M ga® (16b) St KMV p=—aM—+ "M — (19%)
BS'=2aa+ a'a® +(af—2a°— aS,)QS (16c) a o
. o . . _ ) ——¢;[V2¢(+¢cV?T]=0 (1%)
wherea® anda® are coefficients of linear expansion of the solid ot

skeleton in the isotropic plane and transverse directions, respee.. €= e, +€,, andc are, respectively, the fluid diffusivity
tively. In addition, the transversely isotropic material is charactegt-nol 2 counlin éénstant in accordance with

ized by different thermal conductivitiga,\") and mobility coef- ping

ficients («,«") in the isotropic plane and transverse directions. In
. . . . . . . kMM 11
line with the aforementioned discussion, governing equations for C

. ; ; s (20)
a three-dimensional case can be derived. (M 1+ a?M)
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M 11 1— 27/
In addition, the pore pressure diffusion equati@y. 19a)] can andc;, ¢y, andc reduce to their isotropic counterparts and are

be simplified assuming an irrotational displacement field andgiven by
semi-infinite domain, and is expressed as

EZ (2(1)) Guiyl‘j uj,ji:ap,i+BST,i (27)

_ZGK(l—V)(VU_ V)

ap aT Ci= (283)

e Cfvzp:ChfW (21) a*(1-2v)%(1- )

. . . c (1+v)

wherecy; is a coupling constant given b | pst_ s
hf pling g S y Cni=" (,3 1=, (28b)
,Cf sf ap

Chi=— ML, (22) — [ [a+w oge
c=|aa 1= (28&)

Notice that although governing equations are written here in
their t_WO-dimensionaI form$Eqs._ (17)—(2_2)], their _coe_fficients Inclined Borehole Problem
are still dependent on the material elastic properties in the trans- o o
verse direction. However, since the heat and fluid flux in zhe It is assumed that an infinitely long borehole is drilled perpen-
direction vanish under a generalized plane strain idealization, tfiular to the isotropic plane of a transversely isotropic poroelas-
respective conductivitie&’ and\’) are redundant. tic formation. The borehole is inclined and its axis deviated from
The Navier-type equation€l7), heat diffusion equatiori18), f[he in situ stress orientation. Aschematlc_of the mcllned borehole
and the pore pressure diffusion equation in an irrotational di§ shown in Fig. {a). The formation, described using a Cartesian
placement field, Eq(21), constitute a set of complete equationgoordinate system'y’z’, is characterized by in situ stressgs,
which can be solved to obtain solutions at the stress level. Cleay; , andS,,, virgin pore pressurg,, and formation temperature
the heat diffusion equation is uncoupled from the fluid diffusiorio- The borehole deviation is measured by two angigande, ,
and deformation fields and can be solved independently to yieihich are the inclination and azimuth angles, respectively. A local
expressions for the temperature distribution. These expressions@@grdinate system is chosen to represent the borehole in which the
the temperature field are then used in the pore pressure diffustoaxis is assumed to coincide with the borehole axis. The far-field
equation[Eq. (21)] to obtain expressions for the pore pressuri situ stresses in the'y’z’ coordinate system are transformed to
which can in turn be used within the Navier-type equatiidg. the localxyz coordinate system via a transformation maf8g2].
(17)] to obtain solutions for the stress field. In the local coordinate system, the borehole is subject to normal as
well as shear components of stress give8asS, , S,, S,y , Sy,
andsS,,, as shown in Fig. (b).
. . The boundary conditions of the problem can be imposed at the
Isotropic Material far field, r — oo
Under the special case where the material is isotropic, the ma- o . __c - __a-
terial is identified by two elastic constan@,and v, two poroelas- To= TSG OwT TSy 02— Sy (2%)
tic constantse andM, and two thermic coefficientg® and g3". Toy=—Sxy; Ty7=—Syz; Txz=— S (2%)
It can be shown that the constitutive equations reduce to

G P=po; T=To (2%)
14

O'ij = ZGE”' + E 65”‘ - apﬁij _IBST5|J (23&) and at the bOI’ehole Wali,: R

o,=—p,HIM); 7 p=7,=0; 308

DZM(Z*a€+,BSfT) (23)) rr Pw ( ) re rz ( )

=p,H(t); T=T,H(t 300

2G(1+ 1) . p=pyH(1) " (t) .( )

52(1*—2)0( (23c) wherep,, is the wellbore pressurd,, is the wellbore fluid tem-
v perature, and(t) is the Heaviside unit step function.
B¥'=3aa’+ (a'—3a% ¢ (23d) Owing to linearity of the problem, the solution is obtained em-

ploying a superposition of three subproblef3g]. Of these, the
first problem is a modified plane strain problem which accounts
for the in-plane normal and shear stresses and the pore pressure

The other governing equations are given as
Heat Diffusion

JT and temperature perturbations. This problem shows full coupling
——¢,V2T=0 (24) of the fluid and heat diffusion processes with the deformation. The
at other two problems, which are described as the uniaxial problem
Fluid Diffusion and the anti-plane problef83], are purely elastic since they do
not trigger fluid or heat diffusion.
ap 0 de o 9T The boundary conditions in the decomposition scheme are
51 KMV p=—aM —+ "M — (2%3)  given as follows:
Problem 1
aL 9, =2 At far field (r—«)
E—cf[v {+cVeT]=0 (250)
Oxx= — Sy Oyy=" Sy v TxyT T Sxy (319)
Under the assumptions of an irrotational displacement field and o, , , o LS
semi-infinite domain, the pore pressure diffusion equafiéq. 02z=— V' (S+S)—(a'=2v a)po— (B> —2v'B°)To
25(a)] reduces to (31b)
ap ) oT Tyz= Txz=0 (31)
ot GV P=Chigy (26) p=po; T=T, (31d)

Navier Equations

Journal of Applied Mechanics

At the borehole wall (=R)
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Fig. 1 (a) Schematic of an inclined borehole; (b) Far-field
stresses in the xyz coordinate system
o =—puH();  p=p,H); T=T,H(1) (31¢)
Problem 2

At far field (r — )
0= —SZ+[V’(SX+SY)+(CU—2V'a)po+(ﬁsl—2V’ﬁS)To]

(322)
Oxx= Oyy™ Txy™ Tyz= Txz= P~ T=0 (3%)
At borehole wall ¢=R)
Oy =Tg=T,=Pp=T=0 (3%)
Problem 3
At far field (r—«)
Oxx=Oyy=0,,= Tyy=P=T=0 (3%)
Txy= — Sxy v Ty Syz (33b)
At the borehole wall (=R)
Oy =Tg=T,=p=T=0 (3%)
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Table 1 Material parameters

Parameter Units Value
Elastic modulus E) GPa 9.474
Poisson’s ratidv) .- 0.24
Grain bulk modulus K) GPa 27.5
Biot's modulus (M) GPa 8.875
Permeability k) md  50%x10°°
Fluid viscosity (u) MPa's 10°°
Heat diffusivity-(cp) m?day  0.13824
Linear expansion coefficierisolid skeletona®) I°’C 6.0x10°°
Volumetric expansion coefficiertfluid, a%) I°C 3.0x107%
Porosity(¢) - 0.14

In addition, the solution for the modified plane strain problem is
obtained by a decomposition of the boundary conditions into three
contributing loading modeg32]. Of these, mode 1 accounts for
the hydrostatic part of the boundary stresses, mode 2 accounts for
both the pore pressure and temperature perturbations, and mode 3
takes into account the deviant part of the boundary stresses. Only
modes 2 and 3 are time dependent, in that mode 2 is characterized
by coupling between the pore fluid and heat diffusion processes.
Although mode 3 shows characteristics of full poroelastic cou-
pling it is still not affected by temperature perturbations. The
boundary conditions at the borehole wall are as follows:

Mode t

oP=Po=py; o1f=0; pP=0; TW=0; (34)
Mode 2
of'=0; 017=0; pP=(p,—po); TP=(T,~Ty)
(34b)
Mode 3
old=—Sycos 20— 6,); olY=S,sin20—6,);
p¥=0; T®=0 (3%)
where 6, is given by
(= 3tan 1[2S,,/(S,+S,)] (35)

The complete solution for the inclined borehole problem is ob-
tained by a superposition and is given in the Appendix.

Numerical Examples

The solutions developed in the previous section are applied to
assess the effect of the anisotropic parameters on the stress and
pore pressure distribution in the vicinity of the borehole. The
borehole orientation is given by two angles as shown in Fig) 1
which are the azimuthe,=30 deg, and the inclinatiop,= 60
deg. Comparisons with the corresponding isotropic porother-
moelastic and the isotropic poroelastic cases are made to highlight
the anisotropy effects on the results obtained.

A borehole of radius 0.1 m is assumed to be drilled in the
formation characterized by in situ stress and pore pressure gradi-
ents given as:S,,=25kPa/m, S, =22kPa/m, S,/ =29 kPa/m,
po=9.8 kPa/m. A section at a depth of 1000 m is analyzed where
the formation temperature is assumed targe- 125°C. The bore-
hole is assumed to be filled with a fluid maintained at a constant
pressure given bp,,=12.0 MPa. The material properties used in
the analysis are given in Table 1.

The degree of anisotropy of material parameters is modeled by
selecting appropriate values for the ratl€’, /', anda o .
Numerical results are presented in Figs. 2—17, in which negative
values of stresses are presented indicating that compression is
denoted positive.

Effect of Temperature. The effect of temperature on the pore
pressure and stress distributions is examined for the transversely
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E/E'=1; vv'=1;08=90"t=0.001 day

E/E=1; vv'=1,0=0°t=0.001 day

40
] AT=100'C o5/ a'=0.1 R
————— isotropic AT=-50°C
30 — ©
o
B =
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© /4]
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= =
e N U)
o =
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@ 3
£ 2
©
o -
o) o — [)]
a 2
=
- [$]
£ w0
10 — | a® a¥= 0.1
————— Isotropic
- AT =-100"C 7
-20 T I T | T l T I T s T I T l T | T ] T
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1..2 X 12 13
Radial Ratio (r/R) Radial Ratio (1/R)

Fig. 4 Effective tangential stress varying with
deg at t=0.001 day for different values of AT

Fig. 2 Pore pressure varying with r/R along =90

t=0.001 day for different values of

r'R along =90 deg at
AT

isotropic material and compared with the isotropic case. Only tiégher temperature than the formation. On the other hand, a nega-
anisotropy of thermic coefficients is modeled by fixing ratios fofive value of AT results in a reduction of the pore pressure. Also,
E/E'=1 andu/v' =1 and varyingaslas/ The difference between both effects are more pronounced for the transversely isotropic

the wellbore fluid and the formation temperatufel, is varied case. The induced pore press{pesitive or negativeleads to a

whereAT=T,—T,. All the results shown in this regard are for amodification of the effective radial stresses. As presented in Fig. 3,
short time inzverva(i. i.e.t=0.001 day. Figures 2 and 3 show thdhe effective radial stresses are tensile when the wellbore fluid is

pore pressure and the effective radial stress distributions, resp@. a hlghgr temperature than the format_lon W't.h the tens'le mag-
tively, as a function of the radial distance along #e90 deg nitude being higher in the transversely isotropic material. In the

ion ifase of a lower wellbore fluid temperature, the effective radial
ﬁ%esses are compressive in nature. Again, the compressive mag-
nitude is higher for the transversely isotropic case. Figure 4 shows
the effective tangential stress as a function of the radial distance
along the6=0 deg direction. As seen from Fig. 4, higher effective
tangential stresses are observed when the wellbore fluid has a
higher temperature. With a lower wellbore fluid temperature, the

duces a higher pore pressure close the to borehole wall for
cases wherdT is positive or when the wellbore fluid is at a

E/E'=1; vAv'=1;0 = 90° t = 0.001 day

0 AT= 100G effective tangential stresses are reduced. This is also seen clearly

in Fig. 5, which presents the variation of the effective tangential
stresses around the boreholer &8=1. Figure 5 has been gener-
ated using the data given by Li et 884] and is given in Table 2.
However, as seen from Fig. 5, a lower wellbore fluid temperature
leads to significant lowering of the effective tangential stress for
the transversely isotropic case.

Effect of Anisotropy of Thermic Coefficients. To evaluate
the effect of the anisotropic nature of the thermic coefficients on
the stress and pore pressure distributions, we fix the ratios for

E/E’'=1 andv/»' =1 and varya® «® . In other words, we assume

that material anisotropy is only because of a differehtvalue in
the transverse direction. Notice that the above choice results only

in the variation of values for the thermic coefficiept§ 8%, and
A" with all other material coefficientsMjy's, @, anda’) assum-
ing their values as in the isotropic case. Data given in Table 1 are
used for the analysis. The temperature difference between the
wellbore fluid and the formation is assumed to h&=50°C.
Again, results are shown for a short time interval, itez,0.001
day.

Figures 6 and 7 show the pore pressure profile as a function of

Effective Radial Stress (MPa)

10 1.1 15

1.2 13
Radial Ratio (r/R)

Fig. 3 Effective radial stress varying with

at t=0.001 day for different values of

Journal of Applied Mechanics

AT

r/R along 6=90 deg

the radial distance along th==90 deg direction. In Fig. 6 results

are shown for lower thermic coefficient raties/a' =0.1, 0.5
along with the corresponding isotropic porothermoelastic and po-
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E/E'=1; viw'=1;1/R=1 E/E'=1; viv'=1;0=90"t=0.001 day
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=01 day

© ,

Q a¥ a¥=0.1; AT=50'C

3
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3 —o— a¥a=05

E 5 — = Isotropic Poroth

——&-——— Isotropic Poroelastic
0 T I T I T ] T | T
-20 -0 -30 0 30 60 90 1.0 12 14 16 1.8 20
Borehole Angle (6) Radial Ratio (r/R)

Fig. 5 Effective tangential stress around the wellbore at TR Fig. 6 Pore pressure varying with  r/R along 6=90 deg at

=1 for different values of AT and a%a®. Curves generated  {=0.001 day
using data given by Li et al., 1998 (Table 2).

roelastic cases. On the other hand, Fig. 7 show results correspdaer values of thex®/ a*' ratio (%o <1.0), the thermic coef-

ing to higher values of thermic coefficient ratios, i.e3/e® ficients g5, g%, and 5" assume higher values. As a result, a

=2.0, 5.0. First, the pore pressure profile in the poroelastic casi@her magnitude of the pore pressure is induced and the total

exhibits the well-known Mandel-Cryer effect. In addition, all thestresses are more compressive.

porothermoelastic cases show an increased value of the pore prelext, we present results in the form of stress clouds to illustrate

sure close to the region near the borehole wall. the shear failure potential. The “stress clouds” represent the amal-
Figures 8 and 9 show, respectively, the effective radial and ta@@mation of the effective radial, tangential, and shear stresses pre-

gential stress profiles for the two lower values of the thermigented in tha/Tz—Sp space, wherg/J, is the mean shear stress

coefficient ratios, i.e.a%a® =0.1, 0.5. Tensile effective radial 9\Ven by
stresses are observed in the vicinity of the borehole which is a
natural consequence of the high induced pore pressure as dis-
cussed above. Again, as observed in the earlier cases, the tensile

magnitude of the stress is more predominant for the case wit E/E'=1; vWV'= 1,6 =90" t=0.001 day
25

lower o/« ratio. In contrast, lower/ ¢ ratios result in more
compressive tangential stresses as can be seen from Fig. 9. Ho )
ever, at a short distance inside the formation, the effective tanget
tial stresses are lowered, which may be again attributed to th 20 —
effect of the induced pore pressure. The aforementioned observ
tions can be directly linked to the effect of the/a® ratios on T A
values of 85, ,6’5', and 85 A simple calculation shows that, for %
~—~ 15 —]
g
2
Table 2 Material parameters (Li et al., 1998) 3
N 3
Parameter Units Value % 10—
Shear modulus®) GPa 8.88 n? |
Poisson’s ratiqv) 0.189 -
Undrained poisson’s ratiow,) 0.314 ' o “s.' 20
Skempton’s coefficientR) GPa 0.596 5 — O a¥a®=50
Permeability k) md 5.0X10°° £ pic Poroth
Fluid viscosity () MPa's 10°° 4 ——O—— Isotropic Poroelastic
Heat diffusivity: (cy,) m?/s 1.6X10°©
Volumetric expansion coefficient /°C 18.0x 1078 0 . : . : |
(solid skeletonga®) w0 112 1'4 1|6 1'3
Volumetric expansion coefficient /°C 3.0x10°4 : - 4 . n - 20
(fluid, o®) Radial ratio (r/R)
Porosity(¢) e 0.14
Wellbore fluid pressure MPa 135 Fig. 7 Pore pressure varying with  r/R along 6#=90 deg at
t=0.001 day
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——F3—— Isotropic Porothermoelastic
——O6—— Isotropic Poroelastic
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Radial Ratio (r/R)

Fig. 8 Effective radial stress varying with
at t=0.001 day

18 20

r/'R along #=90 deg

_1 2 2 2 2 2
Jo= (o —09p) "+ (09gg—0,) + (0, 0) ]+ o7, op,

+o2,
andsS; is the mean effective stress given by

Ot 0ggt 0y,

P 3

(36)

37

The stress cloud is obtained by evaluating pairs&égj,@) by

varying the angle around the borehofdpr a fixed radial distance

E/E'=1; vv'=1,0=90"t=0.001 day

—t— % %= 0.1
—— oY a¥=05

3 Isotropic P

Effective Tangential Stress (MPa)

———— lisotropic Poroelastic

oelastic

1.4 16
Radial Ratio (r/R)
Fig. 9 Effective tangential stress varying with

deg at t=0.001 day
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r/R along 6=90

E/E'=1; vv'=1;1/R =1;t=0.001 day

28

—9—— a%a¥= 0.5

——H—— isotropic Porothermoelastic
© Isotropic P

4 === Failure Criteria

Mean Shear Stress VJ, (MPa)

4 : T T T T T I T T T T T
10 15 20 25 30
Mean Effective Stress (S;) (MPa)

Fig. 10 Stress clouds at r/R=1 and t=0.001 day

and time[32]. The stress cloud concept is used in conjunction
with the Drucker—Prager criterion for a shear failure analysis. The
Drucker—Prager criterion can be expressed as

V3,=3AS,+D

whereA andD are positive material constants. Valuesfof 0.1
andD =14 MPa are chosen to represent the failure envelope.
Figure 10 shows the stress clouds at the borehole wall, i.e.,

r/R=1.0. It is seen that, for a lowerS/«® ratio, the stress cloud

moves to the right and higher, pushing it outside the failure enve-
lope. At the borehole wall, the effective radial stresses are always
zero. However, there is an increase in the effective tangential

stress and the effective axial stress for the low¥&® ratio. This
results in a higher difference between the stresses which causes
the mean shear stresgl,, to increase. With higher effective tan-
gential and axial stresses, the mean effective st®ssjs natu-

rally higher. Hence, the stress cloud moves higher and to the right

for the lowera® a® ratio. Figure 11 shows the stress clouds at a
fractional distance inside the formation given tAR=1.1. The
relative magnitudes of the stresses are still quite different for the

lower a% a® ratio, resulting in a cloud which is partially outside
the failure envelope. Again, Figs. 10 and 11 show that higher
thermal expansion coefficients in the transverse direction lead to a
higher shear failure potential. Also shown in Fig. 12 are the varia-
tions of the effective tangential stresses as a function of the angle
around the borehold), at the borehole wall. The tangential stress

is more compressive for lower values of th&/ a° ratio. A higher
wellbore pressure would thus be required to produce tensile zones,
indicating that a higher thermal coefficient in the transverse direc-
tion results in decreasing the fracturing failure potential.

(38)

Time-Dependent Effects. It is interesting to show the behav-
ior of stresses and pore pressure as time progresses. In Figs.
13-15 we show their variation with radial distance, along the
0=90 deg direction for three time intervalss 0.001, 0.01, and
0.1 day. Also, results are shown for two values of the thermal

expansion coefficient ratios, i.&yf/as':O.l and 1.0. It is seen
from Fig. 13 that the magnitude of the induced pore pressure
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E/E'=1; vA'=1;1/R = 1.1; t = 0.001 day E/E=1; vv'=1,6=90°

28 24

t = 0.001 day
t=0.01 day

—+— o%a®=0.1 _
84— —— o¥a®=05
——— isotropic Porothermoelastic

1 ——O6— Isotropic Poroelastic 7
_____ Failure Criteria

t=0.1 day

Pore Pressure (MPa)
]

Mean Shear Stress VJ, (MPa)

oS/ a¥=0.1
————— Isotropic

4 T T T T T T T T T T T 8 T T T T T I T I T v
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Mean Effective Stress (S;) (MPa) Radial Ratio (r/R)
Fig. 11 Stress clouds at r/R=1 and t=0.001 day Fig. 13 Pore pressure varying with  r/R for e,/ ;,=0.1, 1.0, for

t=0.001, 0.01, and 0.1 day

progressively decreases with time. In addition, the location of the

maximum pore pressure gradually moves into the formation andCombined Anisotropic Effects. The combined effect of the
away from the borehole wall. The magnitude of the pore pressuaaisotropy of elastic parameters and the thermal expansion coef-
for the loweraS/a®’ is, however, always higher. It is seen fromficient ratios is analyzed in Figs. 16—18. The pore pressure pro-
Fig. 14 that with the passage of time effective radial stresses in tliles for four sets of values of th&/E’, v/v' and a® o® ratios are
vicinity of the borehole change from tensile to compressive ishown in Fig. 16. It can be seen that for the two curves where
nature as a result of the diffusion process. Correspondingly, BSE' =2, v/v' =2, the pore pressure induced is higher for the case
time progresses the effective tangential stresses become M@fn 45/as =0.1 as compared to that for theslas =0.5. In

comprgssive, as can be seen from Fig. 15. It may be expectec_i t%a trast, wherE/E’=0.5, v/v'=0.5, the pore pressure is lower
as the induced pore pressure front progresses into the formation, i ' ) ' , .
the case where®/ a® =0.1 than fora® a® =0.5. A similar

results in lowering the effective stresses, indicating that the potefﬁ-r ast . . .
tial shear failure zone gradually shifts into the formation. observation is made about the tensile nature of the effective radial

E/E'= 1; vA'= 1: R = 1: t = 0.001 day E/E'=1; vv'=1;6=090°

12

Effective Radial Stress (MPa)

Effective Tangential Stress (MPa)
8
l

2 —+— a¥o¥=0.1
—O— a%0¥=05 “7
a —F3—— Iisotropic Porothermoelastic — S5 0.1
= e T \NA~~N —eees 1sotropic
t=0.001 day
10 T ‘ T, | T I T { T | T 8 T I T l T | T l T
0 30 60 90 120 150 180 1.0 12 14 16 1.8 20
Borehole Angle (0) Radial Ratio (r/R)

Fig. 12 Effective tangential stress varying with fatr/R=1and Fig. 14 Effective radial stress varying with IR for an/a,
t=0.001 day =0.1, 1.0, for t=0.001, 0.01, and 0.1 day
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E/E'=1;, ww'=1:0=90°

15
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————— Isotropic

t=0.1day

Effective Radial Stress (MPa)
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20 —
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8
|

----- 0 —O— EE=20; wW=20, «¥aS=05
: —+— EE=05 w=05; a% 5= 0.1
I t=0.01 day . . g
- —&— EE'=0S; wW'=05; a% o5=05
10 T T T T T T T T T 8 T I i [ L T I '
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Fig. 15 Effective tangential stress varying with rIR for  Fig. 17 Effective radial stress varying with  r/R at t=0.001 day
ay,/a,=0.1, 1.0, for t=0.001, 0.01, and 0.1 day for different combinations of  E/E’, v/v/, and ay,/a/,

stresses, shown in Fig. 17. On the other hand, the effective t&ponclusions

gential stress shown in Fig. 18 is most compressive for lower The solution for the inclined borehole problem in a transversely
ratios of E/E’, u/v/, and a%/a° . The combined effect of the isotropic poroelastic medium under nonisothermal conditions has
anisotropy of both the material and thermal expansion coefficierfisen presented in this paper. A superposition scheme, involving
results in complex behavior patterns. A consistent inference whidecomposition of the complex problem along with its boundary
relates the change in values for these ratios to behavior of thenditions into simpler problems which can be solved easily, has
stresses and pore pressure may be difficult to draw. Howeveegen used to arrive upon the solution. A parametric analysis has
noting that a change in these ratios results in a correspondipgen presented to study the material anisotropy effect on the stress

modification of the values fog®, 8%, and®', a fair prediction is and pore pressure profiles.
plausible. " A k P The temperature difference leads to a modification of both the

pore pressure and stress distributions. The effect of the anisotropy

6 =90 t = 0.001 day 6 =90°; t = 0.001 day

—8— EE'=2.0; vw'=20; 0% a%=0.1
—6— EE'=20; w'=2.0;0%05=0.5 3
——+—— E/E'=0.5; v&/'=0.5; 0%/ «¥'= 0.1
——0—— E/E'=0.5; vA'=0.5; o 5= 05

—— eE=20; v'=20; o8 a¥'=0.1
50 — O EE=20; wW'=20; 0% 0¥=05
—— EE=05 vA'=05; % 05= 0.1
| —e—‘ E/E'=05; ww'=0.5; a¥ a¥'= 0.5

20 —

-
o
|

4
L 4
4

p
4

Pore Pressure (MPa)
Effective Tangential Stress (MPa)

1.0 12 18 20 1.0 1.2

1.

14 6
Radial Ratio (r/R)

14 1.6
Radial Ratio (r/R)

Fig. 16 Pore pressure varying with  r/R at t=0.001 day for dif- Fig. 18 Effective tangential stress varying with MR at t
ferent combinations of E/E’, v/v', and a,/a;, =0.001 day for different combinations of  E/E’, v/v', and e,/ e},
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of thermic coefficients has been studied varying the thermal ex- 2

pansion coefficients in the isotropic and transverse directions O'qué)):H(t)[POpw](_z (A3b)
while keeping the mechanical parameters isotropic. It was found r

that the effects on the pore pressure and stress profiles are MOLR tions for mode 2 and mode 3 are obtained in the Laplace

pron(_)u_nce(_j when the materlal h"’.ls a higher thermal eXpansiflinain and are inverted to the time-domain using the Stehfest
coefficient in the transverse direction. In contrast, the stress a orithm[37]

pore pressure responses are more or less qo_mparable to the_ ISOUR | tions for Mode 2
pic case when the thermal expansion coefficients are lower in the

transverse direction. The time-dependent variation of the induced ST|12>:(-|- ~To)®(w) (Ada)
pore pressure is characterized by a front which moves into the "
formation as time progresses. The effect of anisotropy of mechani- spP=G,P (&) +G,d(w) (Adb)

cal parameters has been studied varyii&' and v/v'. It is in- M
teresting to note that for ratios &/E’, v/v'>1, the ratios of the ~(2)_ _ V2 sf 4 V12
thermal expansion coefficients affect the stress and pore pressufe ™ ¢ L My, {(FW (&) +F¥ ()} + 571 {(Tw
distributions in a manner similar to the case when the mechanical
parameters are isotropic. On the other hand, whHs', v/v' <1,

the trend of these resultse., effect ofa®/a®) is reversed. s M, M
Again, it must be noted that applicability of the analytical s0-So5 = — a| 1— —— |{F1Q(&) + F,Q(w)}— 8% 1— —=|{(T,,
i imi i i i Mll Mll
lution may seem limited for the case where the isotropic plane is
perpendicular to the borehole axis. Nevertheless, it serves as a —To)Q(w)} (A4d)
unique tool in both understanding the underlying phenomena, and, )
validation of numerical analyses in which some of the assump-Solutions for Mode 3
tions may be relaxed subsequeritBp,36.

~To)¥(w)} (Adc)

R2
5<3>—§( o C1K,(ér)+A;Cy 2>coszw—0r) (ASa)

s | 2G«k 2
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Appendix Bi=g| ~ACH| g Kale)| 1+ e elEn)
Transversely Isotropic Borehole Solution. The complete so-
lution for the inclined borehole problem in a transversely isotropic R*
medium and an isotropic medium are given. +3Cy—|cos A6~ 6,) (A5c)
r
on=—Po+SycosA0—6,)+ o\ +ol?+0P  (Ala)
~ So 1 3 A R?
0g9=—Po—Spcos A 6—6,)+a'\)+ a2+ a3 (Alb) 7&%):; 2A,C; T Ki(&r)+ (’g’T)z Ko(ér) | — 72 Czr—z
027= =S+ [V (S )+ (a' =2v a)po+ (B’ —2v' B)To] ,
R
Tv'(optog)—(a' =2v a)p—(B'=2v'B)T (Alc) —3Cy—sin2(6-6,) (A5d)
r
0r=—Pot+Sysin2(6—6,)+ a3 Ald
" 0t SosNA6=6)F ory (A1) where K, is the modified Bessel function of the second kind of
012= = (S, C0S0+S,,sinO)[ 1—(R%/r?)] (Ale) ordern. In the above
04,= (S SiN0+ S, cos)[ 1+ (R?/r?)] (ALf) () _[ Ko(xr) (A63)
p=po+p2+p® (A1g) Ko(xR)
T=To+T? (A1h) _ Ki(xr)  RKy(xR) (Aéb)
X =
wheresll, ¢@, o o1 o o3 o3 p@ p® and XTKo(XR)  xr?Ky(xR)
T® are obtained by solving the modified plane strain problem as
indicated earlier. In the above, , P,, andS, are given by Q(x)= Ki(xr) — RKy(XR)  Ko(xr) (A6Q)
1.1 XIKo(XR)  xr?Ko(xR)  Ko(XR)
0= ztan [2S,,/(S+S))] (A2a)
= Chf
Po=(S8))/2 (A20) FF[(pw—po)—(m)(Tw—To)} (A6d)
S=0.5/(S,—S,)*+4S;, (A2c)
c
The expressions forrﬁrl) , aﬁrz) , aﬁ?) , 0(919) ) o((,z(,) ) o((f},) , 053;,) , F,= (m) (Tw—To) (A6e)

p®@, p®, andT® are obtained as followgs2,37:

Solutions for Mode 1 \F \F
R2 w= C—h; g: C_f (A6f)

W=H(t)[Po—puwll = A3a,
o =HOPo pW]( r2) (A3a) The constant€;, C,, Cs
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4 so B(1+ )
C,= AT7a s = W
1" 2A(Bs B~ AB; (72 =2 S ol g ke 2 eln
_ 4B, 1 R? R*
Co=—5 AL(Bs—B,)—A,B, (A7) e czr—z— 3(:3r—4 cos 26— 6,) (A10b)
- 2A1(By+B3) +3A;B; (ATQ) ~3_So| B+ vu) K
3[2A.(B3—B,)—A,B,] Too =g m gr Ki(&r)| 1+ ——1K5(¢ér)
in which R4
+3Cz—|cos A6~ 0,) (Al0c)
A oM (A8a) '
1= )
M1+ a™™ 5_So[2B(1+n) 3
ﬁa)_ m gr Ki(ér)+ ——Ky(ér)
M1+ M o+ 20°M u (ér)
= (A8b)
M+ a?M 1 c R2 e 4] , "
y T 31—y C2pz 3Ca g |Sin (6—6,)  (A10d)
11
Bi= 2Ga Ka2(¢R) (A8c) where B is the Skempton’s pore pressure coefficient, is the
undrained Poisson’s ratio, and, s the modified Bessel function
6 of the second kind of order.
BZ:gR 1(ER)+ —— K, (£R) (A8d) The constant€,, C,, C5 are given by
(£R)?
_ 126R(1—vy)(vy—v) (Alla)
Ba= 2| = K, (£R)+ ——Ky(£R) (AS) © BFw)(DzmDy
=2| —= — e
TUERTEET T (R 4(1-»,)D,
sz—(Dz—Dl) (Allb)
Isotropic Borehole Solution
Complete solution for the inclined borehole in an isotropic ma- Ca=— ¢R(D2+ D)+ 8(vu= ¥)K4(£R) (Al1c)
terial is obtained using the same decomposition scheme and Egs. éR(D,—Dy)
(Ala)—(A1h), with the added condition that=a’ and 8°=%.  in which the constant®, andD, are given by
Solutions fore(l), o2, 6@, 0§}, o3, o), 0P, p@, p®,
and T® for the inclined borehole in the isotropic medium were D1=2(v,—v)K1(éR) (A123)
obtained by Li et al[34]. Their solutions have been corrected for D,=£R(1— 1)K,(£R) (A12b)

some of the typographical errors and reproduced for clarification

below.

Solutions for Mode 1

Solutions fora{? and¢{) are the same as given in Eq#3a)
and (A3b).

Solutions for Mode 2

ST2=(T,—To)P(w) (A9a)
SpP=F,®(&) +F,d(w) (A9b)
~(2) _ 1-

so=a {F1W(§)+F2\I’(w)}+,8 {(T

—To)¥(w)} (A9c)
~(2)_ 1~ s| =

SO 4= a( ){F19(§)+F29(w)} B ( ){(T

—To)Q(w)} (A9d)

The functions®(x), ¥ (x), andQ(x), F;, F, are as defined in
Eqgs. (A6a)—(A6C).

Solutions for Mode 3
So| BA(1—v)(1+ vy)?
(1—vy)(vy—v)

p¥= CiKy(é7)

B(1+ Vu)

m COSZ@ 0)

= (A108)

Journal of Applied Mechanics

References

[1] Biot, M. A., 1941, “General Theory of Three-Dimensional Consolidation,” J.
Appl. Phys.,12, pp. 155-164.

[2] Biot, M. A., 1955, “Theory of Elasticity and Consolidation of a Porous An-
isotropic Solid,” J. Appl. Phys.26, pp. 182-185.

[3] Bear, J., and Corapcioglu, M. Y., 1981, “A Mathematical Model for Consoli-
dation in a Thermoelastic Aquifer Due to Hot Water Injection or Pumping,”
Water Resour. Resl7(3), pp. 723-736.

[4] Kurashige, M., 1989, “A Thermoelastic Theory of Fluid-Filled Porous Mate-
rials,” Int. J. Solids Struct.25(9), pp. 1039-1052.

[5] Coussy, O., 1989, “A General Theory of Thermoporoelastoplasticity for Satu-
rated Porous Materials,” Transp. Porous Mediapp. 281-293.

[6] Coussy, O., 19959Vechanics of Porous Continu&Viley, New York.

[7] Katsube, N., 1988, “The Anisotropic Thermomechanical Constitutive Theory
for Fluid-Filled Porous Materials With Solid/Fluid Outer Boundaries,” Int. J.
Solids Struct.24(4), pp. 375-380.

[8] Utsugida, Y., 1985, “Coupled Analysis of Flow and Heat Around a High-Level
Nuclear Waste Repository,” in Proc. 5th Int. Conf. Numerical Methods in
Geomechanics, Nagoya, Balkema, Rotterdam, pp. 711-716.

[9] Brownell, Jr., D. H., Garg, S. K., and Pritchett, J. W., 1977, “Governing
Equations for Geothermal Reservoirs,” Water Resour. RS.pp. 929-934.

[10] Rice, J. R., and Cleary, M. P., 1976, “Some Basic Stress Diffusion Solutions
for Fluid-Saturated Elastic Porous Media With Compressible Constituents,”
Rev. Geophys. Space Phy$4(4), pp. 227—-241.

[11] Thompson, M., and Willis, J. R., 1991, “A Reformulation of the Equations of
Anisotropic Poroelasticity,” ASME J. Appl. Mech58, pp. 612—-616.

[12] Wang, H., 2000Theory of Linear Poroelasticity With Applications to Geome-
chanics and Hydrogeologyrinceton University Press, Princeton.

[13] Booker, J. R., and Sawvidou, C., 1984, “Consolidation Around a Spherical
Heat Source,” Int. J. Solids Struc2p, pp. 1079-1090.

[14] Booker, J. R., and Savvidou, C., 1985, “Consolidation Around a Point Heat
Source,” Int. J. Numer. Analyt. Meth. GeomecB,,pp. 173-184.

[15] McTigue, D. F., 1986, “Thermoelastic Response of Fluid-Saturated Porous
Rock,” J. Geophys. Res91(B9), pp. 9533-9542.

[16] McTigue, D. F., 1990, “Flow to a Heated Borehole in Porous, Thermoelastic
Rock: Analysis,” Water Resour. Re26(8), pp. 1763-1774.

JANUARY 2005, Vol. 72 / 113



[17] Kurashige, M., 1992, “Thermal Stresses of a Fluid-Saturated Poroelastic Hol- ~ Solution for an Inclined Borehole in Transversely Isotropic Porous Media,”
low Cylinder,” JSME Int. J.,.35(4), pp. 386—391. Fourth North American Rock Mechanics Symposium. Seattle, WA, Sept.
[18] Kodashima, T., and Kurashige, M., 1996, “Thermal Stresses in a Fluid- 5-10.
Saturated Poroelastic Hollow Sphere,” J. Therm. Stressgsp. 139-151. [29] Ekbote, S., 2002, “Poromechanics Wellbore Stability: Theory and Applica-

[19] Cheng, A. H.-D., 1998, “Material Coefficients of Anisotropic Poroelasticity,” tions,” Ph.D. dissertation, The University of Oklahoma.
Int. J. Rock Mech. Min. Sci.34, pp. 183-193. [30] Abousleiman, Y., and Ekbote, S., 1999, “Porothermoelasticity in Transversely
[20] Abousleiman, Y., and Cui, L., 2000, “The Theory of Anisotropic Poroelasticity Isotropic Porous Materials,” The IUTAM Symposium on Theoretical and Nu-
With Applications,” Modeling and Applications in Geomechanieslited by merical Methods in Continuum Mechanics of Porous Materials. Stuttgart, Ger-
M. Zaman, J. Booker, and G. Gioda, Wiley, New York. many, Sept. 5-10, pp. 145-152.
[21] Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., and Roegiers, J.-C.[31] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960ansport Phenomena
1996, “Mandel's Problem Revisited,” Geotechniqui§(2), pp. 187-195. Wiley, New York.
[22] Abousleiman, Y., and Cui, L., 1998, “Poroelastic Solutions in Transversely[32] Cui, L., Cheng, A. H.-D., and Abousleiman, Y., 1997, “Poroelastic Solution of
Isotropic Media for Wellbore and Cylinder,” Int. J. Solids Stru@5(34/35, an Inclined Borehole,” ASME J. Appl. Mech64, pp. 32—-38.
pp. 4905-4929. [33] Cheng, A. H.-D., 1997, “On Generalized Plane Strain Poroelasticity,” Int. J.
[23] Li, X., 1992, “A Generalized Theory of Thermoelasticity for an Anisotropic Rock Mech. Min. Sci.35, pp. 199-205.
Medium,” Int. J. Eng. Sci.30(5), pp. 571-577. [34] Li, X., Cui, L., and Roegiers, J.-C., 1998, “Thermoporoelastic Modeling of
[24] Sharma, J. N., and Kumar, V., 1996, “On the Axisymmetric Problems of Wellbore Stability in Non-Hydrostatic Stress Field,” Int. J. Rock Mech. Min.
Generalized Anisotropic Thermoelasticity,” J. Therm. Stresd8spp. 781— Sci., 34(3/4), pp. 829—-835.
794. [35] Nair, R., Abousleiman, Y., and Zaman, M. M., 2002, “A Finite Element Poro-
[25] Sharma, J. N., and Kumar, V., 1997, “Plane Strain Problems of Transverse thermoelastic Model for Dual-Porosity Media,” Int. J. Numer. Analyt. Meth.
Isotropic Thermoelastic Media,” J. Therm. Stress2@, pp. 463—476. Geomech.28(9), pp. 875—-898.
[26] Nowacki, W., 1962 ThermoelasticityAddison-Wesley, Reading, MA. [36] Carslaw, H. S., and Jaegar, J. C., 1968nduction of Heat in Solid€Dxford
[27] Nowinski, J. L., 1978 Theory of Thermoelasticity With ApplicatigrSijthoff University Press, New York.
& Noordhoff, Groningen. [37] Stehfest, H., 1970, “Numerical Inversion of Laplace Transforms,” Commun.

[28] Ekbote, S., Abousleiman, Y., and Zaman, M. M., 2000, “Porothermoelastic ACM, 13, pp. 47-49:13, p. 624.

114 / Vol. 72, JANUARY 2005 Transactions of the ASME



1

short or long, aligned or oriented arbitrarily, and distributed uni-
formly or randomly. All these factors make estimates of the me-
chanical properties of fiber-reinforced composites very difficu
using the numerical methods. Often a representative volume
ment(RVE) containing only a few fibers may not be sufficient for
accurately determining the effective properties of a composite
Large-scale models with hundreds or thousands of fibers may ‘be
deemed necessary in many situations. Unfortunately, modeling‘?
bers, matrix, and possibly interphases between them as sepaf
material domains in large-scale models is beyond the limit

: ) : |
current computing power. This has been the main reason that m?)
of the current models of the fiber-reinforced composites based lé'ﬁ
the boundary integral equation and boundary element meth
(BIE/BEM) are two-dimensional ones with one or a few fiber§
considered in the RVE&ee, e.g., Ref$1-8|). These models are
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Introduction

Modeling can play an important role in the analysis and desii
of fiber-reinforced composite materials. Mechanical properti
and possible failure modes of these composites can be predic
early during the design stage using modeling techniques. Ho
ever, modeling fiber-reinforced materials presents many ch
lenges to numerical methods. Fibers in a composite can have
ferent properties, shapes and sizes. They can be straight or cur\?e

A Fast Boundary Element Method
for the Analysis of Fiber-
Reinforced Composites Based on
a Rigid-Inclusion Model

A new boundary element method (BEM) is developed for three-dimensional analysis of
fiber-reinforced composites based on a rigid-inclusion model. Elasticity equations are
solved in an elastic domain containing inclusions which can be assumed much stiffer than
the host elastic medium. Therefore the inclusions can be treated as rigid ones with only six
rigid-body displacements. It is shown that the boundary integral equation (BIE) in this
case can be simplified and only the integral with the weakly-singular displacement kernel
is present. The BEM accelerated with the fast multipole method is used to solve the
established BIE. The developed BEM code is validated with the analytical solution for a
rigid sphere in an infinite elastic domain and excellent agreement is achieved. Numerical
examples of fiber-reinforced composites, with the number of fibers considered reaching
above 5800 and total degrees of freedom above 10 millions, are solved successfully by the
developed BEM. Effective Young's moduli of fiber-reinforced composites are evaluated for
uniformly and “randomly” distributed fibers with two different aspect ratios and volume
fractions. The developed fast multipole BEM is demonstrated to be very promising for
large-scale analysis of fiber-reinforced composites, when the fibers can be assumed rigid
relative to the matrix materials{DOI: 10.1115/1.1825436

adequate for the study of local properties, such as interfacial
rgresses and fractures, of a composite, but are often not sufficient
r evaluating the overall mechanical properties of the composite.

el%éarefore, models that can capture the overall behaviors of a com-
R,c_)site without overwhelming computing resources are needed and

ill be beneficial in large-scale simulations. Using the rigid-
(llrﬁ(_:lusion model seems to be a feasible first step in large-scale

ir(rjmlations for investigating the interactions of fibers, load trans-
er mechanism and effective properties of a composite. The rigid-

nclusion approximation is valid when the fibers have much
%igher values of stiffness compared with that of the matrix. This
g_proximation can significantly reduce the modeling complexity
or the analysis, as will be demonstrated in this paper.
There are two approaches regarding whether or not to further
implify the geometries for modeling rigid inclusions. One ap-
roach treats the rigid inclusions as they are without further sim-
)Hging their geometries, which consequently requires 3D models
or figid inclusions. The other approach treats slender rigid inclu-
ons, as in the case of long-fiber-reinforced composites, as rigid-
e inclusions, where the geometry of an inclusion is reduced to a
6?18' This rigid-line inclusion model is valid when the aspect ratio

n inclusion is large. It is also efficient in modeling of rigid-line

inclusions because of the simplified geometry. Only 2D models of
rigid-line inclusions in a medium have been studied so far.
In the analysis of rigid-line inclusions, also called anticracks in

and Nuclear Engineering, University of Cincinnati, P.O. Box 210072, Cincinnati, 0B 2D elastic domaif9], many research results have been reported
45221-0072. e-mail: yijun.liu@uc.edu

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, January 299

in the literature. Boundary integral equation and boundary ele-
ment method have been found especially suitable for the analysis
f rigid-line inclusions, since cracks in 2D, the counter part of

2004; final revision; May 22, 2004. Associate Editor: M. Mukherjee. Discussion ofigid lines, have been studied intensively by using the BIEs. Many
the paper should be addressed to the Editor, Professor Robert M. McMeeking, J@f-the results for crack analysis can be extended readily to the
nal of Applied Mechanics, Department of Mechanical and Environmental Enginegawsis of rigid-line inclusions. In the ear|y 1990s. the group of
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u, Chandra and Huang made considerable contributions to the
study of rigid-line inclusions in a matrix using the boundary inte-
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gral equation method for 2D cases. Some of their analytical and s\
numerical results can be found in Ref$0-14. In these works, "
the rigid lines embedded in an infinite space are represented by
distributions of tractions along the rigid lingas compared to =
distributions of dislocations for crackand integral equations are cm——
established using the Green'’s functions. The interactions of rigid
lines with cracks and the effects of rigid lines on the effective 3
elastic material properties of composites were successfully studied x — /
using this approach for 2D moddl$0—-14. Extensive review of —— S,
the earlier theoretical work on the elasticity study of rigid-line x
inclusions in a solid can also be found in Réfs0—14. Recently, 2
there seems to be a renewed interest in the study of rigid-line v
inclusions using the BIEs. In Rdf15], Leite, Coda, and Venturini 1
reported a 2D BEM coupled with the finite elements that are used o i : 3 L
to model the bar inclusions in a matrix. These bar inclusions/d: 2 A 3D infinite elastic medium  (R*) embedded with rigid
. ) . . _ ... __inclusions
representing fibers in a matrix, are assumed to be rigid within any
cross section of a bar, but can deform along the axial direction in
their models. The displacement and stress fields near the line in-
clusions are studied by this approach. In a recent Wb8k Dong, workers[26] have formulated the BIE for 3D elastic inclusion
Lo, and Cheung developed a hypersingular BIE approach for theoblems using the FMM. Solutions for up to 343 spherical voids
analysis of interactions of rigid-line inclusions with cracks in a 2bn an elastic domain were computed using their parallel FMM
elastic medium. Stress intensity factors at the tips of rigid lines aBEM code (with total DOFs about 400 000 26]. Some other
computed with this hypersingular BIE approach and comparegvelopment of the fast multipole BEM can be found in Refs.
with analytical solutions. In all the results mentioned above, on[®27], [28] for general elasticity problems, and[i29—37 for crack
2D models with a small numbéless than 1Dof rigid-line inclu-  problems. With the advances of new composites, new modeling
sions have been considered. Most recently, Nishimura and Lapproaches that can handle even larger numbers of fibers in an
[17] used the fast multipole BEM to solve rigid-line inclusionRVE need to be developed. The rigid-inclusion approach seems to
models in the context of 2D thermal analysis. The rigid-line corbe a feasible first approximation with the current computing ca-
cept in the thermal case means line inclusions with much higheabilities. All these demands in materials research and progresses
thermal conductivities than that of the matrix material. A hypeiin the BEM suggest that the rigid-inclusion models and the fast
singular BIE was employed and up to 10 000 line inclusions wergultipole BEM may play a significant role in the analysis of fiber-
studied. The effective thermal conductivity of a 2D medi(thin  reinforced composites.
films) containing rigid lines were successfully evaluated using the In this paper, a new BIE formulation is presented for the analy-
2D RVEs embedded in an infinite plane in REE7]. sis of rigid inclusions in a general 3D isotropic elastic medium
In the case of modeling rigid inclusions as 2D or 3D objectgased on the general direct BIE formulation. The BIE contains
without simplifying their geometries, Ingber and Papathanasiou§ly the displacement kernel and the influence of the traction
work [18] seems to be the only reported one using the bounddfgrmel is implied in the coefficient of the free displacement term.
element method. The full conventional BIE for Navier’s equatioflthough this integral equation is essentiallyot exactly a Fred-
governing anincompressime'nedium Containing r|g|d fibers is holm integral equation of the first kind, it is suitable for numerical
solved in[18] in order to determine the effective moduli of com-solutions with iterative solvers because a good preconditioner is
posites with different fiber volume fractions and aspect ratiodvailable. The BEM accelerated by the fast multipole method is
Constant boundary elements were employed to discretize the BIged to solve the established BIE and the preconditioned system
which contains the singular as well as weakly-singular kernel@f equations is found to be well conditioned. The analytical solu-
Parallel computing was used to solve the BEM equations. Up #§n of a rigid sphere in an infinite elastic domain is used to
200 short, aligned rigid fibers, with the total degrees of freedoM@lidate the developed BEM code and excellent agreement is
(DOFs9 of about 12 000, were successfully solved by the deveichieved. Examples for modeling fiber-reinforced composites,
Oped BEM approach_ Very good agreement of the evaluated eﬁth the number Of f|bers reaChlng abOVe 5800 and total DOFs
tive moduli using their BEM approach and analytical results i@0ove 10 millions, are successfully solved by the developed fast
reported in[18], which clearly demonstrates that the rigid-fibefnultipole BEM. Effective Young’s moduli of fiber-reinforced
model is very promising and the BEM is very efficient for anacomPposites are evaluated for uniformly and “randomly” distrib-
lyzing fiber-reinforced composites. In the field of fluid mechanic&!ted and oriented fibers with two different aspect ratios and vol-
there are many research results concerning the flows of fluid@e fractions. The developed fast multipole BEM is demonstrated
around rigid solids. Two recent references using the bounddf € Very promising for large-scale analysis of fiber-reinforced
element method for modeling rigid bodies in fluids can be fourfPMPosites, when the fibers can be assumed rigid relative to
in Refs.[19], [20]. In particular, in Ref[19], an indirect BIE of the matrix. It can also be applied to modeling other inclusion
the first kind using the single-layer potential is developed for sol"oPlems.
ing Stokes equations and this approach is found to be very stable
and more amenable to fast iterative solvers. 2
The boundary element method based on the BIEs is a natufal . .
way to model inclusion problems, due to its reduction of the dR19id Inclusions
mension of the problem domain and high accuracy. With the de-The boundary integral equation for the analysis of an elastic
velopment of the fast multipole method6MM) (see a recent domain containing rigid inclusions is derived in this section. This
review in Ref.[21]) for solving boundary integral equations, largenew and simplified BIE formulation contains only one integral
models with several million degrees of freedom can be solvevith the displacement kernel and thus can facilitate more efficient
readily on a desktop computer. Rokhlin, Greengard, and coemputation. Consider a 3D infinite elastic dom&irembedded
workers, who pioneered the FMM, have done extensive reseawtth n rigid inclusions(Fig. 1). The matrix is loaded with a re-
on the FMM for inclusion problems in the context of potentiamote stress or displacement field. The displacement at a point
fields as well as elastic fields in two-dimensional domdsee, inside the domain is given by the following direct representation
Ref. [22] and related papers in Reff23-25). Rodin and co- integral(see, e.g.[32)):

S

BIE Formulation for an Elastic Medium Containing
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in which no jump term arises since thekernel is only weakly
U(X)=f[U(X:Y)t(Y)*T(le)U(Y)]dS(y)JrUm(X), VxeV,  singular[34—-37. This BIE for rigid-inclusion problems is ex-
S tremely compact and simple, in which only the weakly-singular
(1) kernel needs to be handled. Analytical solutions for rigid-
whereu andt are the displacement and traction vectors, respeificlusion problems may be obtained for simple geometries by
tively; S=U,S, with S, being the boundary of theth rigid using this BIE formulation.
inclusion(Fig. 1); andu” the undisturbed displacement field when Although the BIE(6) for rigid inclusions are much simpler to
a remote stress or displacement field is applied and the rigid #tandle than the BIE for elastic inclusions, it requires additional
clusions are not prese(ithis term is similar to that for an incident considerations, that is, the rigid-body motions of each inclusion,
wave in the elastodynamic caf28]). For a finite domain model, expressed by Eq2) that contains six unknowr(sl andw vectors
this term will not be present in Eq1). The two kernel functions for each inclusion. Additional equations are needed to supplement
U(x,y) and T(x,y) in Eq. (1) are the displacement and tractionBIE (6). These equations can be obtained by considering the
components in the fundamental soluti@elvin’s solution, re- equilibrium of each inclusion, that is, the followingix scalay
spectively, which can be found in any BEM referenc¢ese, e.g., €quations:
[34-37).

Before we let the source point approach the boundarg to f t(y)dS(y)=0; (7
derive the boundary integral equation, we first consider the rigid- S,
body motions of each inclusion. For a rigid inclusion enclosed by
S, , the displacement at any poipican be described by the rigid- f p(y) X t(y)dS(y)=0; )
body motions as: s

(3

u(y)=d+ wXp(y), (2) for «=1,2,...n. Expression(7) represents the equilibrium of
the forces, while expressid8) that of the moments, for the rigid
inclusions. BIE(6) and Egs.(2), (7), and(8) are simultaneously
solved to obtain the unknown rigid-body motiodsand w, and
tractiont for all the inclusions.

It should be pointed out that BIE if6) is essentially a Fred-
holm integral equation of the first kind, although not exactly since
it contains additional finite number of unknowdsind e for each

~ - ~ ~ inclusion. Integral equations of the first kind are usually consid-
0=f [UxYty) = T(x,y)u(y)]dS(y), VxeV, (3) ered not suitable for numerical solutions with iterative solvers.
Sa This problem can be resolved in two ways. Namely, we either
wherel andt are the displacement and traction vectors, respeeonvert the BIE into an equivalent equation of the second kind, or
tively, for this complement problem)=U andT=—T as in Eq. use a preconditioner after the discretization. One may possibly
(1) (the normal for the region enclosed 18y is in the opposite replace BIE(6) by a second kind integral equation of the follow-
direction ofn shown in Fig. ). Any rigid-body motion is a solu- ing form as one uses instead the traction equation corresponding
tion to the elasticity equations for the complement problem. Thui, (6):
the following solution:
U(y)=u(y)=d+wXp(y), Tt(y)=0 ()= LTU(X,y)t(y)dS(y)+Tu°°(x), VxeS=US,,

a

whered is the rigid-body translational displacement vectarthe

rotation vector, angh a position vector for poing measured from
a reference poinfsuch as the center of the inclusjo€onsider a
complemenproblem in the interior region enclosed I8, and

filled with the same material as that of domain Then the fol-
lowing representation integral holds:

satisfies the representation integdl. Substituting these results

into (3), we obtain: whereT is the traction operator which is applied %o Unfortu-

nately, the solution to this equation is not unique. We therefore
decided to use BIE6) for the analysis since we can find a good
J’ T(x,y)[d+wXp(y)]JdS(y)=0, VxeV, preconditioner for the system obtained after discretizatiot6pf
Sa as we shall see later.
or In 2D, BIE (6) will degenerate in the limit as the aspect ratio of
an inclusion tends to infinity, that is, equations generated by using
_ BIE (6) on the two opposing boundaries of a slender inclusion
L TOoy)u(y)dS(y)=0,  VxeV, “) will be identical and thus not enough equations will be available
) o for solving the BIE for separate tractions. In this case, the sum of
for the region enclosed b§, («=1,2, ... n). This is exactly the tractions across the inclusion can be used as a new variable in BIE
second integral with thd kernel in Eq.(1) on one inclusion. () to derive a new equation. Different Green’s function formula-
Therefore, the integral in Eq1) involving the T kernel vanishes tions can also be employed to consider rigid lines based on the

(el

and Eq.(1) reduces to: work in Refs.[9-15], which may turn out to be equivalent with
the equation based on BIE). Like the crack cases, hypersingular
u(x)= f Ux,y)t(y)dS(y) +u”(x), VxeV, (5) BIE formulations can also be applied, as has been done recently in
s [16] for 2D elasticity, and irf17] for 2D thermal analysis of line

jinclusions. New BIE formulations for rigid-line inclusion prob-

for all rigid inclusions §=U_,S,). This representation integra . ) .
9 S aSa) P 9 |ﬁ['ns in 3D, however, still remain to be developed.

can be applied to evaluate the displacement field at any po
inside the domaiiv, once the tractions on the surfaces of the rigi% .
inclusions are obtained. The stress field at any point in the domain 1 N€ Fast Multipole Method
can also be evaluated by taking derivatives of expres@pand The fast multipole methof21-31] is employed to accelerate
applying the Hook’s law. the BEM solution of the BIE for rigid inclusions. In recent years,
To obtain the traction values on surfaces of the rigid inclusionthe fast multipole method has been demonstrated to be especially
we let the source point approach the boundayto arrive at the good for solving problems with large numbers of cracks and in-
following boundary integral equation: clusions in both 2D and 3D cases. Using the fast multipole
method for the BEM, the solution time of a problem is reduced to
u(x)= f Ux,)ty)dS(y)+u*(x), VxeS=US,, (6) orderO(N), instead 0fO(N?) as in the traditional BEMwith N
s a here being the number of equatipn¥he memory requirement is
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also reduced since the iterative solysuch as GMRESdoes not found sufficient for most problems. Further details of the FMM in
require the storage of the entire matrix in the memory. Thus, lartfee context of general 3D elastostatic problems and used in this
models that had to be solved on a supercomputer in the past @ark can be found in Ref§38,39.
now be solved on a desktop computer. The fast multipole BEM code developed for the current analy-
In the following, we briefly list the main results of the fastsis of rigid inclusions in 3D elastic media is based on the FMM
multipole method for the developed BIE) to show the essence BEM code that was developed at the Kyoto University for general
of this powerful approach to solving BIEs. Complete formulationslasticity problemg38]. This earlier FMM code has been tested
and steps in implementations of the FMM for elastostatic prolen some large-scale stress analysis problems of regular structures.
lems can be found in Ref§38,39. Other formulations using dif- More details on the FMM for the BEM and its implementations in
ferent FMM approaches for general elasticity problems can Iselving other types of problems can be found in RE24], [39].
found in Refs[26-28.
We start with the following form of the fundamental solution
(index notation is employed here, where repeated indices imply Discretization of the BIE

summation The boundary element method, accelerated by the fast multi-
1 2 Nu 9 Xy, pole method, is applied to solve BI@®) together with Eqs(2),
Uij(xy) = 8mn i Nt 2% (9_X. il (9) (7), and(8). In this paper, constant triangular boundary elements

are used to discretize these equations over the surfaces of the
where\ andu are the Lameonstantsg;; the Kronecker symbol, inclusions. One node is placed on each surface element and the
andr=r(x,y) the distance between the source poirind field field variable(traction is assumed to be constant over each ele-
pointy. The following identity holds: ment which is a flat triangular area defined by its three corner
R points. Although constant elements may not be as accurate as
1 — — linear or quadratic surface elements, they have certain advantages
W:ngo m:z_n Sh.m(OX) R m(OY), (10)  over other higher-order elements. For example, all the integrals
o involved in using the constant elements can be evaluated analyti-
for |Oy|<|Ox|, in which O represents a third poinR, , and cally in both 2D and 3D case¢As a matter of fact, it is not
S,m are solid harmonic functions defined in Ref88,39, and impossible to carry out analytical integrations for any planar ele-
() means the complex conjugate. Substitutiag) into (9), we Ments with arbitrary polynomial basis functions. But the results
arrive at: will be quite complicated.This avoids the use of any numerical
integration in the BEM and hence guarantees the accuracy in the

%

1 S & o evaluation of all integrals when the source poiris very close to
Uij(x,y) = WE > [Fij n.m(OX)Ry m(Oy) an element of integratiofwhich happens when many inclusions
B n=0 m=-n are closely packed in a model
R If the nodes are grouped together for each inclusion, numbered
T Ginm(OX)(0Y);Rm(OY)], 11 on one inclusion after another, then a discretized form of the BIE
where, (6) can be written as:
_ \+3 I TS _ ~ Uy Uy o Ul = ~
Fipnm(O%) = =t 8y S m(0%) = = (OX) 1=~ Sy m(OX), TN v A I
n, N2u ' AN 2u ax; T, Uy Uy o Unl | T [
0= . . . S0t . , (15)
G @)=t g (B%) i o ) g
in, - oy On, : u ~ ~ ~ t ”
hmm N+2u 9X; m n Uy U - Unp n Uy

The significance of expressidal) is that (tlf;e kernel(Jzi)j(x,y) IS wheren s the total number of inclusions being considei&gand
now a sum of functions in the form df;”(x—O)k;”(y—0), 7T, the nodal displacement and traction vector for inclusian
which will facilitate integrations independent of the source pint respectivelyli” the given remote displacement vector evaluated

and thus reduce the number of integrals to compute. To see this

is, . . . . . .
consider the integral in BIE5) on a subdomais, of Saway from Offinclusiona; andU,s the coefficient marix obtained from the
the source poink. Applying expressior11), with point O being (analytica) integration of the displacement kernel over inclusion
close to subdoméis we obtain- ! B when the source pointis located on inclusiom. From Eq.(2),

0 .

the nodal displacement vector on an inclusionan be related to

1 =0 _) the rig_id-body trar]slatiod and rotationw of that inclusion by the
J' Ui (x, )t (y)dS(y) = @20 2 [Fijnm(OX)M;  m(0)  following expression:
n=0 m=-n
> ug 2]
+G; OX)M,, m(O)], 12 ~ u a
|,n,m( ) n,m( )] ( ) U= :2 _ :2 ¢a:Aa¢a, (16)
in which, : .
Un am
Mj'nym(O):f Rn'm(GX/)tJ(y)dS(y), (13) in which u; is the nodal displacement vector at nadévith m
So being the number of nodes on inclusiaj g the transformation
matrix for each node on inclusiona given by[see Eq(2)]:
Mp,m(0)= L (OV);Rom(OY)(y)ASY),  (14) 100 0 ps —p

are called themultipole momentdor given n and m. Note that a=|0 1 0 =ps O Pu |, an
these four moments are independent of the location of the source 0 0 1 p, —p1 O

pointx and thus only need to be calculated once for all locations,
of the source point away frorg, (S, will be a cell in FMM and - : ; I :

O will be the center of this cell To evaluate the integral using Eq.gnd fl_nally " (1-6)' P '.S the rigid-body displacement vector for

o Tinclusion «, defined by:

(12), only a small number of terms are required in the expansion.
For example, using ten terms farin these expansions has been ©,=[d; dy d3 ®; w, o], (18)

th p, being the component of the position vecpfor nodei;
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for «=1,2,...n. The system of equation(45) is supplemented 3
with the following ones from discretizations of Eq%) and(8) on
each inclusionu:

B,f,=0, (19)

for «a=1,2,...n, in which B, is a 6X3m coefficient matrix
obtained by evaluating Eqé7) and(8) on inclusiona.
With results in(16)—(18), the discretized BIE15) and Eq.(19)

can now be combined to provide the following form of the system 2
of equations:
-_011 _012 _Dln Ap 0 - 0] PRSI
~ ~ ~ v
—Uxn —Uxp v —Uyp 0 A %l 1
. . . . . 2
. ' . . Fig. 2 Arrigid sphere in an infinite elastic domain v
—Up —Up v —U,, O 0 - Ay Tn
B, 0 0 ¢1
0 B, 0 “2 P, 0 0 Q O '
: L ¢n) o P -+ 0 0 @
L O 0 B, 0 O 0 L S oo
rﬁslc\ M—lz 0 0 pn 0 0 Qn
ﬁ; R, 0 - 0 S 0o - o’
N'x 0 R 0O O 0
u . .
= O” ' (20) :
0 L0 O R, 0 O S
: where
. 0) U -1
P Qi | —Ui A for inclusion i =12
There are 8l+6n equations in the above systefwith N=m R S| | B ol or Inciusion 1=1,, ... n.

Xn, being the total number of nodes on all inclusipnshich are (22)
sufficient for solving the & unknown rigid-body displacements . . . . . . )
and rotations ¢,) of then inclusions, and the I8 unknown trac- Physically speaking, inverting the matrix on the right-hand side of
tion componentst(,) at theN boundary nodes over all the inclu- (22 means to solve a rigid-inclusion problem for the whole space
sions. Note that in the above system, the dimension for submatgt containing one inclusiofith one. The inversion in22) isa
A, is 3mx 6 and forB, is 6x 3m. Both are not square matricesSMall operation which can be carried out efficiently with any di-
(tﬁe number of nodeg per inclusion can be largg If all the rect sol_ver for a matrix equation. _Wlth this preconditioning, the
inclusions are of the same size and shape, and meshed in the sdl r-rlght and Iower-lgft Smeatr'Ces (20) reduce to Z€ro ma-
way, then both the submatricés, andB,, can be computed only trices, while the Iower-.rlght submatrix apd the blpck dlagonals in
once for all the inclusions. Fhe upper_-left sub_matrlx are conver_ted into |d_er_1t|ty matrices. This
The iterative solver GMRES is used to solve the system & eSsentially equivalent to converting the original integral equa-
equations in Eq(20), in which the multiplication of thecoeffi- 10N in (6) into another equation of the second kind whose solution
cient matrix and(approximate solutionvector in each iteration IS Unique. The system thus obtained is well conditioned and the
are obtained by using the fast multipole method. In the FMM, tHP!utions are stable, as shown in the following numerical ex-
maximum depth of the oct-tree structure is below 10 levels. Dire@fPles-
integrations for near field interactions are computed during each
iteration and are not stored to save the memory space. As for the
preconditioner, we use the followingdiagonal”) matrix: 5 Numerical Examples

r—u 0o .- 0 A, 0 - 07 The developed fast BEM for the analysis of rigid inclusions is
11 1 . . . . .. .

- first validated using a test case of a single rigid sphere for which

0 —U,, 0 0o A -+ 0 the analytical solution can be found readily. Then, the BEM code

is applied to study the fiber-reinforced composites using the rigid-
inclusion model.

0 0 -U,, O A
M= Unn " 5.1 A Rigid Sphere in an Infinite Elastic Medium. To
By 0 0 0 validate the developed new BIE formulation and its BEM imple-
0 mentation for the study of rigid-inclusion models of fiber-

reinforced composites, a rigid sphere in an infinite elastic medium
is considered firs{Fig. 2). The elastic medium containing the
0 0o - B, O 0 - 0 rigid sphere is loaded with a far-field triaxial strasS. The ana-
- (21) lytical solution for this axisymmetric problem can be obtained
readily using basic elasticity theofl0] or the equivalent inclu-
The system in(20) is right-preconditioned with this matrix. The sion method41]. The radial displacement, radial and tangential
inverse ofM is easily obtained as: stresses in the elastic domain are found to be:
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Fig. 3 A boundary element model of the sphere  (with 1944 surface elements )

(1-2v)0” ad stress contour plot forr, on the surfacgboundary of the me-
u.(r)= T( - —3) r, (23) dium) is given in Fig. 7 for the finest megshown in Fig. 3. The
boundary stress field is obtained by using the traction results and
2(1—2 3 averaged at each corner node using results on the surrounding
o (r)=0"| 1+ ( v) a” (24) elements. Note the increase of the stress value on the siviihe
1+v 3| a stress concentration factor of 1.61%4hd its location due to the
presence of the rigid sphere in the elastic medium.
" 1-2va® The excellent agreement of the BEM results with the analytical
oy(r)=0"|1- 1+v (3|’ (25)  solution for this example suggests that the developed new BIE

formulation and its BEM implementation are correct and effec-
respectively, where is the radius of the spherg&, the Young’s tive. Fiber-reinforced composite materials will be considered next
modulus, andv the Poisson’s ratio of the elastic medium. Not&ising this rigid-inclusion model and the BEM approach.
thatu,(a) =0, which is the result for a rigid sphere. ) . ) .

The convergence of the BEM is studied with several boundar365-2 ‘Short-Fiber-Reinforced ~ Composites. Modeling  of
element meshes for the sphere. The finest mesh (eiétl 1944 fiber-reinforced composites usmg_the_ rigid-inclusion model and
elements is shown in Fig. 3. The radial stress computed by thie developed BEM is considered in this and next examples. Short
BEM on the surface is compared with the analytical solufiq. fibers in a matrix are more likely to act like rigid rofis8] if their
(24)] and the relative errors are plotted in Fig. 4 for differenstiffness is more than an order of magnitude higher than that of
meshes with increasing numbers of elements. The error with tH® matrix. Several representative volume elements containing dif-
coarsest mestl20 elementsis 4.93%, while that with the finest ferent numbers of fibers are used to study the interactions of the
mesh (1944 elementsis 0.19%. The convergence of the BEMfibers and to estimate the effective properties of the composites.
results is achieved. The field displacement and stresses within ¥e limit our attention to short and moderately long fibers in a
elastic domain are plotted in Figs. 5 and 6, respectively, for thgatrix, where the aspect ratitength/diameterof an inclusion is
coarsest meski120 elementsto deliberately show the errors of kept below 20. The main purpose of these examples is to show the
the BEM. Even though the results on the surface for this coarsepabiliies and promises of the developed fast BEM in large-
mesh contain a relatively larger err@.93% for radial stress, Fig. scale modeling of fiber-reinforced composites. The models stud-
4), the results inside the domaiaway from the surfageare quite ied here are simple and ideal in nature, with more realistic ones
good. This is one of the advantages of the BEM approach, whibleing left for future applications.
uses integral representatipe.g., Eq.(5)] for this calculation that ~ The RVEs considered in this study are of finite sizes and
tends to reduce the errors inside the domain. Note that both theddedn an infinite domain with the same material as that of the
radial and tangential stresses tend to the applied far-field stresatrix (cf., similar inclusion models in 2D infinite space reported
o”, as the distance from the center of the sphere increases. Thia Refs.[9-14,16,17). In this way, the problem can be posed as
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Fig. 4 Convergence of the BEM results for surface radial stress o.(a)

an infinite domain problem and the structure of E20) can be ment and stress results at these data-collection surfaces by the
preserved,A RVE model as a finite domain problem can be easilfollowing formula (which ignores the stresses on the lateral sur-
implemented with some modifications of EQO) to consider di- faces that have been found much smaller in value compared with
rect loading on the surfaces of a RJHn the current embedded o, in the cases studig¢d

RVE models, a far-field uniaxial tensile stress is applied in the

x-direction (Fig. 8). To estimate the effective Young’s modulus of (o) avel

a composite in one directiofe.g., the fiber ox-direction, the EEﬁ:(AUx)<ave)’ (26)
displacements and stresses at some surfaces of the RVE, to be

called data-collection surfacéfig. 8), are computed using Eq. whereE is the estimated effective Young’s modulus of the com-
(5) and its gradients, after the tractianis determined for each posite in thex-direction (Fig. 8), and the displacement and stress
rigid inclusion by solving the BIE equations. The effectiveaveraged over the data-collection surfa¢Emy. 8) are obtained
Young's modulus of the composite is estimated using the displadax

2.50
—— Radial displaceneant - Analytical
2.00
o Radial displacemant - BEM
1.50 -

radial displacement
2

3

0.00

-0.50 T T - T
1.00 1.50 2,00 250 .00 3.50 4.00 4.50 5.00
radius r'a

Fig. 5 Radial displacement (X o”a/E) obtained by the BEM model with 120 elements
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Fig. 6 Radial and tangential stresses (X o ™) obtained by the BEM model with 120 elements
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Fig. 7 Contour plot for stress o, (X o*) on the surface of the rigid sphere
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in the x-, y-, and z-directions to such an extent that each fiber
remains in its own boxterritory) to avoid contact of the fibers.
This case is called thaligned randomcase. The third case is a
“random” distribution and “random” orientation of the fibers.
Again the random distribution ari@mall angle rotation of a fiber

is limited to the extent that it remains in its own box. This case is
named therandom (or to be more precise, eontrolled random)
case. In all the cases, the volume fraction of the fiber is 9.16%
based on the dimensions of the RVE and fibers. A Poisson’s ratio
of 0.3 is used for the matrix.

Figure 10 shows the contour plot of surface stress(in the
matrix) for the RVE containing 216 “random” short fibers. For
each fiber, high stresses occur around the two ends of the fiber,
which is consistent with the theory that in the limit as the slender
inclusion becomes a rigid line, singularity of stresses will arise at
the two tips[9]. Values of these stresses are even higher when two
fibers are closer to each other, suggesting closer interactions of the
fibers. This stress plot is typical among all the studied RVEs con-
A data-collection surface taininggx gXxq fibers, withq=2, 3, 4, 6, 8, 10, 12, and 13 in this
example. The largest RVE with 219an array of 1X13X13)
“random” fibers is shown in Fig. 11. The total degrees of freedom
for the model in Fig. 11 is 3018 678=2197X(6+456X3)).

The normalized Young’s moduliBg4/Epari) Of the compos-

(AU (ave = (Ux(X=L/2)) (ave — (Ux(X=—L12)) (a9, (27) ites, estimated with the three different fiber distributions and ori-

entations using the above mentioned RVEs, are plotted in Fig. 12.

(0 (ave = [(0x(X=L12)) (avg + (0x(Xx=~L12)) @ 1/2, (28) The increase of the effective Young’s modulus of the composite
with L being the length of the RVE in thedirection Fig. 8, the estimated by the RVEs with uniform distributions of aligned fibers
origin of the coordinate system is located at the center of thianges from 28.1% to 40.8%a difference of 45.2%as the num-
RVE). In this way, the effective modulus is obtained as the locdler of fibers(or size of the RVEgincreases from 8 to 2197. The
elastic constant of the volume with inclusions. One may argue thatlues of the modulus in this uniform case increase gradually and
the effective modulus ii26) is an apparent property because it isend to a constant value. These results suggest that a RVE with a
obtained using an infinite domain that acts as part of the “loadirgmaller number of short fibers is inefficient for obtaining the ef-
device.” Indeed, the effectiveness of this approach with a RVfective properties accurately with E(R6) even in the cases with
embedded in the infinite domain needs to be verified with othghiform distributions of aligned fiberéwithout considering the
results and improved RVE models can also be developed. Thgriodic boundary conditions The estimated increases of the
reader is referred to Sec. 6 for further discussions and an attergting’'s moduli in thealigned randomand randomcases range
to verify the proposed approach. . from 27.7% to 46.2% and oscillate within this range until ap-
A mesh with 456 boundary elements for a short, cylindrical,oaching another constant. Surprisingly, the estimated moduli in
fiber of an aspect ratio equal ta®ngth=50 and diameter10) iS¢ gligned random and random cases are higher for most RVES
shown in Fig. 9. This mesh is sufficient for obtaining convergeg, those in the corresponding uniform case. This may suggest
r(?sultg f(t)rﬂ:he esttlma;[edbeﬁec;l\ég moduli Q&%Eggr 'i Inlt'alhfhat the load transfer may be improved by the “random” distribu-
placed at the center of a box of dimensions (chosen tions of fibers in a short-fiber composite. However, in comparison,

arbitrarily) and filled with the matrix material. This box is then . . 0
repeated in thee, y-, and z-directions to generate the multiple_the values of the effective moduli are about 30% lower than those

fiber RVE models. Three different distributions and orientations &"Ed'deq by the theory and BEI(J_lor |ncompreSS|b_Ie materials
the fibers are considered. The first case is the uniform distributiB‘?Ported_'n Ref[ 18] for the same fiber volume f_ractlo_n and aspect
of aligned fibers, to be called thmiformcase. The second case id @ti0- This may be due to the fact that the fibers in the current
a “random” distribution of aligned fibers, where the fibers are stiinodels are confined within their own boxes and no “relays” occur

aligned in thex-direction, but their locations are shifted randomlyn the fiber direction, even in the “random” case, which leads to
“weakest-link” regions between two arrays of fibers. While in the

models used in Ref.18], aligned fibers are placed randomly in
the RVE and therefore better load transfer are achieved. Further
tests on the current BEM can be carried out with more realistic
distributions of the fibers.

Figure 13 shows the CPU time used to obtain results in this
short-fiber composite example, on a FUJITSU PRIMEPOWER
HPC2500 machinéa shared memory machine with 96 CPUs and
384GB memoryand using four CPUs. In this example, no serious
attempts have been made to parallelize the code except for the
automatic parallelization made by the compiler. Contrary to the
traditional BEM where the solution time is @f(N®) (with N here
being the total number of DOF,she CPU time required for solv-
ing a model using the fast multipole BEM is only @f(N) as
shown in Fig. 13(a straight line with the slope close to unity
Furthermore, the memory required for solving a problem also in-

¥ creases linearly with the size of the problem for fast multipole

BEM. Also, the number of iterations required to reach the conver-
Fig.9 ABEM mesh used for the short fiber inclusion  (with 456  gence with a tolerance of 18 in using the GMRES is between 5
elements ) (for N=10992) and 7(for N=3 018 678). Therefore, the fast

Fibar (rigid inclusian)

Fig. 8 A RVE of a short fiber-reinforced composite
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Location of
maximum stress

so

Fig. 10 Contour plot of surface stresses (X ™) for a model with 216 “randomly” distributed
and oriented short fibers

multipole BEM is much faster and more efficient as compared 5.3 Long-Fiber-Reinforced Composites. Composites rein-

with the traditional BEM(further discussions and examples caiorced with relatively long fibers, with an aspect ratio of 16

be found in Refs[21,39). (length=80 and diameter5), are studied using the developed
These preliminary results in modeling short-fiber-reinforceBEM. Each fiber is discretized using 600 boundary elements and

composites clearly demonstrate the effectiveness and robustr@ased in a box of the same dimensidid90x20x20) as in the

of the developed fast multipole BEM based on the rigid-inclusioshort-fiber example. This box is then repeated in xhey-, and

model. z-directions to generate RVEs containigg X q fibers, withq

Fig. 11 A RVE containing 2197 short fibers with the total DOF =3018678
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Fig. 12 Estimated effective Young’s moduli in the x-direction for the composite model with
up to 2197 short rigid fibers (fiber volume fraction =9.16%)

=2,3,4,6, 8, 10, 12, 13, 15, and 18 in this example. The largestFigure 15 shows the normalized effective Young’'s moduli
model with 5832 fibers and 10532592 DOFs832x(6+600 (Eci/Enani cOmputed for the composites with the relatively long
X3)) is shown in Fig. 14. The fibers are arranged in the so calléibers using the RVEs in the uniform and “random” cases. The
“random” manner as in the short-fiber RVEs. Again, these arecreases of the computed effective moduli are about two times
“controlled random” distributiongeach fiber within its own box higher in these long-fiber cases than those in the short-fiber cases,
and orientationgwith small rotation anglesof the fibers so that even though the fiber volume fraction is lower. This is expected
no contact among them occur in the RVEs. The volume fraction since aligned long fibers are better for load transfer in a compos-
the fiber is 3.85% for all the long-fiber models in this exampldte. The increases in the values of the modulus range from 75.9%

The Poisson’s ratio for the matrix is 0.3. to 95.0% for the uniform case and from 65.4% to 87.6% for the
100,000
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=
i
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Fig. 13 CPU time used for solving the BEM models for the short-fiber cases
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Fig. 14 A RVE containing 5832 long fibers with the total DOF =10 532592

random case. Results for the uniform case increase gradually withe) on the PRIMEPOWER HPC2500 computer using 32 CPUs,
the increase of the RVE sizes and tend to a constant vaMgh a tolerance of 10° in the solution with GMRES and ten-
(95.0%. The values obtained for the “random” case fluctuate foferm expansion in the FMM. The code used for this example was
RVES. Howeve, the increases m ihe randont” case are L“&&?’?ggffa"e'!zed with minimum efforts using OpenMP and automatic
lower than those in the uniform case in this long-fiber examplé. rallgllzatlon option O.f the (l:omp|ller. .

This suggests that even small misalignment and rotations of IongRa_pld convergence Is ach|eve_q in this case alsg. The number of
fibers (which are uniformly and closely packed in the fiber direcli€rations in solving the preconditioned system using the GMRES
tion initially) will offset the enhancement in the stiffness for longiterative solver is between $or N=14448) and 1i(for N

fiber composites. The largest RVE modelith 5832 fibers and =10532592) with a tolerance of 18. This shows that the pre-
10532592 DOFscan be solvedn 3 h and 40 minwall-clock conditioner in(22) works very well even in problems when the

210 4 —s— Effective Young's modulus (Unitorm case)

=& = Effective Young's modulus ("Random” case)

:

:

:

:

Effective Young's modull (E_eff | E_matrix)
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Fig. 15 Estimated effective Young’s moduli in the x-direction for the composite model with
up to 5832 long rigid fibers (fiber volume fraction =3.85%)
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aspect ratio of the inclusions is as large as 16. The robustnes<s#fe, e.g., Refd42—45). The Young’'s moduli of carbon nano-
the developed BEM for modeling fiber-reinforced composites isibes are in general greater than 1 TPa along the tube direction,
demonstrated again by this example which has reached 10 milliabout two orders higher than those of many matrix materials
DOFs for the boundary element method. [43,44]. To model the CNT-based composites, continuum mechan-
ics approaches using the FEM or BEMI6—49 may still be ap-
: : plied if the overall behaviors and properties of the CNT-based
6 Discussions composites are to be investigated. However, CNTs are usually
The developed fast multipole BEM for the analysis of fiberproduced in different shapes and sites example, being curved,
reinforced composites based on the rigid-inclusion model hagisted, or bundleg and are difficult to align in a composite.
been demonstrated to be very effective and efficient for large scalgus the computational models for such composites may need to
models. Interactions of the fibers, load transfer mechanisms agshtain a much larger number of fibers in a RVE, as compared to
effective properties of a composite can be investigated readilyose for traditional composites for which the fibers can be
using the BEM code with different parameters, such as fiber agigned easily and distributed uniformly, mainly because of their
pect ratios, volume fractions, waviness, distributions, and orientarger scales. The BEM can model multimaterial problems easily
tions. However, further studies are needed regarding the effectigince it uses elements only on boundaries and interfaces of the
ness of the model and method for evaluating the effectiy@oblem domain. With the fast multipole BEM, the solution time
properties of the composite materials, since the rigid-inclusidias also been reduced dramatically for large-scale problems. The
model has some obvious limitations. For example, the effect agid-inclusion model further simplifies the BEM approach and
the ratio of the Young's modulus of the fiber to that of the matriincreases its efficiency in the analysis of some special composite
for a composite can not be accounted for in the rigid-inclusiomaterials, as demonstrated by the examples in the previous sec-
model (this ratio is equal to infinity in the rigid model for any tion. All these features and new development make the BEM very
matrix material. Although there are a large amount of experimenappealing in large scale analysis of CNT-based composites for
tal data and numerous analytical results based on different theoigsmating their overall mechanical properties. Studies are under-
for estimating the effective properties of fiber-reinforced composray along this line in modeling CNT-based composites by using
ites, direct comparison of the BEM results with these data was nbt developed fast multipole BEM with new interface conditions
attempted in this studfexcept with that in Refl18]), because of based on molecular dynamics simulations of CNT-fiber pullout
the wide variations in those data. More realistic models of thests.
fiber-reinforced composites using the rigid or elastic inclusion ap- The work reported in this paper, on using the rigid-inclusion
proaches need to be studied using the developed BEM in futyr@dels for analyzing fiber-reinforced composites, is only the first
applications. step in the development of a more general FMM BEM for study-
The boundary integral equation developed for this study, Eiihg such materials and many others. The developed BIE formula-
(6), is essentially an integral equation of the first kind, which, usetbn and the FMM BEM can be extended readily for other prob-
in its original form, may raise the question of stability and conlems. A FMM BEM solver for general inclusion problems can be
vergence of its solutions when using iterative solvers as in tiieveloped, where the inclusions can be elastic or rigid, or simply
FMM. Our experience has shown that even for integral equatioasvoid. Other RVE models, for example, with periodic boundary
of the first kind, the FMM BEM, which uses iterative solvers suclonditions, can be implemented as stated above. Interfacing the
as GMRES, can still deliver fast converging and stable resulieveloped BEM with other methodsuch as molecular dynamics
with good preconditioners. Our selection of using the right préer multiscale analyses of CNT-based composites can also be con-
conditioner in Eq.(22) turns out to be very effective. sidered and may present unique advantages over other domain-
The RVE used in this study is of finite size as shown in Fig. &ased methods. Higher-order boundary elements can be applied to
that is embedded in an infinite space filled with the matrix matéarther increase the efficiency and accuracy of the BEM. A prac-
rial and loaded remotelyct., again, 2D models in infinite spacetical and important development for the BEM code is to develop
used in Refs[9-14,16,1T). This is chosen so that an infinite an improved preprocessor that can generate the boundary element
domain problem can be solved, which is easier to handle concemesh for a RVE containing a large number of truly randomly
ing the boundary conditions and, in general, converges faster thdgistributed and oriented fibers, including curved ones, so that
an interior problem using the FMM. In this infinite domain probmore realistic models of composites can be analyzed based on real
lem, the displacement and stress fields on the surfaces of the R¥perimental or fabrication parameters. Finally, full parallelization
(data-collection surfacgsieed to be calculated after the boundaryf the BEM code can be implemented to further increase the ro-
solutions on all the inclusions are obtained with the fast multipolsustness of the developed fast multipole BEM for even larger
BEM. This calculation of the fields inside the domain takes extimodels based, eventually, directly on scanned 3D models of com-
CPU time, which can be substantial for large models, althoughpbsite material samples.
can be computed by using the FMM al20]. An interior prob-
lem defined on the finite sized RVE directly can certainly b(? Conclusion
implemented with some modifications of EQ0) and may pro-
vide some improvements to the current RVE model. For example, A new boundary integral equation formulation for the analysis
the boundary solution&lisplacements and tractionsn the RVE of an elastic medium containing rigid inclusions is derived in this
surfaces, which are available after the solution of an interior propaper. This new BIE contains only the weakly-singular displace-
lem, can be used directly to evaluate the effective properties.ment kernel from the fundamental solution and thus is much more
more reliable, and perhaps more elegant, approach for computgféicient to solve than the traditional singular BIE. The fast mul-
the effective modulus is to use FMM for periodic boundary cortipole boundary element method is employed to solve this new
ditions [25]. Our preliminary analysis with the two dimensionalBIE. The developed BIE formulation and FMM BEM code are
Laplace problem§l7] shows that the periodic FMM BEM can befound to be very stable and the results converge in about 10 itera-
implemented easily, and the increase of the CPU time over ttiens for a tolerance of I® with the preconditioned GMRES.
ordinary FMM is less than 20%. The effective property obtaine@ihe numerical results for a spherical rigid inclusion in an elastic
with an equivalent formula af26) and with the periodic FMM did domain match very closely with the analytical solution. Short- and
not differ very much. The elastic counterpart of the periodic FMNoderately long-fiber-reinforced composites are investigated us-
is now underway. ing the developed BEM and their effective Young’s moduli are
The rigid-inclusion model for fiber-reinforced composites magstimated using the BEM displacement and stress results for the
have the potential in some very urgent applications, such as medpresentative volume elements. The largest model studied con-
eling of the emerging carbon nanotu@NT)-based composites tains more than 5800 fibers and has the total degrees of freedom
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over 10 millions. These preliminary results clearly demonstrat&2] Greengard, L., and Helsing, J., 1998, “On the Numerical Evaluation of Elas-
the effectiveness efficiency and promises of the developed fast tostatic Fields in Locally Isotropic Two-Dimensional Composites,” J. Mech.
multipole BEM for studying fiber-reinforced composites, when.,, TS SOldsA6, pp. 1441-1462.
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Member ASME A three-dimensional transient thermoelastic solution is obtained for Rayleigh-type distur-
e-mail: georgiad@central.ntua.gr bances propagating on the surface of a half-space. These surface waves are generated by

. either a buried or surface thermal source, which has the form of a concentrated heat flux

G. LVkOtl‘afltIS applied impulsively. In an effort to model this problem as realistically as possible, the

Graduate Aeronautical Laboratories, half-space material is taken to respond according to Biot's fully coupled thermoelasticity.
California Institute of Technology, The problem has relevance to situations involving heat generation due to: (i) laser action
Mail Stop 105-50, (impulsive electromagnetic radiation) on a surface target, (ii) underground nuclear activ-

Pasadena, CA 91125 ity, and (iii) friction developed during underground fault motions related to seismic ac-

tivity. The problem was attacked with unilateral and double bilateral Laplace transforms,
which suppress, respectively, the time variable and two of the space variables. The Ray-
leigh wave contribution is obtained as a closed-form expression by utilizing asymptotics,
complex-variable theory and certain results for Bessel functions. The dependence of the
normal displacement associated with the Rayleigh wave upon the distance from the source
epicenter and the distance from the wavefront is also determined.
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1 Introduction the same problem studied here and provided an evaluation of the

A class of interesting problems of thermomechanical wave m 9mp|¢te field at the §urface. This field comprises thermoelastic
ilatational and Rayleigh waves, and elastic shear waves. How-

tions arises from the action of a thermal source in a conducti %er the latter studv relies much upon numerical analisilv-
and deformable body. The source can be situated either on fs " y P Ysia

S . - . INng numerical wavenumber integrations and numerical Laplace-
surface or inside the mediufburied sourcg Typical problems of : : . X
. : . I . . transform inversions and does not furnish an analytical
this class involvefi) laser action(impulsive electromagnetic ra- . . .
o : expression for the evaluation of the surface displacements. In-
diation) on a surface targesee e.g. Morlandi1], Sve and Mik- . i . - .
. . stead, our aim here is to provide a simplesed-formexpression
lowitz [2], Bechtel[3], Hetnarski and IgnaczdKk], and Royer and . . . ) .
- o for the Rayleigh-wave disturbance without using any special nu-
Chenu[5)), (ii) underground nuclear activit{zee e.g., Bullen and ! ; . . . .
I . merical technique. This was made possible by using asymptotics
Bolt [6]), and (iii) friction developed during underground fault : .
i T o ! and certain results of complex-variable theory and Bessel func-
motions related to seismic activifgee e.g., Kanamori et dl7]). . i o .
. tions in addition to the basic integral-transform analysis of Ref.
In many cases, these problems can be viewed as a thr

dimensional(3D) situation involving a thermoelastic half-spac ﬁ]lleiThhe-vxll(ae\ye |di?esusbe d olzte:?nail:?nganexaplIclt)irnfata;pgg?r;ag?ethzf
under either a surface or buried heat source. This situation is st Y'€ld P y 9 pp

ied here by employing the coupled inertial thermoelasticity theort}/aylelgh function that exhibits no dispersion but still depends

of Biot [8] (see also AchenbadB)). In particular, we focus atten- pon the_thermoelastic constants. Notably, th_is_ approximate form
tion on the surface disturbance of the Rayleigh-type and providésggsgg'S:S”a’lt\éery close to the exact one giving therefore very
closed-form expression for the associated displacement field. i '

deed, past experience with pure mechariical, without any ther- It should be mentioned that most of the studies published before

mal effect$ versions of the present problem indicates that thlc()en wave propagation induced by sudden heating model the prob-

h . . . éms asone-dimensionalsee e.g., Boley and Tolingl3], and
Rayleigh-wave disturbance is tlimminantone over the surface Hetnarski and IgnaczaKi4]), employuncouplecthermoelasticit
after a certain timésee e.g., the 2D analysis of Gan\itO] in- 9 » Employ P Y

volving a buried dilatational source in a half-plane and the 3|(j;ee e.g., Sve and Miklowit2]) or treat onlylnflnlte domains,
) ; . ) . . r.e., full spacegsee e.g., Predeleahi5], Fleurier and Predeleanu
analysis of Pekeris and Lifsofl1] involving a buried concen-

trated vertical force in a half-space [16], Sharp and Crouchl7], _and Manolis and_Beskd[dS,lSZ_).
; Also, some of the aforementioned works consider the special case
We should mention that a recent study by the present auth

orfs . .
- e . of a time-harmonicresponse. On the contrary, the present stud
and Brock(Lykotrafitis, Georgiadis, and Brockl2]) dealt with . >PC ; Y P Yy
aims at a more realistic formulation of these problems and is
I whom correspondence should be addressed. the_refc_)re based on the t_ransne_nt coupled mertlal thermoelasticity,
Contributed by the Applied Mechanics Division ofE AMERICAN SocieTy oF ~ While it treats a three-dimensional problem in a half-space do-
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OFAPPLIEDME-  main. Notice that the relevance of the constitutive ’[heory used
CHANICS. Manuscript received by the Applied Mechanics Division, March 2, 2004, : .
final revision, May 24, 2004. Associate Editor: H. Gao. Discussion on the paé_@.ere_ tothermal-shockprolt_)lems—partlcuIarly the |mportance_ of
should be addressed to the Editor, Professor Robert M. McMeeking, JournaliBertial and thermal-coupling effects—was shown in the studies of
Applied Mechanics, Department of Mechanical and Environmental Engineering{etnarski[zo]v Boley and ToIins[lS], Sternberg and Chakravorty

University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will . . .
accepted until four months after final publication in the paper itself in the ASMEEl'Za' and FranC|$23]. More recent work employing this theory

JOURNAL OF APPLIED MECHANICS. in transient problems of wave propagation and fracture was
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gonekb)é zmong Og‘g& At_kigz%]n Snd Isra%@g: qucg_g% vector, 9=T—T, is the change in temperaturg,is the current
rock, Rodgers an eorglaqisol, Srock ana eorgiadi » tem eraturei’ is the initial temperaturey is the heat-flux vector,
Georgiadis, Brock, and Rigatp28], and Georgiadis, Rigatos, and()\,lg are the Lame constantsf is theea:oefficient of linear ex-
Brock [29]' Elnally, within the context of a dlﬁgrgnt theory, ansion,p is the mass density, is the specific heat at constant
namely inertialess and uncoupled thermoelasticity, solutioasormation,s( ) is the Dirac delta distributiont is the identity
for thermally activated surface displacements in a half-space WEIR <or V is 'the gradient operator, ard2=(2/9x2) + (92 ay?)
obtained by Barbef30] and Barber and Martin-Moraf81]. +(0%/9z%) is the Laplace operator. All field quantities above are

functions of &,y,z,t).

2 Problem Statement In addition, zero initial conditions are taken, i.e.

Consider a 3D body in the form of a half-spaze —H (see u=du/dt=0=0 for t<0 in (—o<x<om, —wy<o,
Fig. 1) which is both thermally conducting and deformable. The
body is initially at rest and at uniform temperatufg. At time t —H<z<), ®)

=0, a thermal source acts at a point situated at a depielow ) )

the surface. This point of the half-space is taken as the origin @d we also assume that the half-space surface H is traction

the Cartesian coordinate systemy(,z). A concentrated thermal free and insulatedi.e., no heat is conducted through the half-

source having an impulsive time variation is assumed, with ttf@ace surface and aifinally, the pertinentinitenessconditions

understanding that the solution of this probléBreen’s function at remote regionignaczak and NowackB4]) state that the field

or fundamental solutioncan be integrated in space and time t&! infinity remains bounded although temperature signals travel—

give then the solution for any general thermal loading. Also, trccording to Biot's theory—at an infinite speed. _

source has an intensit¢Q, whereK is the thermal conductivity ~_ The objective of the present work is to determine the vertical

with dimensions ofpowen(length ~(°C) %, °C means degrees of displacement at the_ surfacc_e for the _problem de_s_crlbed by

temperature an® is a multiplier expressed it?C)(length(time).  Eas.(1)—(5). The solution of this problem is greatly facilitated by
Then, according to the linear, isotropic, inertial coupled thefémoving the source term i) and considering this term as a

moelasticity theory(Biot [8], AchenbacH9], Chadwick[32], and discontinuity along aimagined planeat z=0. This strategy was

Carlson[33]), the governing equations for this problem are writintroduced first by Pekeri35] (see also MiklowitZ36]) in treat-

ten as ing the pure mechanical problem of a half-space under a buried
vertical force. Considering thus an imaginary plane alarg0
o=pu(Vu+uV)+A(V-u)l— k(3N +2u) 61, (1) that separates the original half-space into the half-space 0O
< (region 1 in Fig. 1 and the strip—H<z<0 (region 2 in
g=—-KV@, (2) Fig. 1), we write the pertinent continuity and discontinuity condi-
tions atz=0 along with the standard boundary conditions at
(92U 7= — H
MV2U+()\+,LL)V(V-U)—K0(3)\+2/,L)Vt9=p—2, (3)
A uD(x,y,00=u?(x,y,00), (62)
) a0 ~ d(V-u) 1 2
KV20—pe,—— ko(3\+21) Ty—— oM (x,y,00) =62 (x,y,01), (6b)
+KQ- () 8(x)- 8(y)- 8(2)=0, 4) o (x.y.00) = (x,y,00), (60)

where (1) is the Neumann-Duhamel law2) is the heat- 1) 2)
conduction Fourier law,(3) is the displacement-temperature 90 (x.y.08) 907 (x.y.08)
equation of motion, an@) is the coupled heat equation. Also, in Jz Jz

the above equationgr is the stress tensou, is the displacement

=Q-4(t)-8(x)- 8(y), (6d)

a,i(Xy,—H,t)=0, (7a)
a6(x,y,—H,t)
———=0, (7)
z=-H where —o<x<w, —o<y<w, (j=X,Y,z), and the superscript
in parentheses 1 or 2 attached to a field quantity means that the
planez=0 is approached as—0" or z—0", respectively.
In this way, the original problenil)—(5) and(7) is equivalent
z= to the problem described bfl)—(3) and (5)—(7) and with the

y equation KV20—pc,(96/t) — ko(3N+2u) To(d(V -u)/dt) =0
replacing now Eq(4). Further, a convenient normalization is per-
formed allowing the two field equations of the probl¢e., Egs.
(3) and(4) with no source termsto take the form

“1”
z
2 2 2 d%u
Vau+(m—1)VA+«kVH—m —220, (8)
Js
29 K (90+8<9A_0 ©
2 - 1
Fig. 1 A thermally conducting and deformable body in the m hn? ds  h s
form of 3D half-space under the action of a buried (H#0) or ) ) ) ) ) )
surface (H=0) heat source wheres=V,t is the normalized timéwith dimension of length-
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Vi=[(N+2u)/p]*? is the dilatational-wave velocity in thab-

senceof thermal effects(i.e., within the “pure” mechanical @(le,ZYS)Z(l/ZWi)J d(x,y,z,p)-ePdp, (100)
theory, k= —ko(3N+2u)/ = ko(4—3m?) <0 is the normal- B!

ized coefficient of linear expansion= (}O/CU)(szlm)z is the and the Qirect transform suppresses the timelike variablehe
dimensionless coupling coefficierit=(KV,/umc,) is the ther- double bilateral transform pair is defined as

moelastic characteristic length,,=(u/p)*? is the shear-wave

velocity, m=V;/V,>1, andA=V.u is the dilatation. As regards N

the range of numerical values thatand h take on, for most <I>*(q,w,z,p)=f f D(x,y,2,p)-e P Wdxdy,
materials the characteristic length is very smfipically h Tl
=0(10m), see, e.g., Chadwidid2]] but the coupling coeffi-
cient can be as high as= 0(10™Y) (e.g.,e=0.36 for Polycarbon-
ate atT,=40°C). The fact thah is very small with respect ts .

for a ra%her Wid)e time-range will be c)(l)nveniently utiliged in the d)(x,y,z,p)z(p/Zm)zfr jr ®*(q,w,z,p)-e” ¥V dgdw
ensuing analysis. 2ns (11b)

(118)

and the direct transform suppresses the space variablgs (In
3 Basic Integral-Transform Analysis what follows, we save a capital letter for the unilateral direct
) i . ) transform, whereas the double bilateral direct transform is denoted

This section essentially reproduces relevant material from Oy an asterisk. It is also noticed thadan der Pol and Bremmer
recent related workLykotrafitis, Georgiadis, and BrocKl2)). [37)). (1) Because of Lerch’'s theorem for the uniqueness of
This material is briefly presented here for the sake of completgpjjateral Laplace transforms and because of the existence of
ness and because of the need to introduce certain definitions. K\jjider’s inversion formula for reap, it is sufficient to view
also emphasized that although the form of conditi®)sand (7) ¢ (x,y,z,p) as a function of aeal variablep over some segment
suggest existence of an axisymmetric f|eld,_ the basic integrak the real axis in the half-plane of analyticity. Ondgx,y,z,p)
transform analysis presented here is appropriate for more geng&ietermined as an explicit function pfin the course of solving
nonaxisymmetrisituations. This is why we do not use the Hankejhe transformed differential equations, its definition can be ex-
transform below. Certainly, the fact that we deal with an axisymanged to the whole complaxplane, except for isolated singular
metric field in our specific problem will emerge in the course O[.f)OiI"ItS, through analytic continuatiof2) The variablesy andw
solving the problem. , . should be treated asomplex (3) The integration pathl’;,

The dependence of the problem on the variabbey,6) is \ith (j=1,2,3), is a line parallel to the imaginary axis in the
suppressed through the use of multiple Laplace transfds®e ggsociated transform plane and liesithin the region of
e.g., van der Pol and Bremm[g7], and Carrier et al[38]). The analyticity.
unilateral transform paifdirect and inverse transfopnis defined Applying now (10a) and (11a) to the governing equationd),
as (8), and(9), and considering5) yields the following general ex-

pressions for the transformed temperature change, displacements
® and stresseg@letails of this procedure are given in Appendix A of
CD(X’y’z'p):f ®(X,y,z,5)-e Psds, (10a) Ref. [12]). These exprgssions are, of course, different in the re-
0 gions 1 and 2 of the original half-space.

(a) Region 1 (6<z<®):

] |

K
_®* . o

m?2 M. M_ 0 0

] —-q —q 1 0

PUy -w  -w 0 1 00 0

pUz r —pa;z
1 a, a3 % 9 0 0 o
_E:y B B Xze pa-
M X.e~PBZ

—2qw —2gqw w q 0 0 0 O 3
iE* X4e_pBZ
xz | = T w 12

M 2qa, 2qa. --* Y 9 0 0 o0 0 (12)
Ly B B 0
Y w T

| owa, 2wa 9 _1a 5.9 0 0 0
o B B L 0
M Tus T 2q 0

;E;y T+ Too 0 2w

1, L T -T -2 -2w 0 0 0 0

_Ezz

| | |
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(b) Region 2 H<z<0):
[ ] |

K
— 0O m L
m2 M, M, M_ M_ 0 0 0
pUX —q —q —q —q 1 0 1 0
U*
p y -W —W -W -W 0 0 1
py; - -
_ —w w pa,z
1_, —-a. a, —a_ a_ 4w d — X5e_pa ,
;S‘xy B B B B Xg€ *
a_z
1 —-2qw  —2qw —2qw —2qW W q w q X7e”
—3* T T Xgefpa,z
Xz | = —W - w 13
K -2g9a, 2qa, —2qa. 2qa. @— W Zw W9 XoePh? (13)
iz* B B B B Xloepﬁz
yz i
M -w T w -T ppz
—2wa, 2wa, -—2wa. 2wa_ —wa g w4 ~Tq ) Xye 0pz
Zsx B B B B || X PP
fl‘ Tos Tos T T 2q 0 2q 0
;E’;y Tq+ To+ Tq- Tq- 0 2w 0 2w
iz* L T -T -T =T —29 —2w —29 —2w]
,LL zz

where®* is the multiply-transformed change in temperature, ansranch cuts will enable the proper definition of the regions of
(Ux.,Uy ,U7) and €j,.2),...23) are the multiply- analyticity of various functions appearing in the analysis.
transformed components of, respectively, the displacement vectofl he quantitiesn, andm_ arep-dependenfrecall thatp is real
and the stress tensor. We should also notice that sol@inis ~and non-negative whereasm is constant. From their definitions,
bounded az— o appropriately satisfying thus the finiteness conthe following inequalities follow:

ditions, whereas such constraints need not be imposed on solution

2 _
(13). In the above equations, the yet unknoXnp, X,, ... X, m_<m.<m for hp>m (1+e)—-1 (20)
are arbitrary functions ofd,w,p) which have to be determined - + m?(m?—1) '
from the boundary conditions in each specific problem. Also, the
following definitions are employed ifl2) and(13): m?(1+e)—1
m_<m<m, for hp<——F———. (200)
a.=(m2-g’-w’)'?, (148) m(m"—1)
In addition, useful approximations for the quantities and
(2 42— \w2) 12 A . ;
B=(m"—q°—w") (140) " m_ can be obtained frortL5) by takings— (1/p), whensis very
2 112 2 112 small or very large, and by performing series expansion and keep-
m :E 1+ 1 4 & +l _ 1 " & ing the dominant termgsee e.g., Carrier et aJ38] for similar
2 (hp)¥2 hp| —2 (hp)*2 hp| ' procedures The following approximate forms considerably sim-
plify unilateral Laplace transform inversions
—m2— 1 S
M.=m:—1, (16) m,=1 and m_= o for ﬁ<1, (21a)
T=242—m2=m?—2(q?+w?), (17a) (hp)
1+e\12 S
T.=2a% -m? (170) m,=|—— and m_.=—— for —>1.
hp (1+&)¥? h
Tqe=T.+20% (189) (21b)
T . =T.+2w? 18 Notice that validity of(20a) or (20b) is necessary but not suffi-
wE s (180) cient for, respectively, the validity d21a) or (21b).
T=T+ a2 (19) Finally, it turns out that the case i20a) is rather impractical
since it corresponds to axtremely smalinitial time interval of
T,=T+w2 (19%) the process, which for most conducting materials tis

<O(10 *3s). This is found by taking— (1/p) for very smalls

5 ¢ (i.e., for very small timg¢ In the present study, information is
+w* allowing the placement of necessabyanch cutsfor the needed generally for longer times so we shall focus interest only
functions a.=a.({,p)=(m>-¢?)Y? and B=B({)=(M?> on the casé20b) and employ(21b) appropriately. Any case with,

— %2 These restrictions in thé&plane are in accord with the say, 6/h)=100 leads to a reasonable approximationrfor. The
chosen solution forms ifL2) and(13). For the representative caseresults in(21b) are indeed robust because the normalized time is
of B(¢), Fig. 2 depicts these branch cuithe cuts are situated scaled by an extremely small lengithe thermoelastic character-
outwards with respect to the origif=0—a similar situation exists istic length.

for the functionsa..(Z,p)). In this way, it is Rea, =0, Rea_ Now, transforming via (10a) and (11a) the continuity/
=0, and Rg3=0 in the cut plane. Also, we record here the twaliscontinuity conditiong6) and the boundary conditiong), in
possible arrangements af, , m_, andm with respect to their view also of the general transformed solutigh®) and(13), leads
magnitude. This information in conjunction with the placement db a linear algebraic system of 12 equations in the 12 unknown

Further, a new complex variablgis defined through’>=q?
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iIm() axisymmetricnature of the problem, a fact that will become evi-
dent in the ensuing procedure. Finally, of central importance to the
solution for thesurfacedisturbances is the functioD, which is

+pl associated with waves of Rayleigh type. This is given as
D=D({,p)=a_M_R,—-a,M,R_, (23)
+ilBl 1Bl where the functions
= == Re() _ 2 2
-i [l -m +m +i|p| Ri=R.({,p)=4{"a, p+T7, (249)
R_=R_({,p)=4{%a B+T?, (24p)
+Bl can be identified as thtaermoelasticcounterparts of the nonther-

mal pure-elastic Rayleigh functiaitransformed function which

is given asR®®=4/2aB+ T2, with a=a(¢)=(1—¢%)*? and

) ) ) B=pB({) given as beforésee e.g., Achenbad¢B], Miklowitz [36]).

Fig. 2 Branch cuts for the function ~ B(y)=(m’—¢*)"? in the  Contrary to the latter cas®, and R_ exhibit a p-dependence

complex [plane. Similar branch cuts, emanating from the showing therefore that the thermoelastic Rayleigh waves in the

points - m..(p), are aiso inroduced for the functions  a.(&)  pnysical spaceftime domain are dispersive. However, it was

=(me=8)™ shown in the study of Georgiadis, Brock, and Rigaf?8] that
generally the thermoelastic Rayleigh-wave velocity varies only
slightly with time, a result explained in view of the fact that while

X1, X5, ... Xq5. Obviously, an exacti.e., symbolicaland not there is a strong shear contributiGmhich remains unaffected by

numerical solution to the system is sought here and this wakermal effects to the Rayleigh waves, the dilatational part of

made possible by using MATHEMATICA™. The expressions fothem is very weaksee e.g., Viktoroy42]). We will take advan-

X1, Xz, ... Xqp are given in Appendix A. tage of this result immediately initiating the asymptotic consider-

Having available the solutionX,X,, ... X;,) and therefore, ations to obtairu,(x,y,z= —H,t).

by (12) and (13), the general expressions for the double trans- |t will be shown, indeed, that the functidd can be expressed

formed temperature, displacements and stresses allows determinerms of anapproximateRayleigh function that exhibitsio

ing the field quantities at any point of the original space and at agyspersion(i.e., this Rayleigh function does not contain the time

time instant through successivmversionsof the type(11b) and  transform variable) but still depends on the coupling constant

(100). However, we emphasize at this point that a treatment eMihe approximate form of the functidd itself will exhibit depen-

ploying the Cagniard—deHoop techniqi#36,39 to accomplish gence upon the thermoelastic constantsh] and the transform

the transform inversions in an exact manner seems to be impQgriables ¢,p). First, one may write fronf23) and (24) the fol-

sible due to the very complicated multiple transformed solution igwing expression for the functiorD(a. ):

the present problem. In the simpler buried-source problems of

non-thermal type such a difficulty was not met and the Cagniard—

deHoop technique had successfully been appkeé e.g., Pekeris

[35], Garvin[40], and Paytori41]). Indeed, we note that, after the

appropriate contour integration involved in the Cagniard—deHodfow, the terms ¥ _ /M, ) and[(a_M _)/(a; M ;)] in the above

technique, the integrand in the semi-infinite branch-line integr@xpression, in view of14a) and(16), are written as

tion is still p-dependent and, therefore, the unilateral transform

a_M_
——1). (25)

+ 2
M|

b 42 M(NL 1
Z—é"afﬁ My

inversion is impossible to be carried out exactly through the stan- & _ m? -1 (26a)

dard inspection procedure. For more details on this difficulty, we M. mi_l

refer to the work by Georgiadis et §R9], who treated the coun-

terpart 2D problem and employed approximationat a similar and

point of the analysis. Their asymptotic approach is, however, dif- 2 o2

ferent than that employed hefsee Sec. 4 below a_M_  (mZ—79)""mZ-1 60
We close the presentation of the basic integral-transform analy- a M, (m2—¢2)Y2m2 -1 (260)

sis by noticing that if, instead of(t), a general dependence from
time of the thermal loading it4) is to be consideretdenoted by Further, when ¢/h)>1, use of the expressions for, andm_ in
an arbitrary functiorg(t)), then the quantitQ in the equations of either(15) or (21b) lead to the results

Appendix A has to be replaced byQ(V;)-G(p), where G(p)

denotes the unilateral Laplace transform of the function M <1 (27a)
g((s/Vy)=t). +
] ) ] and
4 Transformed Solution and Asymptotic Consider-
ations a M- <1. (2M)
a,M.

In what follows, we focus attention on the evaluation of the
vertical displacement at the surfaggx,y,z=—H,t). In view of To give a numerical estimate, we obtain values of the ratio
the previous results, the multiply transformed displacemepta_M _)/(a,M,)] for different p's (recall thatp is the time

U (gq,w,z=—H,p)=U3({,z=—H,p) is given by Laplace-transform variable The constants of a model material
" y utilized in the present study to derive numerical res(dee Sec. 6
Ta,e?Pl-a e below) are employed. These constants are0.011, h=1.864

* — —
Uz ({z=—H.p)= KQVlE D(Z,p) + 220 %107°m, and Poisson's ratio=0.3[which gives a ratio of wave
] ~ velocitiesm=(V,/V,)=1.8708]. Also, we také&= (g, which is
where the functiona.. (£,p) anda_({,p), and the complex vari- the value corresponding to the arrival of the Rayleigh
able  have been defined before. Also, frditi7a) and the defini- \avefront—see Eq36) below and which for the model material
tion of £, it is T=m?—2{2. One may notice that the very defini-is calculated to be&gr=2.0162. Then, the following values of the

tion of the variable¢ and the form ofU} in (22) exhibit the ratio in question are obtained:
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[(a_M_)/(a;M,)]=—1.73840< 10" for p=1C?, ization through the use of Cauchy’s integral theor&me e.g.,
s Achenbach 9], Carrier et al[38], and Ablowitz and Fokap43])

[(a-M_)/(a,M,)]=-151502¢10"** for p=1C", allows writing

[(a_M_)/(asM,)]=—4.79091x 10" 2 for p=10"°,

which clearly show that for increasing tinfiee., decreasing) the
ratio rapidly diminishes and can practically be taken equal to zengshereS* andS™ are analytic functions in the overlapping half-

s=s*.s, (33)

The same applies to the ratid(_ /M ) as well. planes Re)>—m_ and Re{)<m_, respectively. These are given
Then, (27) allow writing (25) under the following approximate by
form:
D s*(7)— 1fm o] 402l do ]
A = M(4fa g, (28) (=exp =7 | arctan — | 5z @4
and, sincan, >1 for (s/h)>1, one may further obtain in view of where
(16)
D a_=a_(w)=(m?—-w?)? (35a)
—=-m?(4%a_B+T?), (29)
& B=B(w)=(m*=w?)"> (350)
where in the last two expressions and, also, in what follows the
quantitiesm, andm_ assume the formtaken from(21b)] Further, one may observe fror84) that S™({=0)=S"({
1 112 =0) and, thereforeS(£=0)=[S"(£=0)]%. Now, we exploit the
m. = te (30a) latter observation by taking=0 and also take into accou(82)—
- hp ’ (34) to obtain the followingexplicit formula for the root of the
1 function (D/a.). This root defines the speed of thermoelastic
m = . (30) Rayleigh waves
(1+¢)"? ,
Finally, in view of the above, Eq29) becomes (r= m (36)

2 2 \112. qtr—0)
D 14s [2(m?—m?)]*2.5%({=0)

a,  hp

(Mm?=27%)2+47°

1/2
L_ 4‘2 (m2_ §2)1/2
1+¢ It is noticed, finally, that the inequalityn<{g always holds.

5 Inversion Procedure and Solution in the Physical
SpacéTime

H_thherm (31)
hp '
where the symboE means equality by definition.

In the above result, the approximate Rayleigh functidpf™ ] o . )
exhibits no dispersiorii.e., it does not depend upgm but de- In view of the definition(11b), one can write the unilateral
pends upon the coupling constan®ll the above approximations Laplace transformed vertical displacement in the form
will I'[])roperly be utilizedd below. . ) DreC) p \2 [+ [+ie

The next step is to determine the zeros of the functdra(, ), _ _| P * _
which is given in(31). This information will be utilized later in Unxy,2= H,p)_(zm J:ix J_ix Uz (q,w,z=—H,p)
the inversion procedure. By invoking the principle of the argu-
ment(see e.g., Carrier et 4138, and Ablowitz and Foka43)), it -ePPePMdqdw, (37)
can be shown that the two real zergs = (g of the function
(D/a,) are the only zeros of this function in the entifglane. whereUJ is given in(22). Next, axisymmetry(circular symme-
These correspond to axisymmetric thermoelastic Rayleigh wauey) of the problem will become clear and be exploited. To this
fronts propagating with a velocityg=V, /(g along the traction- end, we sej=ioc andw=ir so that{?=qg?+w?= — (c2+ 7?)
free half-space surface. Working with repl such thatp>0 =-p2 and further consider the polar coordinates®) and
[which, of course, is necessary for the convergence of the integfglg) defined through the relationg+iy=re'? and o+ir
defining the unilateral Laplace transform in Egj0a)] in the case = ei®, The first set of polar coordinates refers to the physical
of interestm_<m<m. [cf. Eq.(200)], we can obtain a closed- pjane ,y), whereas the second set to the transform plane.
form expression for the roalg by utilizing factorization opera- considering also the case=0 andy=0 (which, as will become
tions of the kind encountered in solving Wiener—Hopf equationgear soon, does not impose any restriction to the solytiiin
(see e.g., Achenbac®], Carrier et al.[38], and Ablowitz and ghould be Ino)=0 and Im(9)=0, whereagp=(02+ 72)¥2=0.
Fokas[43]). The function D/a.) is analytic in the-plane cut Now, in view of (22), (31) and the newly introduced polar
along the interval ih_<|Re@)|<m, Im({)=0) and behaves like .oodinates. we obtain
2m? (m?=m?)¢? {with m,=[(1+&)/hp]*?> and m_=(1 '
+¢)" Y2 as|{]—o. Consequently, an auxiliary functio®() is U,(r,6,z=—H,p)
introduced through the definition

kQV, (*[ (?7a,Te a-HP—a Te a+HP
SR (32) ot U o0
2m? (mP—m?) (£~ R’ o |
which possesses the desired asymptotic prop&(§)—1 as xexy —inro-cod d—9))dd | od 38
|{|— and, additionally, has neither zeros nor poles indimane. P=iprp-cos¢=9))dé | pdp, (38)

The only singularities of are the branch pointé==m_ and{

=+ m [which are shared with the original functioB(a.)], soit and further, by observing that the inner integral(38) is actually

is single-valued in thel-plane cut along the intervaln{_ independent on the starting limit of the integration interval, we
<|Re@)|<m, Im()=0). Then, the standard technique of factoreliminate the variable) from the problem and get
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U,(r,0,z=—H,p)

KQVl
472

a,Te a-HP—g_Te a:HP
D(p,p)

Il
2m
xf exp(—iprp~cos¢)d¢)pdp

0

_ «kQV;
T 27

“a,Te d-HP—g_Te a:Hp
Jo(prp) - pdp.

0 D(P.p)

(39)
In the above relation, we hava.=(m2+p?)2 B=(m?
+p?) Y2 T=m?+2p?, and

l+e(1+e N [ 1
D(p,p):——hp hp +p (M*+2p%) "= 4p% 1
12 1l+e[1l+e 12
2 2 23172 — _ 2 therm
+p°] (M=+p%) } hp | hp +p) R™Mem

(40)

while the following standard result for the Bessel functityf )
was usedsee e.g., Watsop4])

1 2w
ZL exp(—iprp-cos¢)dé=Jo(prp). (41)

One may observe that the last integral(89) is but aninverse
Hankel transform(see e.g., Bracewel[l45]). This confirms the
circular symmetry of the problem.

Next, another change of variable defined by setting prp

uy®™(r,z=—H,s)

_ 1 1

A (me-m? )

a_
i (e’aprf a—e’a+Hp)T

fx f + e"sdp
0 °’i“mi(p*ipR)(p+ipR>-S(i3)
pr
X wJg(w)dw, (44)
where
1+s|%21
=) o (45)
1
:—(l+s)1/2p Y-, (4%0)
h 1/2
= w)=| p+r ———?] 46a)
Y+=7+(p,w) p (1+8)r2“’) (469)
(1+¢) 172
y =y (po)=|p*+—;5 wz) : (460)
and
w
pRZQ- (47)

Notice that the branch cuts depicted in Fig. 3 should be intro-
duced to render the functions, andy_ single-valued. Also, the
constantc in the inner integral of(44) is taken slightly greater

leads to the following expression for a normalized expression @fan zero since atsingularities (poles and branch pointef the
the unilateral Laplace-transformed vertical displacement at t@grresponding integrand are situated in the plang)Red. Spe-

surface

U™y z=—H,p)=— ——
2 P) 2(m?—m?)r?

a_
e—a,Hp_ a_e—a+Hp)-|-

e
T

2
m 22+gR
pTr

)
X—zJo(w)dw, (42)
p

whereU?°™=(27U,)/(kQV;), and the symbola, , a_, andT
take the following formgwhich, of course, follow from the defi-

nitions in (14a) and(17a) and the several changes of variable in

the previous analysjs

(1)2 1/2 (,()2
—m?2
?> , T=m +2p2r2. (433,b)

a.=|mi+
pr

Finally, we consider the inverse unilateral Laplace transform in

cifically, these singularities include the polestaitpg, the branch
point —hw?((1+¢&)r?) 1 for the functiony, , and the branch
points =iw(m_r) ! for the functiony_ (see Fig. 3.

With the above results available, we now focus interest on the
thermoelastic Rayleigh waves. As is well-knosee e.g., Chao
et al.[47], Achenbach 9], and Miklowitz [36]), analytically the
Rayleigh-wave effects correspond to the contributions from cer-
tain poles in the integrands of the inversion integrals. Indeed, in
our previous analysis we were able to make explicit the appear-
ance of Rayleigh-wave polgsf. Eq. (44)].

We proceed now to evaluate the pole contributior{4d) ob-
taining therefore an approximate solution for the thermoelastic
Rayleigh-wave signals along the half-space surface. Care should
be exercised, however, in evaluating the functiangp,») and
a_(p,w) at the pointstipg, which lie along the Bromwich path
(c—iw,c+iw) (see Fig. 3 The following results are obtained:

(10b) and, further, interchange the latter integration and the inte-

gration in (42). This is permissible since the integral {40b)

convergesuniformly within its region of convergence in the com-

plex p-plane [37]. Cf. Miklowitz [36] and Markenscoff and Ni

a,=TFi{plHFexp=ioN), (489)
a_=7ilag_| at p==ipg, (480)
where
ag_=(m2— %)% (4%)
{r=(1+tar? 6)*?, (4%)
rang— (I+e)r (4%)
hZrw

[46], e.g., for similar interchanges of the integration order in muffhe symbold in the above relation&lenoting an angle in Fig.)3
tiple transform inversions. In this way, we obtain the normalizeghould not be confused with the symbol used earlier to denote the

vertical displacement at the surfaa€’™=(27u,)/(«kQV,), in
the physical space/time

Journal of Applied Mechanics

change in temperature. Thed4) provides the following expres-
sion for the disturbance due to the thermoelastic Rayleigh waves
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ilm(p)T 6 Numerical Results, Further Asymptotic Results, and
Concluding Remarks

Numerical results from the previous expression are obtained
easily through the use of MATHEMATICA™ for both numerical
integrations and symbolic manipulations involved. A model mate-
+ip, rial was considered to derive the results shown in the graphs of
Figs. 4 and 5. It is characterized by the following constants: cou-
+Hly.l P9 ||+ Re(p) pling constante=0.011, thermoelastic characteristic length
KN VK P} =1.864¢10 °m, and Poisson’s ratie=0.3 [this value gives a

ratio of wave velocitiesm=(V,/V,)=1.8708]. The graphs
-ipg present the variation of the normalized vertical displacement
ul™=27u,(kQV,)"1 with the normalized time V,(r?
-io/(m_r) +H?) Y%, In Fig. 4, the case=10H is considered, whereas in
Fig. 5, both cases=40H and r=160H are presented. In all
-ily | casesH =100 m is taken but a numerical inspection showed that
| the shape of pulse does not change appreciably if normalization is
utilized (the displacement itself becomes larger for smaller
] ] depths.
Fig. 3 Branch cuts for the functions  y.(p,@) and y_(p,®), 'Fl?he graphs show the generation of the thermoelastic Rayleigh
and the Bromwich path in the complex  p-plane wave at the half-space surface. We notice that as the distance of
the observation station from the epicenter increases, the shape of
the Rayleigh disturbance appears to become sharper because of
A (= the contraction of the real time scale with the increase of the
U™, z=—H,s)=— _2f f(r,H,w,8) 0-Jo(w)dw, length (>+H?)" Also, as the observation station moves away
r<Jo from the epicenteiglecayin amplitude occurs after a certain point.
(50) This attenuation is due to the 3D geometry of the prob(see for
analogous nonthermal situations in Pekeris and Lifgkij, and
Achenbach9]). On the contrary, the latter result is not encoun-
w|ag_|H S tered in the respective 2D problem of a nonthermal buried dilata-
§—Rf) S(Q) tional source treated t_)y_ Garvirio], v_vhere once the Rayleigh
pulse takes its shape, it is not decaying.
|aR,|exp< _ ?é’é’zH cog 0/2)) B In the sequel, we further investigate the behaviouf™(r,z

+ilyl

+iew/(m_r)

where

f(I’,H,w,S)=eX[{—

=—H,s) atlarge distances from the epicenter, i.e., forH. In
- this case, it is (?>+H?)Y?=r and the normalized vertical dis-

g €1/2
R¥R placement takes the form
x {’”S o (w€1’2H 'n(0/2)) (51) X—iY
cos———5—|— Si —vr
rro2 (R ’ ul™Mr>H,z=-H,s)=—AR ,
= ) (r24+X2=Y2r2—j2xYr)32
N m’—2¢% 52) (55)
4 1+‘9) LS(ZR)- (M2—m?) 22 whereX=|ag_|-H/{g and Y=Vgt/r. Takingr>H leads to the
h R /R conclusion that > X and then(55) takes the even simpler form

Further, as the analysis in Appendix B shows, the second term
of f(r,H,w,s) in (51) is negligible with respect to the first term.
Omitting the small term, the normalized vertical displacement be-

comes 1.5E-15 —
A *© (l)|aR_|H - )
u”°”“r,z=—H,s:——f exp{——
2 ) r?Jo LRI LOE-15
< r=10 H
wS p: b
X co§ — | Jo(w)wdw. 53) =
ey £ S0E-16
Finally, evaluation of the integral if63) (Watson[44]) yields }'
the following closed-formexpression for the normalized vertical 1
displacement at the surface due to Rayleigh waves generated k 0.0E+ |
buried thermal source in a half-space s
lag-[H . s i
R
A LRI LRl -5.0E-16
nor _ _ [} I i I I ]
uz"r.z=—H.s)= r2 R lag_|H s \2]32]" L0 15 20 25 3.0 s 40
1+ —i—
[ Lrr {rr ) normalized time

(54)
h is th dial di h . al h Fig. 4 The variation of the normalized vertical displacement
wherer is the radial distance from the epicenter[ Relenotes the UM =270 (kO V;) "L with the normalized time s (r2+H2)~ V2

real part of a complexi function, and th? quantitj‘asaR., andZr indicating the arrival of a thermoelastic Rayleigh wave at the
depend on the material constants. It is also of notice tj3t" station r=10H. The constants have the values £=0.011, h
depends on the ratidH/r). =1.864X10"°m, »=0.3, and H=100m.
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8E-16 — form the disturbance associated with the propagation of the ther-
moelastic Rayleigh waves. This was made possible by using mul-
H 4 —40H tiple Laplace transforms, asymptoti_cs, complex-variable theory
£ and certain results for Bessel functions. The dependence of the
2 AE16 normal displacement associated with the Rayleigh wave upon the
[ . . .
Z distance from the source epicenter and the distance from the
3 wavefront was also determined.
£ T r=160 H
g J ,
Appendix A

oo PP . .
3 V The solution of the 1212 algebraic system of Sec. 3 reads
13
= o
: X;= —xQVle—Za—HP( —(e®-HP—g 22 HP)g M_TE

-4E-16 T T T T T ] M

1.0 15 20 25 3.0 35 40 +(GZa,Hp+e—2(a+—a,)Hp_2_*e—(a+—a,)Hp a,M,TE
N M.
normalized time

Fig. 5 The variation of the normalized vertical displacement +(e?-Hp4 e—2(a+—a)HP)D)/ (BA), (A1)
uP™=27u,(kQV,)"! with the normalized time s(r?+H?)~12

indicating the arrival of a thermoelastic Rayleigh wave at the
stations r=40 H and r=160 H. The constants have the values X,=kQV;

_ —(a,+3a_)Hp
a_e ‘°+
£=0.011, h=1.864X10"°m, »=0.3, and H=100 m.

_ 2e2a,Hp+ (e(a++a,)Hp

+(:‘\(aJr4r3a,)Hp)% .M+TE+efza’Hp((71

+

X—=iYr
ul®Mr>H,z=—H,s)=—AR .
2 ) {(rz—erz—iZXYr)w +e2""HP)M+a+TE+(1+ezaHp)D))/ (CA), (A2)
(56)
In addition, we can investigate the fielear the Rayleigh  Xz=—2«QV;BqTe (272 "AHP(g e2+HP—a e2-HP)(T,
wavefront. To this end, the transformatigp=Vgt—r is used in 2
(56), wherexg denotes the distance from the Rayleigh wavefront, TWIIFA), (A3)
providing X,=2kQV,BwTe B+ FTa-FTHHP(g gaiHp_g gd-Hpy(T
uz""(r>H,z=—H.s) +G2)/(FA), (Ad)
i—i(ﬁ—kl _ kQVy __KQV1 A
A r r 5= 5 = B (A5)
_TIZR X ” 35 2a, mp(M,—M_)
r R . R
*XR(T + 2) —i2X ra +1 Xe=— KQV1e7(2a++a*)Hp{a,ea*HpM _TE+a,((e*""M,
(57) —2e®+HPM_)TE)+e3-HPD/(BA)}, (A6)
Now, by takingr> X andr>xg, we get the following expression kQVy
for the vertical displacement far from the epicenter and, at the =T ¢ (A7)
same time, very close to the Rayleigh wavefront
A i Xg=kQV, e~ (B+F2aIHp(g_(2e3-HPM | —e2+HPM ) TE
u"Mr>H,r>xg,z= —H,s)= - (Sr)l/zRe[(_xR_ix)slz : +a,emHP(M, T(—E))+e*"PD)/(CA), (A8)
(58) Xg = XlO: 0, (Ag)

The above relation reveals that the displacement varies with the,, _ —(a,+B)Hp(_ (a,—a_)Hp
distance from the epicenter as}*"(r>H,r>xg,z=—H,s) K= —2xQVifaTe = (ma-ta.e™ )(Tq
~12 while in the case of a source that is situated very close to +w?)/(FA), (A10)
the surface(i.e., whenxg>X) the displacement varies with the _

distance from the Rayleigh wavefront ag°™(r>H,r>xg, X1,=2kQV;BwTe (@ 18- TANP(~a, et P+ a et TP)(T,
z=—H,s)~xz ¥?. The first of the aforementioned results shows +g?)/(FA), (A11)
that the surface effects attenuate with distance &€, the physi-
cal explanation of which is that the surface waves in our 3
problem are essentially cylindrical wavésee Ref[9] for analo- A=(@;M;—a M )T(TyT,— g’w?) +4a,a_B(M,.—M_)
gous situations in classical elastodynamics

~r

B/here

2 2\p,2 2
In conclusion, the 3D transient dynamic problem of a ther-  <(A°Tq+2a"W +wT,), (A12)
moelast_ic ha_1|f-space under th(_ermal buried or surface loading is B=2a,m3(M,—M )p, (A13)
treated in this paper. The loading has the form of a concentrated
heat flux applied impulsively and Biot's fully coupled thermoelas- C=2a_.m*(M,.—M_)p, (AL14)

ticity is utilized. The problem has relevance to situations involv-

— 2 2\p,2 2
ing heat generation due to, e.g., laser actimnpulsive electro- D=4a,a B(M.—M_)(q7Tq+2q° W +wTy), (ALS)

ma_gnetic rad?at_io)w on a surface_target, underground nu<_:|ear E=TqTW—q2w2, (A16)
activity, and friction developed during underground fault motions.
Here, we were particularly interested in determiningcinsed F=m?p. (AL17)
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Appendix B [14] Hetnarski, R. B., and Ignaczak, J., 1993, “Generalized Thermoelasticity:
Closed-Form Solutions,” J. Therm. Stresse6, pp. 473—498.
Considering the rati? of the fluctuation amplitudes of the first [15] Predeleanu, M., 1987, “Analysis of Thermomechanical Coupling by Boundary
and second terms i(‘51), we obtain Element Method,” inThermomechanical Couplings in Soljdsdited by Bui,
H. D. and Nguyen, Q. S., Elsevier, Amsterdam, pp. 305—-318.
[16] Fleurier, J., and Predeleanu, M., 1987, “On the Use of Coupled Fundamental

1/2
R= ﬂ ex| 2 H |l/2 COS{ 0/2) _ |aR7| (Bl) Solutions in B.E.M. for Thermoelastic Problems,” Eng. Anal. Boundary Elem.,
lag_| r R lr 4, pp. 70-74.
. . . ) [17] Sharp, S., and Crouch, S. L., 1987, “Heat Conduction, Thermoelasticity and
We will examine this ratio and conclude thgi takes on very Consolidation,” inBoundary Element Methods in Mechanieslited by Bes-
large values in the entire range of provided that the distance kos, D. E., Elsevier, Amsterdam, pp. 440—498.

from the epicenter is much greater than the thermoelastic char{18] Manalis, G. D., and Beskos, D. E., 1989, “Integral Formulation and Funda-

o . . mental Solutions of Dynamic Poroelasticity and Thermoelasticity,” Acta
acteristic lengtth. The lengthh is very smallfor most materials Mech., 76, pp. 89104,

[h=0(10 *m) as mentioned in the main text of the pajp@nd,  [19] Manolis, G. D., and Beskos, D. E., 1990, “Integral Formulation and Funda-
therefore, the requirement/f)>1 does not pose any serious mental Solutions of Dynamic Poroelasticity and Thermoelasticity,” Acta
limitation. Similarly to the case of E¢21b), any choice with, say, Mech., 83, pp. 223-226.

. . 0] Hetnarski, R. B., 1961, “Coupled One-Dimensional Thermal Shock Problem
(r/h)=100 leads to a reasonable approximation. To cover thé for Small Times,” Arch. Mech. Stosow13, pp. 295—306.

entire range ofw-values, we discern the following possibilities:  [21] sterberg, E., and Chakravorty, J. G., 1959, “On Inertia Effects in a Transient

(1) Considering @/r)—0, Egs. (4%) and (4%) provide Thermoelastic Problem,” ASME J. Appl. Mect26, pp. 503—509.
: 0 ; 1/2_ [22] Sternberg, E., and Chakravorty, J. G., 1959, “Thermal Shock in an Elastic
=00 =00
t.he results "%’Qﬂg tano=e, Mg -olr . and Body With a Spherical Cavity,” Q. Appl. Math17, pp. 205-218.
lim (,/ry—o COS@2)=2""~. Then, we find that (23] Francis, P. H., 1972, “Thermo-Mechanical Effects in Elastic Wave Propaga-
lim () o((@/r)H[ 1 §? cos@l2) — (|ar-|/{r)1) =0 and tion: A Survey,” J. Sound Vib.21, pp. 181-192.
im , o R=00 [24] Atkinson, C., and Craster, R. V., 1992, “Fracture in Fully Coupled Dynamic
wll)— .

. . . Thermoelasticity,” J. Mech. Phys. Solid40, pp. 1415-1432.
(2) Considering {/r)—«, Egs. (49) and (4%) provide [25] Brock, L. M., 1995, “Slip/Diffusion Zone Formation at Rapidly-Loaded

the results  ling,) .tang=0, limy .. €x°=1 and Cracks in Thermoelastic Solids,” J. Elast0, pp. 183-206. _
”m(m/r)ﬂx cos@l2)=1. Also, from (36) and (49a) we may infer [26] Brock, L. M., Rodgers, M., and Georgiadis, H. G., 1996, “Dynamic Ther-

. . ! moelastic Effects for Half-Planes and Half-Spaces With Nearly-Planar Sur-
that (ag_|/Zg)<1. Then, working as in the above case, we find faces,” J. Elast.44, pp. 229-254.

that lirn(w/r)_ﬂw 9_%200- [27] Brock, L. M., Georgiadis, H. G., and Tsamasphyros, G., 1997, “The Coupled

3) Consideringw=0(r), Egs.(49c) and(49b) lead us to con- Thermoelasticity Problem of the Transient Motion of a Line Heat/Mechanical

g q
1/2 Source Over a Half-Space,” J. Therm. Stres&&s,pp. 773-795.

.Cll.'lde that taio a,nlc/jzeR takes on ygry Iarge values. Consequently’[ZSJ Georgiadis, H. G., Brock, L. M., and Rigatos, A. P., 1998, “Transient Concen-
it is 005(9/2)=_2 i and by(B1) it is seen thair takes on very trated Thermal/Mechanical Loading of the Faces of a Crack in a Coupled-
Iarge values in this case too. Thermoelastic Solid,” Int. J. Solids StrucB85, pp. 1075-1097.

Finally, we note that a numerical evaluation of the two terms il29 Georgiadis, H. G., Rigatos, A. P., and Brock, L. M., 1999, “Thermoelastody-

: : ; . namic Disturbances in a Half-Space Under the Action of a Buried Thermal/
(51) showed that the amp.“tUde of the first term IS, at.mmlmum’ Mechanical Line Source,” Int. J. Solids StrucB6, pp. 3639—-3660.
about 20 orders of magthde greater than the amp“tUde of ”[@0] Barber, J. R., 1972, “Distortion of the Semi-Infinite Solid Due to Transient
second term. Surface Heating,” Int. J. Mech. Scil4, pp. 377-393.
[31] Barber, J. R., and Martin-Moran, C. J., 1982, “Green’s Functions for Transient
Thermoelastic Contact Problems for the Half-Plane,” W&&,pp. 11-19.
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Coupled Plastic Wave
Propagation and Column Buckling

The plastic buckling of columns is explored in a regime where plastic wave propagation
and lateral buckling are nonlinearly coupled. Underlying the work is the motivation to
Denzil G Vaughn understand and quantify the dynamic crushing resistance of truss cores of all-metal sapd-
) wich plates where each truss member is a clamped column. Members are typically fairly
James M canning stocky such that they buckle plastically and their load carrying capacity decrea;es gradu-
: ally as they buckle, even at slow loading rates. In the range of elevated loading rates of
: interest here, the columns are significantly stabilized by lateral inertia, resisting lateral
John W. Hutchinson motion and delaying buckling and loss of load carrying capacity to relatively large over-
all plastic strains. The time scale associated with dynamic axial behavior, wherein defor-
mation spreads along the column as a plastic wave, is comparable to the time scale
associated with lateral buckling such that the two phenomena are coupled. Several rel-
evant problems are analyzed using a combination of analytical and numerical procedures.
Material strain-rate dependence is also taken into account. Detailed finite element analy-
ses are performed for axially loaded columns with initial imperfections, as well as for
inclined columns in a truss core of a sandwich plate, with the aim of determining the
resistance of the column to deformation as dependent on the loading rate and the relevant
material and geometric parameters. In the range of loading rates of interest, dynamic
effects result in substantial increases in the reaction forces exerted by core members on
the faces of the sandwich plate with significant elevation in energy absorption.
[DOI: 10.1115/1.1825437

Division of Engineering and Applied Sciences,
Harvard University,
Cambridge, MA 02138

1 Introduction In the applications motivating this study, a representative column
\Af_ould be relatively stocky, typically 0.1 m in length, and subject

Pursued extensively for over 50 years, the dynamic axial loa . )
ing of columns is still an important subject because of its ref° @ suddenly imposed velocity on the order of 100 fnat one

evance to a wide range of engineering applications. Much int&0d corresponding to an overall strain rate of $0*. The load-
esting mechanics underlies qualitative and quantitatiyB9 rates of interest are such that the .|n|t|al stages qf the.deforma-
understanding of dynamic column buckling, and the subject hi§n are dominated by the propagation of a plastic axial wave
not been without controversy. Here, columnar truss members d3wn the column. Buckling is resisted by lateral inertia. Overall
all metal truss core sandwich plates motivate the study as th&ggnpressive strains of 20% or more can be achieved before ap-
sandwich plates have the potential for replacing solid plate copreciable buckling deflections occur. Buckling deflections, which
struction for a range of applications including ship hulls, armoredepend on initial imperfection amplitudes, develop in the later
vehicles, and chemical planf4] where impulsive loads are of stages of the crushing. Thus, during the initial stage of deforma-
concern. For applications involving high intensity dynamic crusHion, the forces exerted on the face sheets are similar to those
ing loads, cores can experience nominal strain rates greater tiexarted by a straight rod undergoing dynamic axial deformation.
10° s~. Column members in truss cores are usually sufficientfxs buckling deformations develop, the forces depend in a compli-
stocky such that buckling occurs well into the plastic range, espeated way on coupled plastic wave propagation and lateral buck-
cially when the columns are stabilized by lateral inertia at elevatéag.
loading rates. The basic cellular unit of a tetragonal truss core isThe early study of Abrahamson and Goodj8t on column
shown in Fig. 1. Although the columns in the core are inclinetinpact has aspects in common with the problem and loading rates
with respect to the crushing direction, they nevertheless behaveoiinterest here. Specifically, their experiments involved impact
a manner similar to an axially compressed column due to the faatlocities in the range of interest here, and overall compressive
that their end displacements are constrained by the face sheetstiains on the order of 20% due primarily to axial straining were
the direction parallel to the sheets. Of primary interest is the rebserved. However, the primary motivation underlying the work
sistance of the columns to deformation, the forces they exert on[3] was buckling and not the forces exerted during the impact.
the face sheets during dynamic crushing, and the energy they &baddition, the theoretical approach of these authors was to de-
sorb. Most of the emphasis in this paper will be on axially comeouple the axial deformation from the buckling deformation by
pressed columns, but the direct relevance of results for axialigsuming the axial stress state was established prior to the growth
compressed columns to inclined columns will be demonstrateddn buckling deformations. Calladine and Engligh] also decou-
the second half of the paper. pled axial deformations from bucking deformations in their study
There is a large literature on dynamic plastic buckling of cobf the various influences of inertia on dynamic buckling. As will
umns[2-5] and perhaps a rationale for further study is warrante@le seen in the body of the paper, this decoupling is justified since
their work focused on a range of relatively low impact velocities;
" %OntfibCUtEdEbléthe Apsg”ed '\i')?Ch?niC_S %ViSAOQMOS‘;AMER'COANASOC'ETYMOF the maximum impact velocity in their experiments did not exceed
CHANICS. Manuscript received by the Applied Mechanics Diision, Aprl 21, 200410 MS *. These authors make the important observation that in-
final revision, May 3, 2004. Editor: R. M. McMeeking. Discussion on the pape€rtial stabilization effects scale differently with column size than
should be addressed to the Editor, Professor Robert M. McMeeking, Journal rpfaterial strain-rate effects, a point that will be discussed in the
Applied Mechanics, Department of Mechanical and Environmental Engineeringracant paper as well.

University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be h | h | | . . I |
accepted until four months after final publication in the paper itself in the ASME The problem that couples plastic wave propagation and lateral

JOURNAL OF APPLIED MECHANICS. buckling has only recently received attentid 8], with analyti-
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where the strain-dependent wave speed is

— Et_U — & 2
c(e)=1\/ 5 e (2

andE;=da/de is the tangent modulus of the true stress-log strain
curve. The wave speett,, o, ande all depend oru through the
expressions listed above.

Three limiting cases ofl) and(2) are worth identifying. When
yielding occurs with small strains arig{> ||, c= JE;7p, which
is often referred to as the plastic wave speed. The finite strain
formulation givesc=.oy/p for a plastic compression wave
propagating along an elastic-perfectly plastic r&j=0) where
oy is the yield stress. The wave speed of a tensile wave ap-
proaches zero whem=E;, corresponding to the Considere con-
dition for necking localization.

Fig. 1 Tetragonal Truss Core

2.2 Compression Wave in an Infinitely Long Bar Subject
. . . . o Constant Velocity at Its End. The solution produced inde-
cal and numerical approaches with primary emphasis on the dently during World War Il by von Karman and Duwi3 and
buckle shape. Here, the coupled nonlinear problem is analyzed o [10] for uniaxial impact loading of a long rod provides
using a numerical approach, accounting for both imperfectiofisignt to the column problems of interest in this paper. Specifi-
and material strain rate dependence, with emphasis on the forgﬁﬁy, at the higher rates of loading of interest, the column remains

required to deform the column and the energy dissipated by thgayy straight in the early stage of deformation and behavior is
column. However, to shed light on the initial stages of the defogyminated by an axial plastic compression wave.

mation history, the next.secti.on of the paper presents re;ults OEor the case of a semi-infinitely long bar<€&<c) at rest at
the propagation of plastic axial waves down a rod following the_ o 5nq subject to a uniform velociti(0)=V>0, at its left
clas_sm treatments of von Karman _and Duy@rand Taylo_r[lo]_ end, a similarity solution t¢2) exists[9,10] with dependence on a
An important dimensionless Ioadl_ng rate parameter tied to th gle dimensionless variablet=x/(cst) where co=c(0)
dynamic effects emerges from this analysis. The fully coupl d E7; is the elastic wave speed withas Young's modulus. The

problem i§ analyzged for a wide range of loading rates utilizing the, | tion is simple but highly nonlinear and implicit. Only the
commercially available codes ABAQUS/Standard and ABAQUS{eils of interest will be presented here. The solution depends on

Explicit. Reaction forces and energy dissipation are determined@s, (e|ation betwees and ¢ defined byc(e)/co= ¢ and the in-
a function of geometric, material and loading parameters. With the .o of this relation denoted by=g(&). The regimet>1 lies
aid of numerical analysis, it is also demonstrated that the forcggeaq of the disturbance; the regidig<£<1 has the strain de-
exerted on the face sheets by inclined columns in a truss core dence: =g(&); and the regime @ ¢< £, has uniform strain
be well approximated using results for the axially compressegl, e=e,=g(&,) and uniform velocityi=V. The front of the
column. section of the rod having uniform strain, and velocityV propa-
gates down the rod with speeqe). The transition valuet
depends on the imposed velochy according to the highly im-

2.1 Wave Equation for Rate-Independent Material. Tay- Plicit equation
lor [10] and von Karman and Duwepd] considered a one- 1 v
dimensional plastic wave propagating do_wn a_rod. Taylor’_s ap- (1_eg(§u))§u+f (1—e9@)dg= — (3)
proach was conducted within a finite strain setting, and a similar 3 Co
approach will be followed here, but with a different choice of o )
variables.(Several authors have remarked to the effect that von The solution is illustrated for a Ramberg—Osgood stress—strain
Karman and Duwez also use a finite strain approach in théglation

2 Uniaxial Waves in a Rod

analysis, but their treatment of finite strain aspects is not nearly as n
transparent as that of TaylpConsider a semi-infinite bar extend- f_7 + (i (4)
ing from x=0 to x= att=0, with a material point ak at t &y Oy \Oy

=0 located aX=x+u(x,t) att. The logarithmic(true) strain is
related to the displacement gradient &y In(1+du/dx). Analyti-
cal solutions are restricted to rods made of rate-independent

with yield stressovy, yield strainey=ov/E, strain hardening
nqéponenﬂ\hl/n (0<N<1) and tangent modulus

terials such that the true stre@®rce per current argacan be E o\t
regarded as a function of true straim(e). Material rate- —=1+n —) (5)
dependence is taken into account in Sec. 2.3. In this subsection t gy

and the next, attention is limited to problems with monotonigetaiis of the solution, which must be obtained numerically using
straining such as a compression wave with no elastic unloadlqg) are plotted in Fig. 2. Both the strain and the nominal

Following the earlier work of Taylor and von Karman and DuwezQ0 ressive stress(compressive force per original area
the rod is assumed to be incompressible and the effect of rad Irip_ oe~¢) in the u(niforﬁwly strained regio?w are digplayed '

inertia is neglected. Wit as the cross-sectional area of the ro NAn analytical approximation is obtained by assuming the strains
in thg d.eformed 'state arfe= oA 23 thg force carrled by the _md’are small and neglecting compared tcE, in (2) such thatc(e)
equilibrium requiresiF/9X=pAd-ulgt*, wherep is the density _ E75 Then, neglecting the linear stress contribution to the
of the material. Incompressibility impliesA/de = — A. When ex- strain in (4), it is readily shown thag(&)= — s (&/N)~2(1-N)
pressed in terms af(x,t), the equilibrium equation can be writ- with ' Y

ten as

2/(N+1

Pu 1 ¢ gy _ ey

e (e o @ o

2 e
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(&) “L,-'r?:\r V = 200m/s — no imperfection
0 Fig. 3 Undeformed and deformed meshes for a straight rod
subject to velocities V=140 ms~* and V=200 ms~! [V/(coey)
=13.3 and 19] at its left end and fixed at its right end. The
: deformed rods have been deformed to an overall strain of 20%.
P iy { No material rate dependence.
& [ | TSR pR—. W boMesnaans b ok inieicusil I il ik S ol B -
]
o E:Y=D.GD3
EE}
= il | that for structural metals plastic wave propagation effects become
dominantly important for impact velocitie¥ typically in the
range from 10 to 100 mg.
M= . . - .
5 : 2.3 Dynamic Compression of Finite Length Rods. In this
e T e ---=  section the study of dynamic compressive behavior of the straight
PR 4 column, or rod, is continued accounting the effect of finite length.
Finite strain ; . ! ng th
Small strait As_ in the previous sec_tlo_n, the rod is initially at res_t.tAetO, a
————— : : uniform velocity, V>0, is imposed at its left end while the right
q ! : | I ! ! end atx=L is fixed. In the study in this subsection the material is
X -5 -4 3 2 -1 o taken to be the rate-independent limit of a structural stainless
(B GNIG steel, AI6XN, currently being considered as a possible candidate
¥ for truss cores. This material has substantial strain hardening that
) ) ) ) is nearly linear and moderate strain-rate sensitivity. The full rate-
Fig. 2 Plastic compression wave propagating along a rod for dependent specification of the material is given below in anticipa-
both the small strain approximation and the finite strain solu- tion of its use in subsequent sections. In tension, the relation be-

tion. (a) Strain &, in the region of uniform deformation behind
the propagating front. (b) Nominal compressive stress at the
left end of the rod and in the adjacent region of uniform strain.

tween true stress and true strain is taken to be strictly bilinear for
each value of plastic strain-rate:

The normalizations for the small strain approximation are valid - < eam
for all yield strains; the results for the finite strain solution are o= Ee, esey(1+(ep/e0)™) ©)
Computed with 8Y=0003 (Ty(l‘l’(ép/.eo)m)"’E[Sp, 8>8y(1+(ép/éo)m)

with E=190 GPa,oy=400 MPa, E,=2.4 GPa,£,=4920 s ¢,
m=0.154, p=7920 kg m 3, and Poisson’s ratiov=0.3. The
2N/(N+1) strain-rate dependence results in a 57% elevation of the stress for

IN_ ﬂ( v ) (7y £=1000 s' versus the stress at=0.01 s * at the same,. The
oy | 2yN | Coey rate-independent limit used in this section is obtained by setting
—(L-N)JI(L+N) m=0. Comparisons will be made between predictions with and
c(ey) 1+N[ V without rate-sensitivity in the following sections.
Co =N 2N | Coey ) The finite strain version of ABAQUS Explicif11] has been

used to compute the responses. The right face of the column is
The small strain solution depends on the imposed velogitgnd attached to a fixed rigid plate and left face of the column is at-
initial yield strain through the single paramet®ficqoey, which tached to a rigid plate with prescribed uniform velocityfor t

will be seen to be the most important dimensionless parametef. The column model is comprised of eight-noded linear hexa-
governing dynamic effects in the present study. The small straiedral elements. The model accounts for radial inertia. In the
approximation is also plotted in Fig. 2, where it is seen that @omputations, the initial length of the rod lis=0.122 m and its
indeed captures the essential trends\éc,ey as large as about radiusR is taken to bel/13. An undeformed mesh and a repre-
20. The front of the uniformly strained section of the rod propssentative deformed mesh at an overall compressive strain of 20%
gates at a small fraction of the elastic wave speed wiheney are shown in Fig. 3 for two values &f. Further mesh refinement
~10, corresponding to imposed velocitigs that are typically does not appreciably alter the results discussed below. The range
several percent of the elastic wave speed. Since an initial yiedflimposed velocities of relevance to the applications described in
strain usually lies within the range from 0.001 to 0.01, it followshe Introduction isv/(cqey)<20.
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Fig. 4 Nominal stress exerted by a rod on the plates at its two
ends, where the left plate impacts the rod at V=140 ms~?
[VI(coey)=13.3] and the right plate is fixed.

The response of the column to a constant velocity
=140 m/q V/(cgey)=13.3] is shown in Fig. 4. The forces on the
left and right plates are shown. Oscillations in the force on the le
plate at early times in the history are due to numerical effect o .
associated with the abrupt increase of the applied velocity. T v=200m/s — with imperfection
reduce these oscillations, the applied velocity on the left plate is o
increased from zero t¥ in a more gradual manner according td-19- > Undeformed and deformed meshes of column with ini-
V(1—e "), The oscillations are largely smoothed out and be?—avll('?per)fe_cfogr} ;?]rd %L:aﬁlsﬁe\‘}}c(b ;/_=12§] m,(,sc; ,ﬁ';?eriavﬁjf’eoég’s
havior for Vt/L>0.05 is virtually unaffected by the choice tf pendeonizye. ' g oeY '
as long asvyty/L<0.02. Oscillatory effects are much smaller on
the right face since there is no response until the arrival of the
elastic compression wave.

. Agide from oscillations at early times, the force on the left pla. lates and thus effectively clamped against rotation at each end
is fairly constant throughout the deformation and well above wi he left plate experiences an imposed uniform velovitstartin '
the yield stress, consistent with the results for the infinitely Iongtt: P P P 9

rod discussed in the previous section. The force on the left faggm

remains level to a nominal overall strain of 20%t(L=0.2), at

which point the computation was terminated. Thus, due to inerti Ements with ABAQUS Explicit, quasi-static calculations use the
effects there is a significant difference between the force a cor andard version. A geometric imperfection is introduced to pro-

element will exert on the face sheet towards a blast loading and ?I%}eeclt?éﬁral buckling motion in the form of an initial transverse
the face sheet away from the blast. The deformed mesh in Fig.
shows the rod at 20% strairV{/L=0.2) where the thicker, uni- (R 27X
formly compressed region has just reached the far end in the case w(x)= > 1—005( T)
V=140 m/s, while for the rod subject to the higher end velocity
V=200 m/s the compressed region has only spread over twwhere  is the normalized imperfection amplitude. As will be
thirds the length of the rod at the same overall strain. shown later, an axially compressed column with imperfection am-
Results such as those shown in Fig. 4 have been computed gbtude {=1/4 provides a reasonable approximation to the re-
20 m/s<V=200 m/s. Folv<20 m/s[V/(ceey)<1.9], dynamic sponse of the tetragonal truss core construction where the mem-
effects are not nearly so pronounced with plastic deformation deers are inclined but have no initial imperfection. Under dynamic
curring more uniformly along the rod and end forces that aonditions, a perfectly straight column that is not inclined does
nearly equal. not buckle, assuming no other imperfections due either to loading
or material asymmetry. The nature of the governing equations is
3 Coupled Plastic Wave Propagation and Lateral such that solution bifurcations do not occur. Dynamic buckling
. . requires an initial asymmetric imperfection of some type, and,
Buckling for Axially Compressed Columns moreover, the development of the lateral buckling motion depends
In this section, results for the straight, finite length column anan the imperfection amplitude. For relatively stocky columns of
lyzed in the previous section are determined under circumstandet®rest here, an imperfection with=1/4 can be regarded as re-
where the column is permitted to buckle. The material comprisirajistic, and later it will be shown that the buckling response is not
the column is described b§®) which includes rate-dependencea strong function of in this range.
however, results will be presented to highlight the roles of both The role of inertia in altering the column response is illustrated
strain hardening and strain-rate dependence. As in the study of ihd-ig. 5 where deformed columns at a nominal strain of 20% are

:Erevious section, the ends of the column are “welded” to rigid

0, while the right end is fixed. The dynamic calculations are
ed out using a three-dimensional meshing using hexahedral

(10)
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v Fig. 7 Quasistatic nominal stress-end shortening behavior
GDEY with and without strain hardening. The material is specified by
(9) with E,=0 and m=0 for the elastic-perfectly plasti_c case
Fig. 6 Plastic energy dissipation as a function of Vi(coe,) @nd E;=2.4GPa and m=0 for the hardening material. The

stockiness ratio is
is £=1/4.

[and V/(Lég)], with and without strain-rate dependence at an RIL=0.077 and the imperfection amplitude

overall strain €=0.1 for the material specified by (9) and
Coeyl(L£o)=0.0175.

=0) are plotted in Fig. 7, where each of the two columns have an

shown for very slow(quasistatic loadingand two other imposed initial imperfection with {=1/4. High strain hardening leads to
velocities, V=20 m/s and 200 m/s. The buckled shapes of thiignificantly more postbuckling load carrying capacity. The sub-
quasistatically loaded column and that witke 20 m/s are similar Stantial quasistatic postbuckling capacity for both columns is a
and representative of the classical mode of a clamped beam. g§nsequence of their relative stockinesdR=13) and the fact
contrast, the column loaded with=200 m/s {//eyc,=19.4) has that they are clamped on both ends.

undergone relatively little lateral displacement even at an overall
strain of 20% and it is evident from the deformed shape that the
majority of compression has occurred within the left half of the

column. The plastic wave traveling from the left end has not ye
spread over the entire column at the instant of the deformation
Fig. 5, and lateral buckling is just beginning to develop.

There are important consequences of the dynamic stabilizatit
of the columns against lateral buckling seen in Fig. 5. In applice
tions of all-metal sandwich construction for blast resistant plat
structures, energy absorption in the core is an important comp
nent of superior performance. Any delay of buckling of a trus:
core member due to inertial stabilization translates into great
plastic energy dissipation. The column in Fig. 5 loadedVat

e

=200 m/s has absorbed the energy equivalent of the mater &
strained to 20% under uniaxial compression, albeit nonuniforml &

along its length. The energy absorbed by the column loaded qu
sistatically to 20% overall strain is considerably less since it ur
dergoes significant lateral buckling and loss of load carrying ce
pacity. Under uniaxial compression, energy absorption scales wi
ovemR?L, wheree=Vt/L is the overall strain, and Fig. 6 dis-
plays the plastic energy dissipation in the columrzat0.1 nor-
malized by this factor as a function 97 (eycp), with and without
material strain-rate dependence. This plot brings out the exce
tionally strong influence of dynamic loading on plastic dissipatior
as measured by the parameté(eyc,); energy absorption can be
enhanced by a factor of 2 or more in the rangéesycy)>10.
AL6XN has moderately high strain hardening. To separate
the influence of strain hardening on inertial stabilization and i
related effects, columns of elastic-perfectly plastic material a|
investigated with the same initial yield stress as AL6XN(®).
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Oéig. 8 Nominal stress acting by the column on the left plate as
function of the normalized imposed velocity

BF overall strain for both an elastic-perfectly plastic material
[(9) with E,=0 and m=0] and a material with high strain hard-

V at three levels

The overall load-end shortening responses under quasistatic logging [(9) with E,=2.4 GPa, m=0]. The imperfection amplitude

ing with and without strain hardenin@oth materials haven
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is {=1/4.
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Fig. 9 Nominal stress acting by the column on the left plate as - “'T‘."rE_l:}-‘:]D21 bl |
a function of the normalized imposed velocity V for a strain Cl e s [E=00ME |77 E e |
hardening material (9) with (m=0.154) and without (m=0) ¥ G :
strain-rate dependence at an overall strain of 10%. The imper- i 5 /JE=0.00105 &
fection amplitude is  ¢=1/4 and cyey/(L£y)=0.0175. 25 ¥ a
- -
H [l
2 el ‘.-
Computed values of the normalized force exerted by the cc . & i
umn on the plate on the left end as a function of imposed veloci & :l' : _
are given in Flg 8 for a column of elastic-perfectly plastic mate 16 15 i ‘: .................. . ................ samunas amsansm]
rial and of strain hardening typical of AL6XN i(®), both with no L =
rate-dependencen(=0). With F as the force, the normalization B o SN SIS, WRURIITI AT
is oloy, where c=F/A, is the nominal stress and, is the CE=010¢
initial cross-sectional area of the column. It can be seen that t i
force is nearly independent of strain, consistent with the respon: TR ] e | S b B : grse]
discussed earlier in Fig. 4, except for the elastic-perfectly plasi i :
column at low levels of imposed velocity. The most striking fea ! |
ture of the results in Fig. 8 is the large amplification of the forc 0 4 : . :
exerted by the column on the left plate ¥sis increased. Force o E 0 13 a0
amplification arises from two sourced) inertial stabilization of (b) Vic o
oY

the column against buckling ar@) the momentum imparted to
the column by the left plate. The component associated with iner-
tial stabilization gives rise to the increased plastic dissipation 6fg. 10 (a) Effect of the stockiness, R/L, on the nominal
Fig. 6. stress acting by the column on the left plate as a function of the
The effect of material strain-rate dependence on the reactiBpfmalized imposed velocity V' for a strain hardening material
force on the left plate is shown in Fig. 9. The lower curve is th%l’gh no strain-rate dependence  [(9) with E,=2.4 GPa, m=0].

. . . imperfection amplitude is  ¢{=1/4. (b) Effect of the yield
discussed for AL6XN with strain-rate dependence suppress in, &,=ay/E, on the nominal stress acting by the column

[m=0 in (9)] while the upper curve incorporates the strain-ratg, the left plate as a function of the normalized imposed veloc-
dependence of this material. When material rate-dependenceisy for a strain hardening material with no strain-rate depen-

taken into account, additional dimensionless parameters anisedence [(9) with E,=2.4 GPa, m=0]. The imperfection ampli-

andV/(Leg). The results in Fig. 9 include the values\Wf(Ley) tude is ¢=1/4.

on the abscissa. The elevation of the reaction force due to material

strain-rate dependence over the corresponding force for the rate-

independent material is what would be expected for the overglith co=ETp. Equation(11) brings out the point emphasized by

strain rate of 1&s ! [corresponding to the impact velocity with Calladine and Englisii5] that inertial effects and material rate-

V/(eyCo)=11.6 in Fig. §; the influence is similar to that seen independence effects scale differently with respect to column

Fig. 6 on the energy dissipation. length. In the range of behavior in which inertial effects are domi-
Based on dimensional considerations, the normalized reactigated by axial deformation, the controlling parameter is

force depends on a relatively large dimensionless parameter @¢teyc,). The dimensionless parameter controlling the influence

according to of material rate-dependence ¥/Le,. The results presented
5 v ou R Vi V a_bov_e suggest th_at the qependence of end forces and energy dis-
— —f N — - — —m (11) sipation on material strain-rate dependence thraugindV/Lz,
oy \eycg TE'L'LLeg is more-or-less what would be expected at the overall strain-rate,
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given its effect in elevating the flow stress(@). In the range of oo i
overall strainVt/L from 0.05 to more than 0.2, the normalized i
reaction force is essentially independent of strain for relativel 0T i
stocky columns, except for small strain hardening at low impose i : -
velocities. FEM results for inclined columnsi
The effect of the slenderness ratR/L, and the initial yield L2 BT ' a
strain,ey= oy /E, on the normalized reaction force at an overall !I fI‘UITI gtraight column o
strain of 10% are shown in Figs. (), 10(b). The slenderness T4 T ey L S SRR

ratio has a significant effect at small/(eycy) but almost no -
effect at higher values of this parameter, consistent with the fa &

that the buckling deflections remain small until overall strains arl & e

in excess of 20%. Similarly, for the normalizations used in Fig

10(b), there is little dependence on the initial yield strain. 003w
In summary, for a specific material in the range of imposec L

velocities satisfyingV/(eycy)>5 and for overall strains from oo
roughly 5% to 20%, the single most important dimensionless pz
rameter in(11) is V/(eycy), with V/Lg, playing a secondary role,
such that the nominal reaction stress resisting the motion of tf
plate imposing its velocity on the column has the form

o0

A
Ty

( vV Vv ) 12) o 5 10 15 20

8Yc0 ' LSO

4 The Dynamic Response of Tetragonal Truss Core  Fig. 11 Normal component of reaction force exerted by an in-

ned column member of a tetragonal truss core on left plate

Finite element calculations have been performed on the tetr% a function of normalized imposed velocity V at three levels
onal truss core unit of Fig. 1 under conditions where the rigi overall strain and the result derived from an axially loaded

bottom plate is he_ld fixed and the rigid top plate to which the COISumn with three levels of initial imperfection. The insert on

faces are welded is suddenly accelerated towards the bottom plgteright shows the dynamically loaded column (with V/cgey

with velocity V. The emphasis here is on the reaction force ex=15) while the insert on the left shows the quasistatically de-

erted by the core element on the top plate, and it will be showormed column.

that this resistance can be successfully modeled using the results

for the axially loaded columns of the previous section. Each mem-

ber of the unit of the regular tetrahedron in Fig. 1 is a column g&alistic choice. Finally, it is noted that the results based on those
length L and solid circular cross-section of radi®swith R/L  for the axially compressed column provide a reasonable approxi-
=0.077. The precise geometry is shown in Fig. 1. The height, mation to the reaction force exerted by the tetragonal core.

of the core is specified by/L = 273. The material is that speci-

fied in (9) with no strain rate dependencen€0). Results are 5 Summary

computed for various imposed velocities for overall strains up to
20% (e=Vt/H=0.2). The average reaction stress, acting on
the top plate and plotted in Fig. 11 is the net vertical force divid

by the area of the tetragonal unit. The results of the simulatio . X

for the tetragonal core are plotted as solid points. As in the casearS}dl relatlvEIy strlong dynamlcs” Occgr Vr\]’h‘é“‘?.YCO) >5. For rng-

the axially loaded columns, there is relatively weak dependen@éey stocky columns, ovsra end-shortening corresponding to

on overall strain for strains in the range from 5% to 20%. compressive strains of 20/‘.’ or more can be ach[eved before ap-
The insert in Fig. 11 compares the deformed shape of a memgé?mable bucking deformation occurs. The reaction force at the

of the tetragonal unit for a case with quasistatic loading with or}e@d of the column resisting the imposed motion is amplified by a

subject to high velocity loading, both at an overall strain of abOlgctor of 2 or more above that for a quasistatically loaded column.

20%. The deformation of the dynamically loaded member is pr imilarly, the energy dissipated in plastic deformation by the col-
marily confined to its upper third while the lower portion of thedmn at a given overall imposed strain is significantly increased

member remains almost straight. By contrast, the member ddéje to the inertial stabilization of the column. The roles of the

formed quasistatically undergoes bending deformations due \igrious geometric and material parameters are detailed in the pa-
per for the case of constant velocity loading. These results provide

buckling over its entire length. insight into how columns can be expected to behave under other
Included in Fig. 11 are predictions of the average reaction strel§§gs of dvnamic axial loadin Th% resent baper reveals the
based on the results obtained in the previous section for the a. P y ax 9. P pap

ally loaded clamped column with three levels of initial impen‘ec'—m'Oort"’mce of dynamic effects in the performance of truss cores of

tion. To plot the results based on the axially loaded column, yll-metal sandwich plates under high intensity dynamic loads.
length and aspect ratio of the column are identified with those of
the inclined member. Furthermore, the axial velocity applied #®cknowledgments
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Exact Critical Loads for a Pinned Half- tioninan electromechanical switching device with a curved beam

coated with piezoelectric films on the top and bottom surfaces.

Sine Arch Under End CoupIeS The end moment is proportional to the actuating voltage. The
equilibrium equation of the loaded arch can be written as
Jen-San Chen El(y_yo),xxxx_ p* y,xx+ M* [ - 5’()() + 5’()(_ L)] =0 (1)
Professor p* is the axial force
e-mail: jschen@ntu.edu.tw AE (L
* 2 2
i ) p :ZJ (Y,x_yO,x)dX (2
Jian-San Lin 0
Graduate Student E, A andl are Young’'s modulus, area, and moment of inertia of
the cross sectiorl is the distance between the two pinned ends.

Yo(X) is the initial shape of the arch. Equatiofis and(2) can be

National Taiwan University, Taipei, Taiwan 10617 nondimensionalized to the forms

a
u—u —PUg+ —M[=6"(E)+ 6" (é— =0 3
In this note we show that for a pinned half-sine arch under end ( o) eeee™ Pl 4 [ (&) (&=m)] @)

couples snap-through buckling will occur unsymmetrically if the 1 [
initial height of the shallow arch is greater than 6.5466r, where r p= _J' (u2 Y )dé (4)
is the radius of gyration of the cross section. The closed-form 2m ) F 0%
expression for the critical couple can be obtained analyticall)(l.v
[DOI: 10.1115/1.1827244 here
y Yo X p*L? AM* L2

VS T P

. TRE T SEIr
1 Introduction 7
(5

cI;'—sZ?cglr ecri'ocg'lzrrhoigs:aﬁgézrﬁgghgﬁfckshngu%f aaigaﬂgvéghcg_ 'S fis the radius of gyration of the cross section. The initial shape of
P bp ’ 9 the arch is assumed to be in the form

rived the exact critical loads for a pinned half-sine arch under

sinusoidal loading. For other load distributions such as uniform Ug(é)=hsin¢ (6)
ressure and a concentrated force at the midpoint, the criti

I%ads can be obtained by summing a few terms%f a rapidly Co‘iﬁs assumed that the shape of the deformed arch can be expanded

verging Fourier series. For a complete review of the previo

works of arch stability, the readers are referred to the two books *

by Simitses2,3]. In all these previous works, the external loads ud)= 2 a, sinng @)

causing snap-through buckling are lateral forces. In this note we n=1

consider the case when the sinusoidal arch is under couplesa@b expanding the derivative of the Dirac delta functiénas a
both ends. Fourier sine series and substituting E6®. and (7) into Egs.(3)
and (4) we obtain the equations far,

2 Equilibrium Equation nfa,+n2pa,+q,=0, n=123... ®)
We consider a pinned shallow arch with equal and opposit
" . . ' . where
momentsM* applied to the two ends. This model finds applica-
1 h?
) ) o _ 2 2
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF p=-— 2 kK ap——, 9)
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- 4= 4
CHANICS. Manuscript received by the ASME Applied Mechanics Division, January
28, 2004; final revision, May 19, 2004. Associate Editor: R. C. Benson. g;=M-h, (10)
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g,=0, n=2446..., (11) Wwhere
da=nM, n=357... (12

ag
o _ _ 4
3 Equilibrium Configurations In the special case whevl =0, the three solutions of E¢14) are
Equation(8) represents a set of an infinite number of coupleglenoted byP,,, P;, andP; [4], respectivelyP, represents the
;‘_?lglr'ge;re ?V(\qlgatlons f(f)r alnt_lnfmlte number of coordinatgs  qriginal shape, Eq(6). P; is another stable configuration on the
types of solutions. other sideP; is an unstable position betweé and P; .

fi(a)=a;+—(ai—h?+q; (15)

3.1 Symmetrical Solution. «a,=0, where i=1,23...
The equations in Eq(8) with even number o are satisfied
automatically because of conditidi1). The remaining coordi-
natesa,; , 1 can be related ta; by a simple deduction procedure
from Eq.(8) as

3.2 Unsymmetrical Solution. «,;#0 for somej, and all
othera,=0,1=1,2,3...,i#]. This type of solution involves
odd number ofn in Eg. (7), plus one additional harmonic with
n=2j. For this type of solution we can solve fprfrom the 2jth
equation of Eq(8) as

— _ o,
—— e . i=123... (13) p=—4j (16)
21741+ ey —ay] After substituting Eq(16) into the (2 + 1)-th equation in Eq(8)

After substituting Eq(13) into Eq.(9), and substituting the result- We can solve fomy; ., exactly as
ing p into Eq. (8) for n=1, we obtain the following equation for

A2j+1=

Q2i+1 .
ay Ay 1= i=0,1,2... 17
. , T (2i+1)2[4j2— (21 +1)?] @7
Uzi+197 _ .
fi(aqy)+ =0 14) After substituting Eqs(16) and(17) into Eq.(9) we can solve for
e 2y 4(2i+1)7[4i(i +1>a1—q1]2] o ay S
|
1 5 - U541
ay=+— \/h?—16)%— - 18
22 VT G- 1? & @it nAe(2it 1) (18)
I
This pair of solutions are denoted B§(2j). where
4 Snap-Through Buckling Q=3 1 _9n’-64 23)
1 . . -
By inspecting Eq(14) for the root locus ofa; we can show =1 (2i-1)%(2i+3)? 576
that for smalleth the roota, corresponding té, will merge with o
+ ; 1 5172—512
a1(P7) asM increases from zero. For largeron the other hand, Ky= z _ (24)
a1(Pg) will merge with a;,(P7,) instead, which is known explic- =1 (2i—-1)%2i+3)° 1536

itly from Eq. (17) as After eliminatingM from Egs.(21) and(22) we can solve for this

specialh ash=6.5466.

For the easy use in practical design procedure, we may summa-
_ rize the conclusion in terms of physical parameters as follows. If
There then exists a special denoted byh, at whicha,(Po) will  the initial heighth* at the midpoint of the sinusoidal arch under
merge with botha;(P7) and «4(P1,) simultaneously. This situ- end couples is greater than 6.5466he shallow arch will snap
ation occurs when Ed14) admits a double root, which requiresunsymmetrically, and the critical couples can be found exactly as
the derivative of Eq(14) with respect tow; to vanish

(P =& 19)

) * = 7T3E| * 4 2\h* 2 2,2
df, [ o MES= oL2 [16h* +2/(64+72m%)h*2—1296272] (25)
4—+ 3
d “~ : 21 fi (i _a.12
1 = (D4 Day—a,) M+ corresponds to the critical couple which will snap the arch
8i(i+1)a; from position Py to P; . On the other handMy~, which is
"I+ Da-q, =0 (20) always negative, corresponds to the critical couple which will
1 1

. allow the arch to snap back from positié?] to Pg.
Therefore, ifh is smaller tharh, the arch will snap symmetrically.

On the other hand, ih is greater tharh, the arch will snap eferences
unsymmetrically. This note intends to present the exact criticg

: : [1] Fung, Y. C., and Kaplan, A., 1952, “Buckling of Low Arches or Curved
moment for the latter case. After replaciag in Egs.(14) and Beams of Small Curvature,” NACA Technical Note 2840.

(20) by g,/3, both equations can be rearranged further into the[z] Simitses, G. J., 198@&lastic Stability of StructuresR. E. Krieger, Malabar,

forms FL, Chap. 7.
[3] Simitses, G. J., 1990Dynamic Stability of Suddenly Loaded Structyres
(1+9k,)M?—2h M+ 144—8h?=0 (22) Springer, New York, Chap. 7.
[4] Hsu, C. S., 1967, “The Effects of Various Parameters on the Dynamic Stability
(1+3k,)M2—2hM+12—2h%=0 (22) of a Shallow Arch,” ASME J. Appl. Mech.34, pp. 349-358.
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Ana|ysis of the Bridgman Procedure to mental analysis and a numerical simulation of the deformation

process experienced by cylindrical specimens of pure copper is

Characterize the Mechanical presented. This material has been intentionally chosen since the
i i i i straightforward application of the earlier mentioned analytical ex-
Behavior Of_ Materials in the Tensile pressiond 1] to predict the stress distribution at the neck is not
Test: Experlments and adequate because, as shown belgfv(which is a material char-
Simulation acteristic parametgiis approximately 0.05 for this case. The ex-

perimental procedure undertaken to characterize some specific
features of the material response is briefly described in Sec. 2
where details on the derivation of the parameters involved in the
assumed potential plastic hardening law are also given. The nu-
merical simulation of the tensile test is performed in Sec. 3. A full
description of the large strain isotropic elastoplasticity-based for-

Diego J. Celentano
e-mail: dcelenta@lauca.usach.cl

Eduardo E. Cabezas and Claudio M. Garca mulation together with the corresponding finite element model
Departamento de IngeniarMecanica, used in the analysis can be found in R¢f510]. First, the simu-
Universidad de Santiago de Chile, lation is carried out with the hardening parameters derived from
Av. Bdo. O’Higgins 3363, Santiago, Chile the experiments by applying the classical Bridgman stress correc-

tion factor. The respective numerical results show an inaccurate
description of the hardening response for this material. Therefore,
the use of an alternative correction factor, which consequently
This note presents an experimental analysis and a numeridahds to another set of hardening parameters, is proposed. Then,
simulation of the mechanical behavior experienced by cylindricéthe results obtained with these last parameters are found to ad-
specimens of pure copper during the tensile test. A set of expegituately agree with the experimental measurements. Aside from
ments has been carried out in order to derive the hardening pthe engineering stress-strain curve, different results at the section
rameters that characterize the material response. The simulatiandergoing extreme necking are specifically analyzed: ratio of
of the deformation process during the whole test is performed withirrent to initial diameter in terms of the elongation and both load
a finite element large strain elastoplasticity-based formulatiorand mean true axial stress versus logarithmic strain.
The results of the simulation show that the mechanical character-
@zation involving _the (_:Iassic_al Bridgm_an correctior_l fgctor, define% Experimental Characterization
in terms of logarithmic strains and aimed at predicting the stress ) o
distribution at the necking zone, cannot properly describe the The experimental procedure adopted in this work to character-
hardening response for this material. Therefore, the use of a diZe the mechanical behavior of a material consisted of the follow-
ferent correction factor, which consequently leads to another s&g steps9,10]. ) )
of hardening parameters, is proposed. Finally, an adequate ex-(1) Selection of the material and the specimen to be tested
perimental validation of the numerical results is obtained for thigccording to the American Society for Testing and Materials
last case.[DOI: 10.1115/1.1827243 (ASTM) standardg11]. Cylindrical specimens of pure copper
with a nominal diameter of 9 mm have been chosen considering
an initial extensometer length of 50 mm.
(2) Chemical characterization to check an adequate composi-

1 Introduction tion according to the selected material. This routine task is carried
The diffuse necking process of cylindrical samples used in ti!t by means of an optical spectrometer. )
tensile test has been extensively studiek, e.g., Ref§1—3)). In (3) Mechanical tensile test. Engineering stress-strain curves

particular, Bridgmar{1] derived, based on some geometric conbave been obtained with five specimens considering a load cell
siderations of the deformation pattern, analytical expressions ffe€d of 2.5 mm/mirivalue within the range specified by the
the stress distribution at the neck written in terms of the tr®STM standard$1l]). Only average experimental values will be
(logarithmio strain in this zone. Thus, this procedure allowed aghown below due to the good repeatability achieved in the mea-
adequate experimental derivation of the parameters involved SHréments. As usual, the engineering stress is definédl A,

the hardening response. However, such relationships are oWIE?reP is the axial load andy, is the initial transversal area
valid for certain materialge.g., low carbon steels, some alumi\While the engineering strain or elongation is computed las (
num alloys, etg.for which the maximum deformatioa; related —Lo)/Lo, with L and_Lo being the current and initial extensom-
to a uniform strain and stress distributions along the specimgﬁer lengths, res_pe(_:twely. . . .

(i.e., just before the necking developmpist around 0.10. There- (4) Characterization of the plastic behavior. At high levels of

L ) o longation, the stress and strain distributions are no longer uni-
lficr’rr](ietét(;]e applicability of this methodology to any material is rath‘%(?orm along the specimen due to the necking formation that takes

On the other hand, several finite element large strain l‘ormulgtl-ace n th? Samgles' There(fjore, .tr;_e enfgtlﬁeerrl]ng. stlre?]s-straln
tions usually defined within the plasticity framework have beef!MVe cannot provide a proper description ot the physical phenom-

developed and applied to the analysis of this tese, e.g., Refs. ena involved in the test. Following the procedure proposed by

[4-10], and references therginFurthermore, some of such for- Bridgman [1], the mechanical response can be adequately de-

mulations have been validated with given experimental data co?f:-“bEd by_ a different stress-strain curve defined in terms of the
ean equivalent stress., versus an equivalent deformatien,

sidering cylindrical specimens of different materials. Neverthe- ° . ; .
less, Bridgman's assumptions have been only confirmed fgioTPosed of an elastic and plastic contributiorespectively
! given by ogq=fgP/A andeqq=0¢q/E+ ey, Wherefg(e,)<1 is

. e
materials presentingp, ~0.10. an assumed known correction factor applied to the mean true axial

The aim of this note is to analyze the Bridgman procedure [Qesep/a A is the current transversal area at the necking zBne,
characterize the mechanical behavior, specifically the hardenliggthe Young's moduluss ,=In(Ag/A)=—2 In(D/Dy) is the true
] P

response, of materials in the tensile test. To this end, an exp&[sqarithmig deformation and is the current diametdas can be

Comtibuted by the Abplied Mechanics Division ofiE A . seen,D is the additional variable to be measuretaking into
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF ; : ; B

MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- account the correction factors shown in Figa)l two different

CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 1g€xperimentalre,— &g relationships, respectively, PlOtted in Figs.
2004, final revision, June 17, 2004. Editor: R. M. McMeeking. 1(b) and Xc), have been obtained from four specimens. It should
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Fig. 1 Analysis of a copper cylindrical tension specimen. (a) Correction factor versus true deformation. Mean equivalent stress

versus equivalent deformation obtained with (b) fB(s;=0.lO) and (¢) fB(ef,=0.05).

be noted thafg(e}=0.10) is the classical Bridgman expressiorgddition, the load and mean true axial stress both against the loga-
while fg(e% =0.05) is a proposed function specifically derived fofithmic deformation. Experimental values as well as numerical
pure copper through the experimental-numerical methodology d@suits Correspondlng* to the hardening parameters derived with
tailed in Ref.[10] (in both casesfg=1 for O<e,<e% andfg fs(ep =0.10) andfg(e; =0.05) are alplotted together for com-

<1 for 8p>8;)_ Accordingly, two potential correlations of the parison. In what follows, these two numerical solutions will be

. ; - . *_ *
type o.q=APe ") (as usua[1-10}, this potential expression is as-i”g%g) 'drzzt'giﬂvg'th the symbolsfg(e; =0.10) and fg(ep
sumed to govern the plastic isotropic hardening behavior of the =™’ P Yo . . *

In sharp contrast with the numerical predictions fof(e

material with AP and nP being hardening material paramebers ; ;
have been derived from thege data viaga standarg least-squards10), an ovirall good agreement between the simulation ob-
technique. They are, respectively, presented in Figs.dand Xc) tained withfg(s;=0.05) and the experimental values can be ob-
where, as can be seen, two different sets of hardening parame&é&yed. This is particularly apparent at high levels of elongation.
have been obtained A’=393.5 MPa; nP=0.102 for fg(s? Specifically, the engineering stref8ig. 2(a)] and the diameter
=0.10) andAP=366.1 MPa;n"=0.054 forfB(s; =0.05)]. The ratio [Fig. 2([_))] pred_icted byf_B(s§ _=0.10) are both unrealisti-
numerical responses computed with these properties are comp&ialy overestimated in the engineering strain range where the neck
and discussed in Sec. 3. formation occurs. Although both simulations have been computed
up to the same finalfracture elongation of 13.2%, note that the

3 Numerical Simulation and Experimental Validation corresponding logarithmic strains at this stage are completely dif-
ferent[see Figs. &) and 2d)]: 0.67 forfB(s; =0.10) and 0.92

The main objective of the present analysis is to assess the Eu_f *_005
merical predictions corresponding to the two sets of hardeni %r s(ep ! ).
properties derived in the mechanical characterization describedThe expe(z)rlmentally measured load dec_reas_es from an elonga-
earlier for pure copper tensile cylindrical specimens and, additio on of 1.23% or, equivalently, from a Iogarlthmlc.deformat!o,p
ally, to compare these responses with the respective experimeQa-04> onwards. The corresponding deformations provided by
measurements. The other material properties considered in thg two simulations are 5.12% and 0.058 fg(e}; =0.10) and
computations are: Young’s modulus 115,000 MPa, Poisson’s ra#ol6% and 0.048 fofB(s; =0.05). However, the mean true axial
0.34 and yield strength 188 MPa. Moreover, details about tiséress continues increasing until the fracture stage where a large
spatial discretization used can be found in RE¥s10]. amount of plastic hardening can be appreciated. This indicates

Figure 2 shows the engineering stress-strain relationship athét a geometrical instability occutmstead of a constitutive in-
some results at the section undergoing extreme necking: the diastability) since, as it is well known, the effect on the stress caused
eter relation versus the elongation in the necking zone and, by the reduction of the transversal area at the necking zone pre-
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Fig. 2 Analysis of a copper cylindrical tension specimen. (a) Engineering stress-strain relationship. Results at the section
undergoing extreme necking:  (b) ratio of current to initial diameter versus axial elongation, (c) load versus true deformation, and
(d) mean true axial stress vs true deformation.

dominates over the material hardening. Once the maximum loaddis Conclusions
reached, the regions of the specimen outside the necking zon

be‘lq;?etguer:waesrtilé:;”yrggligzgﬁs for the ratio of current to initial di-the mechanical behavior occurring in pure copper cylindrical
P .specimens during the standard tensile test have been presented.

ameter in terms of the elongation start with a linear relationshu?he study has focused on the analysis of the Bridgman procedure
reflecting uniform distributions of stresses and strains, which prgg. 4 - deriving the material hardening parameters via the appli-

sents an approximate slope of 0.5 due to the incompressibilityion of 4 stress correction factor that accounts for the nonhomo-
nature of the plastic flow. This situation is kept up to elongationgsneoys stress and strain distributions along the specimen once
of 5.0% for fg(e; =0.10) aml 4 % for fg(s; =0.05) that corre- the neck forms. It has been shown that the classical correction
spond, as mentioned earlier, to the respective points of maximyagtor has led to a unrealistic material response. Therefore, the use
load. Afterwards, a sudden reduction of the diameter takes plagan alternative correction factor, obtained through a previously
causing the necking formation and, hence, nonhomogenegeported experimental-numerical methodology, has been proposed
stress and strain distributions along the specimen. As can be ségrder to derive another set of hardening parameters. The results
the numerical results obtained wifrg(s; =0.05) fit the experi- provided by the simulation for this last case are consistent with
mental ones reasonably well during the whole test even with thiee experimental data. However, it remains to be seen in further
inherent difficulty associated with the measurement of the diarfesearch if this alternative correction factor is applicable to other
eter at the neck. materials exhibitin@;~0.05 in the tensile test.

The experimental value of the logarithmic deformation corre-
sponding to the maximum load is very close to the expomént
for the correlation obtained with(s’;:0.0S). Moreover, note Acknowledgments
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